Documentation Verification Report

IdentDistrib

πŸ“ Source: Mathlib/Probability/IdentDistrib.lean

Statistics

MetricCount
DefinitionsIdentDistrib
1
TheoremsidentDistrib_mk, identDistrib_mk, identDistrib, add_const, ae_mem_snd, ae_snd, aemeasurable_fst, aemeasurable_snd, aestronglyMeasurable_fst, aestronglyMeasurable_iff, aestronglyMeasurable_snd, coe_nnreal_ennreal, comp, comp_of_aemeasurable, const_add, const_div, const_mul, const_sub, div_const, eLpNorm_eq, essSup_eq, evariance_eq, hasLaw, integrable_iff, integrable_snd, integral_eq, inv, lintegral_eq, map_eq, measure_mem_eq, measure_preimage_eq, memLp_iff, memLp_snd, mul_const, neg, nnnorm, norm, of_ae_eq, pow, refl, sq, sub_const, trans, variance_eq, uniformIntegrable_of_identDistrib, uniformIntegrable_of_identDistrib_aux, indepFun_of_identDistrib_pair
47
Total48

MeasureTheory.AEMeasurable

Theorems

NameKindAssumesProvesValidatesDepends On
identDistrib_mk πŸ“–mathematicalAEMeasurableProbabilityTheory.IdentDistribβ€”ProbabilityTheory.IdentDistrib.of_ae_eq

MeasureTheory.AEStronglyMeasurable

Theorems

NameKindAssumesProvesValidatesDepends On
identDistrib_mk πŸ“–mathematicalMeasureTheory.AEStronglyMeasurableProbabilityTheory.IdentDistribβ€”ProbabilityTheory.IdentDistrib.of_ae_eq
aemeasurable

ProbabilityTheory

Definitions

NameCategoryTheorems
IdentDistrib πŸ“–CompData
6 mathmath: HasLaw.identDistrib, MeasureTheory.AEStronglyMeasurable.identDistrib_mk, IdentDistrib.of_ae_eq, identDistrib_iff_forall_finset_identDistrib, IdentDistrib.refl, MeasureTheory.AEMeasurable.identDistrib_mk

Theorems

NameKindAssumesProvesValidatesDepends On
indepFun_of_identDistrib_pair πŸ“–β€”IndepFun
IdentDistrib
Prod.instMeasurableSpace
β€”β€”indepFun_iff_map_prod_eq_prod_map_map
AEMeasurable.comp_aemeasurable
Measurable.aemeasurable
measurable_fst
IdentDistrib.aemeasurable_snd
measurable_snd
IdentDistrib.map_eq
IdentDistrib.aemeasurable_fst
IdentDistrib.comp

ProbabilityTheory.HasLaw

Theorems

NameKindAssumesProvesValidatesDepends On
identDistrib πŸ“–mathematicalProbabilityTheory.HasLawProbabilityTheory.IdentDistribβ€”aemeasurable
map_eq

ProbabilityTheory.IdentDistrib

Theorems

NameKindAssumesProvesValidatesDepends On
add_const πŸ“–β€”ProbabilityTheory.IdentDistribβ€”β€”comp
MeasurableAdd.measurable_add_const
ae_mem_snd πŸ“–β€”ProbabilityTheory.IdentDistrib
MeasurableSet
Filter.Eventually
Set
Set.instMembership
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
β€”β€”MeasureTheory.Measure.instOuterMeasureClass
ae_snd
ae_snd πŸ“–β€”ProbabilityTheory.IdentDistrib
MeasurableSet
setOf
Filter.Eventually
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
β€”β€”MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.ae_map_iff
aemeasurable_snd
map_eq
aemeasurable_fst
aemeasurable_fst πŸ“–mathematicalProbabilityTheory.IdentDistribAEMeasurableβ€”β€”
aemeasurable_snd πŸ“–mathematicalProbabilityTheory.IdentDistribAEMeasurableβ€”β€”
aestronglyMeasurable_fst πŸ“–mathematicalProbabilityTheory.IdentDistribMeasureTheory.AEStronglyMeasurableβ€”AEMeasurable.aestronglyMeasurable
aemeasurable_fst
aestronglyMeasurable_iff πŸ“–mathematicalProbabilityTheory.IdentDistribMeasureTheory.AEStronglyMeasurableβ€”aestronglyMeasurable_snd
symm
aestronglyMeasurable_snd πŸ“–β€”ProbabilityTheory.IdentDistrib
MeasureTheory.AEStronglyMeasurable
β€”β€”MeasureTheory.Measure.instOuterMeasureClass
aestronglyMeasurable_iff_aemeasurable_separable
aemeasurable_snd
TopologicalSpace.IsSeparable.closure
ae_mem_snd
IsClosed.measurableSet
BorelSpace.opensMeasurable
isClosed_closure
Filter.mp_mem
Filter.univ_mem'
subset_closure
coe_nnreal_ennreal πŸ“–mathematicalProbabilityTheory.IdentDistrib
NNReal
NNReal.measurableSpace
ENNReal
ENNReal.measurableSpace
ENNReal.ofNNReal
β€”comp
measurable_coe_nnreal_ennreal
comp πŸ“–β€”ProbabilityTheory.IdentDistrib
Measurable
β€”β€”comp_of_aemeasurable
Measurable.aemeasurable
comp_of_aemeasurable πŸ“–β€”ProbabilityTheory.IdentDistrib
AEMeasurable
MeasureTheory.Measure.map
β€”β€”AEMeasurable.comp_aemeasurable
aemeasurable_fst
map_eq
aemeasurable_snd
AEMeasurable.map_map_of_aemeasurable
const_add πŸ“–β€”ProbabilityTheory.IdentDistribβ€”β€”comp
MeasurableAdd.measurable_const_add
const_div πŸ“–β€”ProbabilityTheory.IdentDistribβ€”β€”comp
MeasurableDiv.measurable_const_div
const_mul πŸ“–β€”ProbabilityTheory.IdentDistribβ€”β€”comp
MeasurableMul.measurable_const_mul
const_sub πŸ“–β€”ProbabilityTheory.IdentDistribβ€”β€”comp
MeasurableSub.measurable_const_sub
div_const πŸ“–β€”ProbabilityTheory.IdentDistribβ€”β€”comp
MeasurableDiv.measurable_div_const
eLpNorm_eq πŸ“–mathematicalProbabilityTheory.IdentDistribMeasureTheory.eLpNorm
ContinuousENorm.toENorm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddGroup.toContinuousENorm
β€”MeasureTheory.eLpNorm_exponent_zero
essSup_eq
BorelSpace.opensMeasurable
ENNReal.borelSpace
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
comp
Measurable.comp
measurable_coe_nnreal_ennreal
measurable_nnnorm
MeasureTheory.eLpNorm_eq_eLpNorm'
one_div
lintegral_eq
Measurable.pow_const
ENNReal.hasMeasurablePow
essSup_eq πŸ“–mathematicalProbabilityTheory.IdentDistribessSup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
β€”measure_mem_eq
measurableSet_Ioi
instClosedIicTopology
essSup_eq_sInf
evariance_eq πŸ“–mathematicalProbabilityTheory.IdentDistrib
Real
Real.measurableSpace
ProbabilityTheory.evarianceβ€”integral_eq
Real.borelSpace
lintegral_eq
sq
Monoid.measurablePow
ENNReal.instMeasurableMulβ‚‚
coe_nnreal_ennreal
nnnorm
BorelSpace.opensMeasurable
sub_const
ContinuousSub.measurableSub
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
hasLaw πŸ“–β€”ProbabilityTheory.IdentDistrib
ProbabilityTheory.HasLaw
β€”β€”aemeasurable_snd
ProbabilityTheory.HasLaw.map_eq
map_eq
integrable_iff πŸ“–mathematicalProbabilityTheory.IdentDistribMeasureTheory.Integrable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
β€”integrable_snd
symm
integrable_snd πŸ“–β€”ProbabilityTheory.IdentDistrib
MeasureTheory.Integrable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
β€”β€”MeasureTheory.memLp_one_iff_integrable
memLp_snd
integral_eq πŸ“–mathematicalProbabilityTheory.IdentDistribMeasureTheory.integralβ€”MeasureTheory.Measure.instOuterMeasureClass
aestronglyMeasurable_iff_aemeasurable_separable
PseudoEMetricSpace.pseudoMetrizableSpace
aemeasurable_id
TopologicalSpace.IsSeparable.closure
MeasureTheory.ae_map_iff
aemeasurable_fst
IsClosed.measurableSet
BorelSpace.opensMeasurable
isClosed_closure
Filter.mp_mem
Filter.univ_mem'
subset_closure
MeasureTheory.integral_map
aemeasurable_snd
map_eq
MeasureTheory.integral_non_aestronglyMeasurable
aestronglyMeasurable_iff
inv πŸ“–mathematicalProbabilityTheory.IdentDistribPi.instInvβ€”comp
MeasurableInv.measurable_inv
lintegral_eq πŸ“–mathematicalProbabilityTheory.IdentDistrib
ENNReal
ENNReal.measurableSpace
MeasureTheory.lintegralβ€”MeasureTheory.lintegral_map'
aemeasurable_id
aemeasurable_fst
aemeasurable_snd
map_eq
map_eq πŸ“–mathematicalProbabilityTheory.IdentDistribMeasureTheory.Measure.mapβ€”β€”
measure_mem_eq πŸ“–mathematicalProbabilityTheory.IdentDistrib
MeasurableSet
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
Set.preimage
β€”MeasureTheory.Measure.map_apply_of_aemeasurable
aemeasurable_fst
aemeasurable_snd
map_eq
measure_preimage_eq πŸ“–mathematicalProbabilityTheory.IdentDistrib
MeasurableSet
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
Set.preimage
β€”measure_mem_eq
memLp_iff πŸ“–mathematicalProbabilityTheory.IdentDistribMeasureTheory.MemLp
ContinuousENorm.toENorm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toPseudoMetricSpace
β€”memLp_snd
symm
memLp_snd πŸ“–β€”ProbabilityTheory.IdentDistrib
MeasureTheory.MemLp
ContinuousENorm.toENorm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toPseudoMetricSpace
β€”β€”aestronglyMeasurable_snd
PseudoEMetricSpace.pseudoMetrizableSpace
MeasureTheory.MemLp.aestronglyMeasurable
eLpNorm_eq
BorelSpace.opensMeasurable
mul_const πŸ“–β€”ProbabilityTheory.IdentDistribβ€”β€”comp
MeasurableMul.measurable_mul_const
neg πŸ“–mathematicalProbabilityTheory.IdentDistribPi.instNegβ€”comp
MeasurableNeg.measurable_neg
nnnorm πŸ“–mathematicalProbabilityTheory.IdentDistribNNReal
NNReal.measurableSpace
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NormedAddCommGroup.toSeminormedAddCommGroup
β€”comp
measurable_nnnorm
norm πŸ“–mathematicalProbabilityTheory.IdentDistribReal
Real.measurableSpace
Norm.norm
NormedAddCommGroup.toNorm
β€”comp
measurable_norm
of_ae_eq πŸ“–mathematicalAEMeasurable
Filter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
ProbabilityTheory.IdentDistribβ€”MeasureTheory.Measure.instOuterMeasureClass
AEMeasurable.congr
MeasureTheory.Measure.map_congr
pow πŸ“–β€”ProbabilityTheory.IdentDistribβ€”β€”comp
Measurable.pow_const
measurable_id
refl πŸ“–mathematicalAEMeasurableProbabilityTheory.IdentDistribβ€”β€”
sq πŸ“–β€”ProbabilityTheory.IdentDistribβ€”β€”comp
Measurable.pow_const
measurable_id
sub_const πŸ“–β€”ProbabilityTheory.IdentDistribβ€”β€”comp
MeasurableSub.measurable_sub_const
trans πŸ“–β€”ProbabilityTheory.IdentDistribβ€”β€”aemeasurable_fst
aemeasurable_snd
map_eq
variance_eq πŸ“–mathematicalProbabilityTheory.IdentDistrib
Real
Real.measurableSpace
ProbabilityTheory.varianceβ€”ProbabilityTheory.variance.eq_1
evariance_eq

ProbabilityTheory.MemLp

Theorems

NameKindAssumesProvesValidatesDepends On
uniformIntegrable_of_identDistrib πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
MeasureTheory.MemLp
ContinuousENorm.toENorm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toPseudoMetricSpace
ProbabilityTheory.IdentDistrib
MeasureTheory.UniformIntegrableβ€”ProbabilityTheory.IdentDistrib.aestronglyMeasurable_iff
PseudoEMetricSpace.pseudoMetrizableSpace
MeasureTheory.Measure.instOuterMeasureClass
Filter.EventuallyEq.symm
MeasureTheory.MemLp.ae_eq
MeasureTheory.UniformIntegrable.ae_eq
uniformIntegrable_of_identDistrib_aux
ProbabilityTheory.IdentDistrib.trans
ProbabilityTheory.IdentDistrib.of_ae_eq
MeasureTheory.StronglyMeasurable.aemeasurable
MeasureTheory.AEStronglyMeasurable.aemeasurable
uniformIntegrable_of_identDistrib_aux πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
MeasureTheory.MemLp
ContinuousENorm.toENorm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toPseudoMetricSpace
MeasureTheory.StronglyMeasurable
ProbabilityTheory.IdentDistrib
MeasureTheory.UniformIntegrableβ€”MeasureTheory.uniformIntegrable_of'
MeasureTheory.MemLp.eLpNorm_indicator_norm_ge_pos_le
LT.lt.le
le_trans
le_of_eq
Set.ext
Real.le_toNNReal_iff_coe_le
norm_nonneg
MeasureTheory.eLpNorm_norm
norm_indicator_eq_indicator_norm
Measurable.indicator
measurable_norm
BorelSpace.opensMeasurable
measurableSet_le
NNReal.borelSpace
OrderTopology.to_orderClosedTopology
NNReal.instOrderTopology
NNReal.instSecondCountableTopology
measurable_const
measurable_nnnorm
Nat.cast_zero
MeasureTheory.eLpNorm_map_measure
Measurable.aestronglyMeasurable
PseudoEMetricSpace.pseudoMetrizableSpace
instSecondCountableTopologyReal
Real.borelSpace
ProbabilityTheory.IdentDistrib.aemeasurable_fst
ProbabilityTheory.IdentDistrib.map_eq

---

← Back to Index