Documentation Verification Report

Uniform

πŸ“ Source: Mathlib/Probability/Distributions/Uniform.lean

Statistics

MetricCount
DefinitionsIsUniform, uniformPDF, ofMultiset, uniformOfFinset, uniformOfFintype
5
TheoremsabsolutelyContinuous, aemeasurable, cond, hasPDF, integral_eq, isProbabilityMeasure, measure_preimage, mul_pdf_integrable, pdf_eq, pdf_eq_zero_of_measure_eq_zero_or_top, pdf_toReal_ae_eq, toMeasurable, toMeasurable_iff, uniformPDF_eq_pdf, uniformPDF_ite, mem_support_ofMultiset_iff, mem_support_uniformOfFinset_iff, mem_support_uniformOfFintype, ofMultiset_apply, ofMultiset_apply_of_notMem, support_ofMultiset, support_uniformOfFinset, support_uniformOfFintype, toMeasure_ofMultiset_apply, toMeasure_uniformOfFinset_apply, toMeasure_uniformOfFintype_apply, toOuterMeasure_ofMultiset_apply, toOuterMeasure_uniformOfFinset_apply, toOuterMeasure_uniformOfFintype_apply, uniformOfFinset_apply, uniformOfFinset_apply_of_mem, uniformOfFinset_apply_of_notMem, uniformOfFintype_apply
33
Total38

MeasureTheory.pdf

Definitions

NameCategoryTheorems
IsUniform πŸ“–MathDef
2 mathmath: IsUniform.toMeasurable_iff, IsUniform.cond
uniformPDF πŸ“–CompOp
2 mathmath: uniformPDF_ite, uniformPDF_eq_pdf

Theorems

NameKindAssumesProvesValidatesDepends On
uniformPDF_eq_pdf πŸ“–mathematicalMeasurableSet
IsUniform
Filter.EventuallyEq
ENNReal
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
uniformPDF
MeasureTheory.pdf
β€”MeasureTheory.Measure.instOuterMeasureClass
Filter.EventuallyEq.trans
Filter.EventuallyEq.symm
IsUniform.pdf_eq
MeasureTheory.ae_eq_refl
uniformPDF_ite πŸ“–mathematicalβ€”uniformPDF
ENNReal
Set
Set.instMembership
ENNReal.instInv
DFunLike.coe
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
instZeroENNReal
β€”mul_one

MeasureTheory.pdf.IsUniform

Theorems

NameKindAssumesProvesValidatesDepends On
absolutelyContinuous πŸ“–mathematicalMeasureTheory.pdf.IsUniformMeasureTheory.Measure.AbsolutelyContinuous
MeasureTheory.Measure.map
β€”ProbabilityTheory.cond_absolutelyContinuous
aemeasurable πŸ“–mathematicalMeasureTheory.pdf.IsUniformAEMeasurableβ€”zero_ne_one'
NeZero.charZero_one
ENNReal.instCharZero
MeasureTheory.Measure.map_of_not_aemeasurable
MeasureTheory.Measure.smul_apply
MeasureTheory.Measure.restrict_apply
MeasurableSet.univ
Set.univ_inter
smul_eq_mul
ENNReal.inv_mul_cancel
cond πŸ“–mathematicalβ€”MeasureTheory.pdf.IsUniform
ProbabilityTheory.cond
β€”MeasureTheory.Measure.map_id
hasPDF πŸ“–mathematicalMeasureTheory.pdf.IsUniformMeasureTheory.HasPDFβ€”MeasureTheory.hasPDF_of_map_eq_withDensity
aemeasurable
AEMeasurable.indicator
AEMeasurable.const_smul
MeasurableSMul.toMeasurableConstSMul
measurableSMul_of_mul
MeasurableMulβ‚‚.toMeasurableMul
ENNReal.instMeasurableMulβ‚‚
Measurable.aemeasurable
measurable_one
MeasureTheory.measurableSet_toMeasurable
MeasureTheory.withDensity_indicator
IsScalarTower.right
MeasureTheory.withDensity_smul
MeasureTheory.withDensity_one
MeasureTheory.Measure.restrict_toMeasurable
MeasureTheory.measure_toMeasurable
ProbabilityTheory.cond.eq_1
integral_eq πŸ“–mathematicalMeasureTheory.pdf.IsUniform
Real
Real.measurableSpace
MeasureTheory.MeasureSpace.volume
Real.measureSpace
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instMul
ENNReal.toReal
ENNReal
ENNReal.instInv
DFunLike.coe
MeasureTheory.Measure
MeasureTheory.MeasureSpace.toMeasurableSpace
Set
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.restrict
β€”smul_eq_mul
IsScalarTower.right
MeasureTheory.integral_smul_measure
MeasureTheory.integral_map
aestronglyMeasurable_id
PseudoEMetricSpace.pseudoMetrizableSpace
BorelSpace.opensMeasurable
Real.borelSpace
instSecondCountableTopologyReal
MeasureTheory.Measure.map_of_not_aemeasurable
MeasureTheory.integral_zero_measure
MeasureTheory.integral_non_aestronglyMeasurable
aestronglyMeasurable_iff_aemeasurable
isProbabilityMeasure πŸ“–mathematicalMeasureTheory.pdf.IsUniformMeasureTheory.IsProbabilityMeasureβ€”Set.preimage_univ
measure_preimage
MeasurableSet.univ
Set.inter_univ
ENNReal.div_self
measure_preimage πŸ“–mathematicalMeasureTheory.pdf.IsUniform
MeasurableSet
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
Set.preimage
DivInvMonoid.toDiv
ENNReal.instDivInvMonoid
Set.instInter
β€”MeasureTheory.Measure.map_apply_of_aemeasurable
aemeasurable
ProbabilityTheory.cond_apply'
ENNReal.div_eq_inv_mul
mul_pdf_integrable πŸ“–mathematicalIsCompact
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
MeasureTheory.pdf.IsUniform
Real.measurableSpace
MeasureTheory.MeasureSpace.volume
Real.measureSpace
MeasureTheory.Integrable
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
MeasureTheory.MeasureSpace.toMeasurableSpace
Real.instMul
ENNReal.toReal
MeasureTheory.pdf
β€”MulZeroClass.mul_zero
MeasureTheory.Integrable.congr
Filter.mp_mem
MeasureTheory.Measure.instOuterMeasureClass
pdf_eq_zero_of_measure_eq_zero_or_top
Filter.univ_mem'
isProbabilityMeasure
MeasureTheory.AEStronglyMeasurable.mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
aestronglyMeasurable_id
PseudoEMetricSpace.pseudoMetrizableSpace
BorelSpace.opensMeasurable
Real.borelSpace
instSecondCountableTopologyReal
AEMeasurable.aestronglyMeasurable
AEMeasurable.ennreal_toReal
Measurable.aemeasurable
MeasureTheory.measurable_pdf
MeasureTheory.pdf.hasFiniteIntegral_mul
MeasureTheory.IsZeroOrProbabilityMeasure.toIsFiniteMeasure
MeasureTheory.instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
pdf_eq
IsCompact.measurableSet
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Set.indicator_mul_right
mul_one
MeasureTheory.lintegral_indicator
MeasureTheory.lintegral_mul_const
measurable_enorm
ENNReal.mul_ne_top
LT.lt.ne
MeasureTheory.setLIntegral_lt_top_of_isCompact
continuous_nnnorm
ENNReal.inv_lt_top
pos_iff_ne_zero
ENNReal.instCanonicallyOrderedAdd
pdf_eq πŸ“–mathematicalMeasurableSet
MeasureTheory.pdf.IsUniform
Filter.EventuallyEq
ENNReal
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.pdf
Set.indicator
instZeroENNReal
Function.hasSMul
Algebra.toSMul
ENNReal.instCommSemiring
CommSemiring.toSemiring
Algebra.id
ENNReal.instInv
DFunLike.coe
Set
Pi.instOne
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”MeasureTheory.Measure.instOuterMeasureClass
ENNReal.inv_top
zero_smul
Set.indicator_zero'
pdf_eq_zero_of_measure_eq_zero_or_top
Filter.mp_mem
MeasureTheory.measure_eq_zero_iff_ae_notMem
Filter.univ_mem'
ENNReal.inv_zero
Set.indicator_of_notMem
hasPDF
isProbabilityMeasure
MeasureTheory.pdf.eq_of_map_eq_withDensity
MeasureTheory.IsZeroOrProbabilityMeasure.toIsFiniteMeasure
MeasureTheory.instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
AEMeasurable.indicator
AEMeasurable.const_smul
MeasurableSMul.toMeasurableConstSMul
measurableSMul_of_mul
MeasurableMulβ‚‚.toMeasurableMul
ENNReal.instMeasurableMulβ‚‚
Measurable.aemeasurable
measurable_one
MeasureTheory.withDensity_indicator
IsScalarTower.right
MeasureTheory.withDensity_smul
MeasureTheory.withDensity_one
ProbabilityTheory.cond.eq_1
pdf_eq_zero_of_measure_eq_zero_or_top πŸ“–mathematicalMeasureTheory.pdf.IsUniform
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
instZeroENNReal
Top.top
instTopENNReal
Filter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.pdf
Pi.instZero
β€”MeasureTheory.Measure.instOuterMeasureClass
ENNReal.inv_zero
MeasureTheory.Measure.restrict_eq_zero
smul_zero
IsScalarTower.right
MeasureTheory.Measure.instHaveLebesgueDecompositionZeroLeft
ENNReal.inv_top
zero_smul
pdf_toReal_ae_eq πŸ“–mathematicalMeasurableSet
MeasureTheory.pdf.IsUniform
Filter.EventuallyEq
Real
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
ENNReal.toReal
MeasureTheory.pdf
Set.indicator
ENNReal
instZeroENNReal
Function.hasSMul
Algebra.toSMul
ENNReal.instCommSemiring
CommSemiring.toSemiring
Algebra.id
ENNReal.instInv
DFunLike.coe
Set
Pi.instOne
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”Filter.EventuallyEq.fun_comp
MeasureTheory.Measure.instOuterMeasureClass
pdf_eq
toMeasurable πŸ“–mathematicalMeasureTheory.pdf.IsUniformMeasureTheory.toMeasurableβ€”ProbabilityTheory.cond_toMeasurable_eq
toMeasurable_iff πŸ“–mathematicalβ€”MeasureTheory.pdf.IsUniform
MeasureTheory.toMeasurable
β€”ProbabilityTheory.cond_toMeasurable_eq

PMF

Definitions

NameCategoryTheorems
ofMultiset πŸ“–CompOp
6 mathmath: toMeasure_ofMultiset_apply, mem_support_ofMultiset_iff, toOuterMeasure_ofMultiset_apply, support_ofMultiset, ofMultiset_apply_of_notMem, ofMultiset_apply
uniformOfFinset πŸ“–CompOp
7 mathmath: uniformOfFinset_apply_of_mem, toOuterMeasure_uniformOfFinset_apply, support_uniformOfFinset, uniformOfFinset_apply_of_notMem, uniformOfFinset_apply, mem_support_uniformOfFinset_iff, toMeasure_uniformOfFinset_apply
uniformOfFintype πŸ“–CompOp
5 mathmath: uniformOfFintype_apply, toMeasure_uniformOfFintype_apply, mem_support_uniformOfFintype, toOuterMeasure_uniformOfFintype_apply, support_uniformOfFintype

Theorems

NameKindAssumesProvesValidatesDepends On
mem_support_ofMultiset_iff πŸ“–mathematicalβ€”Set
Set.instMembership
support
ofMultiset
Finset
Finset.instMembership
Multiset.toFinset
β€”support_ofMultiset
mem_support_uniformOfFinset_iff πŸ“–mathematicalFinset.NonemptySet
Set.instMembership
support
uniformOfFinset
Finset
Finset.instMembership
β€”support_uniformOfFinset
mem_support_uniformOfFintype πŸ“–mathematicalβ€”Set
Set.instMembership
support
uniformOfFintype
β€”support_uniformOfFintype
ofMultiset_apply πŸ“–mathematicalβ€”DFunLike.coe
PMF
ENNReal
instFunLike
ofMultiset
DivInvMonoid.toDiv
ENNReal.instDivInvMonoid
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Multiset.count
Multiset.card
β€”β€”
ofMultiset_apply_of_notMem πŸ“–mathematicalMultiset
Multiset.instMembership
DFunLike.coe
PMF
ENNReal
instFunLike
ofMultiset
instZeroENNReal
β€”ENNReal.instCharZero
support_ofMultiset πŸ“–mathematicalβ€”support
ofMultiset
SetLike.coe
Finset
Finset.instSetLike
Multiset.toFinset
β€”Set.ext
ENNReal.instCharZero
support_uniformOfFinset πŸ“–mathematicalFinset.Nonemptysupport
uniformOfFinset
SetLike.coe
Finset
Finset.instSetLike
β€”Set.ext
support_uniformOfFintype πŸ“–mathematicalβ€”support
uniformOfFintype
Top.top
Set
BooleanAlgebra.toTop
Set.instBooleanAlgebra
β€”Set.ext
uniformOfFintype_apply
toMeasure_ofMultiset_apply πŸ“–mathematicalMeasurableSetDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
toMeasure
ofMultiset
DivInvMonoid.toDiv
ENNReal.instDivInvMonoid
tsum
ENNReal.instAddCommMonoid
ENNReal.instTopologicalSpace
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Multiset.count
Multiset.filter
Set.instMembership
SummationFilter.unconditional
Multiset.card
β€”toMeasure_apply_eq_toOuterMeasure_apply
toOuterMeasure_ofMultiset_apply
toMeasure_uniformOfFinset_apply πŸ“–mathematicalFinset.Nonempty
MeasurableSet
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
toMeasure
uniformOfFinset
DivInvMonoid.toDiv
ENNReal.instDivInvMonoid
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Finset.card
Finset.filter
Set.instMembership
β€”toMeasure_apply_eq_toOuterMeasure_apply
toOuterMeasure_uniformOfFinset_apply
toMeasure_uniformOfFintype_apply πŸ“–mathematicalMeasurableSetDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
toMeasure
uniformOfFintype
DivInvMonoid.toDiv
ENNReal.instDivInvMonoid
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Fintype.card
Set.Elem
β€”toMeasure_uniformOfFinset_apply
Finset.univ_nonempty
Fintype.card_subtype
toOuterMeasure_ofMultiset_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.OuterMeasure
Set
ENNReal
MeasureTheory.OuterMeasure.instFunLikeSetENNReal
toOuterMeasure
ofMultiset
DivInvMonoid.toDiv
ENNReal.instDivInvMonoid
tsum
ENNReal.instAddCommMonoid
ENNReal.instTopologicalSpace
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Multiset.count
Multiset.filter
Set.instMembership
SummationFilter.unconditional
Multiset.card
β€”div_eq_mul_inv
toOuterMeasure_apply
tsum_congr
Multiset.count_filter_of_pos
Multiset.count_eq_zero_of_notMem
CharP.cast_eq_zero
CharP.ofCharZero
ENNReal.instCharZero
MulZeroClass.zero_mul
toOuterMeasure_uniformOfFinset_apply πŸ“–mathematicalFinset.NonemptyDFunLike.coe
MeasureTheory.OuterMeasure
Set
ENNReal
MeasureTheory.OuterMeasure.instFunLikeSetENNReal
toOuterMeasure
uniformOfFinset
DivInvMonoid.toDiv
ENNReal.instDivInvMonoid
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Finset.card
Finset.filter
Set.instMembership
β€”toOuterMeasure_apply
tsum_congr
tsum_eq_sum
SummationFilter.instLeAtTopUnconditional
Finset.mem_filter
Finset.sum_congr
Finset.sum_const
nsmul_eq_mul
div_eq_mul_inv
toOuterMeasure_uniformOfFintype_apply πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.OuterMeasure
Set
ENNReal
MeasureTheory.OuterMeasure.instFunLikeSetENNReal
toOuterMeasure
uniformOfFintype
DivInvMonoid.toDiv
ENNReal.instDivInvMonoid
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Fintype.card
Set.Elem
β€”Finset.univ_nonempty
uniformOfFintype.eq_1
toOuterMeasure_uniformOfFinset_apply
Fintype.card_subtype
Finset.card_univ
uniformOfFinset_apply πŸ“–mathematicalFinset.NonemptyDFunLike.coe
PMF
ENNReal
instFunLike
uniformOfFinset
Finset
Finset.instMembership
Finset.decidableMem
ENNReal.instInv
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Finset.card
instZeroENNReal
β€”β€”
uniformOfFinset_apply_of_mem πŸ“–mathematicalFinset.Nonempty
Finset
Finset.instMembership
DFunLike.coe
PMF
ENNReal
instFunLike
uniformOfFinset
ENNReal.instInv
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Finset.card
β€”β€”
uniformOfFinset_apply_of_notMem πŸ“–mathematicalFinset.Nonempty
Finset
Finset.instMembership
DFunLike.coe
PMF
ENNReal
instFunLike
uniformOfFinset
instZeroENNReal
β€”β€”
uniformOfFintype_apply πŸ“–mathematicalβ€”DFunLike.coe
PMF
ENNReal
instFunLike
uniformOfFintype
ENNReal.instInv
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Fintype.card
β€”β€”

---

← Back to Index