Documentation Verification Report

Indep

πŸ“ Source: Mathlib/Probability/Independence/Kernel/Indep.lean

Statistics

MetricCount
DefinitionsIndep, Indep, Indep, Indep, IndepSet, IndepSets, iIndep, iIndepSet, iIndepSets
9
TheoremsindepSet_of_measurableSet, indepSets, measure_inter_eq_mul, bInter, bUnion, biUnion, iInter, iUnion, indep, indep', indepSet_of_mem, indep_aux, inter, union, union_iff, ae_isProbabilityMeasure, iIndepSets, iIndepSets', indep, meas_biInter, meas_iInter, of_precomp, of_subsingleton, precomp, indep_generateFrom_le, indep_generateFrom_le_nat, indep_generateFrom_lt, indep_generateFrom_of_disjoint, meas_biInter, of_precomp, precomp, iIndepSet_congr, iIndepSet_iff_iIndepSets_singleton, iIndepSet_iff_meas_biInter, iIndepSet_precomp_of_bijective, iIndepSet_zero_right, ae_isProbabilityMeasure, iIndep, iIndepSet_of_mem, indepSets, meas_biInter, meas_iInter, of_precomp, of_subsingleton, piiUnionInter_of_notMem, precomp, iIndepSets_congr, iIndepSets_precomp_of_bijective, iIndepSets_singleton_iff, iIndepSets_zero_right, iIndep_comap_mem_iff, iIndep_congr, iIndep_of_iIndep_of_le, iIndep_precomp_of_bijective, iIndep_zero_right, indepSet_congr, indepSet_empty_left, indepSet_empty_right, indepSet_iff_indepSets_singleton, indepSet_iff_measure_inter_eq_mul, indepSet_zero_left, indepSet_zero_right, indepSets_congr, indepSets_of_indepSets_of_le_left, indepSets_of_indepSets_of_le_right, indepSets_piiUnionInter_of_disjoint, indepSets_singleton_iff, indepSets_zero_left, indepSets_zero_right, indep_bot_left, indep_bot_right, indep_congr, indep_iSup_of_antitone, indep_iSup_of_directed_le, indep_iSup_of_disjoint, indep_iSup_of_monotone, indep_iff_forall_indepSet, indep_of_indep_of_le_left, indep_of_indep_of_le_right, indep_zero_left, indep_zero_right
81
Total90

IndepMatroid

Definitions

NameCategoryTheorems
Indep πŸ“–MathDef
14 mathmath: ofFinset_indep, ofFinite_indep, matroid_IsBase, ofBddAugment_indep, ofFinitary_indep, Matroid.restrictIndepMatroid_Indep, indep_empty, matroid_Indep, ofBdd_indep, ofFinitaryCardAugment_indep, indep_maximal, Matroid.dualIndepMatroid_Indep, ofFinset_indep', matroid_indep_iff

Matroid

Definitions

NameCategoryTheorems
Indep πŸ“–MathDef
120 mathmath: Dep.not_indep, restrictSubtype_indep_iff, removeLoops_indep_eq, ext_indep_iff, IsNonloop.contractElem_indep_iff, IsBasis'.insert_not_indep, isBasis_iff, indep_iff_delete_of_disjoint, disjointSigma_indep_iff, indep_iff_forall_closure_diff_ne, isBasis_iff_indep_encard_eq_of_finite, uniqueBaseOn_indep_iff', AlgebraicIndependent.matroid_indep_iff, le_eRk_iff, IsNonloop.closure_eq_closure_iff_eq_or_dep, IsBasis.contract_indep_iff, insert_indep_iff, cRank_eq_iSup_cardinalMk_indep, IsBase.exists_insert_of_ssubset, sum'_indep_iff, loopyOn_indep_iff, dual_coindep_iff, finitary_iff, comapOn_indep_iff, deleteElem_indep_iff, restrict_eq_restrict_iff, restrict_dep_iff, restrictIndepMatroid_Indep, ext_iff, indep_iff_forall_subset_not_isCircuit, isBasis_iff_indep_subset_closure, indep_iff, isBasis_self_iff_indep, comap_indep_iff, dual_indep_iff_exists', mapEmbedding_indep_iff, indep_iff_not_dep, mapSetEmbedding_indep_iff', freeOn_indep, indep_iff_forall_finite_subset_indep, isBasis_iff', IsBasis.contract_indep_iff_of_disjoint, indep_iff_forall_closure_ssubset_of_ssubset, comap_indep_iff_of_injOn, restrictSubtype_inter_indep_iff, sum_indep_iff, indep_iff_eRk_eq_encard_of_finite, comap_dep_iff, IsBasis'.indep, emptyOn_indep_iff, maximality, singleton_not_indep, coloops_indep, empty_indep, exists_mem_finite_closure_of_mem_closure, restrict_eq_freeOn_iff, mapSetEmbedding_indep_iff, setOf_indep_eq, isCircuit_iff_dep_forall_diff_singleton_indep, Coindep.indep, map_indep_iff, indep_iff_forall_notMem_closure_diff', IsCircuit.not_indep, IndepMatroid.matroid_Indep, indep_singleton, ground_indep_iff_eq_freeOn, restrictSubtype_indep_iff_of_subset, IsBasis.contract_indep_diff_iff, dual_indep_iff_exists, isBasis_iff_maximal, indep_iff_eRk_eq_encard, diff_coloops_indep_iff, indep_or_dep, isCircuit_iff_forall_ssubset, isBase_iff_indep_closure_eq, ground_indep_iff_isBase, mapEquiv_indep_iff, not_dep_iff, uniqueBaseOn_indep_iff, isCircuit_iff_minimal_not_indep, IsCircuit.diff_singleton_indep, map_image_indep_iff, copyBase_Indep, restrict_indep_iff, eq_freeOn_iff, freeOn_indep_iff, isBasis'_iff_indep_encard_eq_of_finite, isBasis_union_iff_indep_closure, not_indep_iff, indep_iff_forall_notMem_closure_diff, IsBasis.indep, IsBase.indep, isBase_iff_maximal_indep, sigma_indep_iff, IsCircuit.minimal_not_indep, IsRkFinite.indep_of_encard_le_eRk, ext_iff_indep, delete_indep_iff, subsingleton_indep, IsRestriction.indep_iff, mapSetEquiv_indep_iff, isBasis_iff_indep_closure, union_indep_iff_indep_of_subset_coloops, disjointSum_indep_iff, IsBasis'.contract_indep_diff_iff, union_coloops_indep_iff, IsBasis'.contract_indep_iff, diff_indep_iff_indep_of_subset_coloops, IsCircuit.ssubset_indep, indep_iff', existsMaximalSubsetProperty_indep, exists_subset_finite_closure_of_subset_closure, dep_iff, IsLoop.not_indep_of_mem, indep_iff_forall_subset_not_isCircuit', coindep_def, indep_of_not_dep, IsNonloop.indep, IndepMatroid.matroid_indep_iff, setOf_dep_eq

ProbabilityTheory

Definitions

NameCategoryTheorems
Indep πŸ“–MathDef
28 mathmath: IndepSets.indep', indep_limsup_atTop_self, IndepFun_iff_Indep, indep_biSup_limsup, Indep_iff, IndepSet_iff_Indep, indep_comap_of_bcf, iIndepFun.indep_comap_natural_of_lt, iIndepSet.indep_generateFrom_le, indep_comap_pi_of_bcf, indep_iSup_limsup, iIndep.indep, iIndepSet.indep_generateFrom_lt, indep_iSup_directed_limsup, indep_comap_process_of_bcf, indep_iff_forall_indepSet, indep_comap_process_of_prod_bcf, indep_limsup_atBot_self, indep_bot_right, Indep_iff_IndepSets, indep_bot_left, iIndepSet.indep_generateFrom_le_nat, indep_biSup_compl, indep_comap_pi_of_prod_bcf, IndepSets.indep, iIndepSet.indep_generateFrom_of_disjoint, indep_iSup_of_disjoint, indep_limsup_self

ProbabilityTheory.Kernel

Definitions

NameCategoryTheorems
Indep πŸ“–MathDef
21 mathmath: iIndepSet.indep_generateFrom_of_disjoint, iIndepSet.indep_generateFrom_le_nat, indep_zero_right, indep_iSup_directed_limsup, indep_limsup_atBot_self, iIndepSet.indep_generateFrom_le, indep_iff_forall_indepSet, indep_iSup_limsup, iIndepSet.indep_generateFrom_lt, indep_limsup_self, indep_biSup_limsup, iIndep.indep, indep_limsup_atTop_self, indep_congr, IndepSets.indep, indep_bot_left, IndepSets.indep', indep_bot_right, indep_zero_left, indep_biSup_compl, indep_iSup_of_disjoint
IndepSet πŸ“–MathDef
11 mathmath: indepSet_zero_left, indep_iff_forall_indepSet, indepSet_iff_measure_inter_eq_mul, IndepSets.indepSet_of_mem, indepSet_empty_left, indepSet_zero_right, indepSet_congr, indepSet_empty_right, indepSet_iff_indepSets_singleton, indepFun_iff_indepSet_preimage, Indep.indepSet_of_measurableSet
IndepSets πŸ“–MathDef
10 mathmath: iIndepSets.indepSets, indepSets_piiUnionInter_of_disjoint, indepSets_zero_left, IndepSets.union_iff, indepSets_zero_right, Indep.indepSets, indepSet_iff_indepSets_singleton, iIndepSets.piiUnionInter_of_notMem, indepSets_congr, indepSets_singleton_iff
iIndep πŸ“–MathDef
7 mathmath: iIndep.of_subsingleton, iIndepFun.iIndep, iIndepSets.iIndep, iIndep_congr, iIndep_comap_mem_iff, iIndep_precomp_of_bijective, iIndep_zero_right
iIndepSet πŸ“–MathDef
7 mathmath: iIndepSet_iff_meas_biInter, iIndepSets.iIndepSet_of_mem, iIndepSet_precomp_of_bijective, iIndep_comap_mem_iff, iIndepSet_iff_iIndepSets_singleton, iIndepSet_congr, iIndepSet_zero_right
iIndepSets πŸ“–MathDef
8 mathmath: iIndep.iIndepSets', iIndepSets_congr, iIndepSets_precomp_of_bijective, iIndepSets_zero_right, iIndep.iIndepSets, iIndepSets_singleton_iff, iIndepSets.of_subsingleton, iIndepSet_iff_iIndepSets_singleton

Theorems

NameKindAssumesProvesValidatesDepends On
iIndepSet_congr πŸ“–mathematicalFilter.EventuallyEq
MeasureTheory.Measure
MeasureTheory.ae
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
DFunLike.coe
ProbabilityTheory.Kernel
instFunLike
iIndepSetβ€”MeasureTheory.Measure.instOuterMeasureClass
iIndep_congr
iIndepSet_iff_iIndepSets_singleton πŸ“–mathematicalMeasurableSetiIndepSet
iIndepSets
Set
Set.instSingletonSet
β€”iIndep.iIndepSets
iIndepSets.iIndep
MeasurableSpace.generateFrom_le
IsPiSystem.singleton
iIndepSet_iff_meas_biInter πŸ“–mathematicalMeasurableSetiIndepSet
Filter.Eventually
ENNReal
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
instFunLike
Set.iInter
Finset
Finset.instMembership
Finset.prod
CommSemiring.toCommMonoid
ENNReal.instCommSemiring
MeasureTheory.ae
MeasureTheory.Measure.instOuterMeasureClass
β€”MeasureTheory.Measure.instOuterMeasureClass
iIndepSet_iff_iIndepSets_singleton
iIndepSets_singleton_iff
iIndepSet_precomp_of_bijective πŸ“–mathematicalFunction.BijectiveiIndepSet
Set
β€”iIndepSet.of_precomp
Function.Bijective.surjective
iIndepSet.precomp
Function.Bijective.injective
iIndepSet_zero_right πŸ“–mathematicalβ€”iIndepSet
MeasureTheory.Measure
MeasureTheory.Measure.instZero
β€”MeasurableSpace.generateFrom_singleton
iIndepSets_congr πŸ“–mathematicalFilter.EventuallyEq
MeasureTheory.Measure
MeasureTheory.ae
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
DFunLike.coe
ProbabilityTheory.Kernel
instFunLike
iIndepSetsβ€”MeasureTheory.Measure.instOuterMeasureClass
Filter.mp_mem
Filter.univ_mem'
Finset.prod_congr
iIndepSets_precomp_of_bijective πŸ“–mathematicalFunction.BijectiveiIndepSets
Set
β€”iIndepSets.of_precomp
Function.Bijective.surjective
iIndepSets.precomp
Function.Bijective.injective
iIndepSets_singleton_iff πŸ“–mathematicalβ€”iIndepSets
Set
Set.instSingletonSet
Filter.Eventually
ENNReal
DFunLike.coe
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
instFunLike
Set.iInter
Finset
Finset.instMembership
Finset.prod
CommSemiring.toCommMonoid
ENNReal.instCommSemiring
MeasureTheory.ae
MeasureTheory.Measure.instOuterMeasureClass
β€”MeasureTheory.Measure.instOuterMeasureClass
Filter.mp_mem
Filter.univ_mem'
Finset.prod_congr
Set.iInterβ‚‚_congr
iIndepSets_zero_right πŸ“–mathematicalβ€”iIndepSets
MeasureTheory.Measure
MeasureTheory.Measure.instZero
β€”MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.ae_zero
iIndep_comap_mem_iff πŸ“–mathematicalβ€”iIndep
MeasurableSpace.comap
Set
Set.instMembership
Top.top
MeasurableSpace
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
MeasurableSpace.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
iIndepSet
β€”β€”
iIndep_congr πŸ“–mathematicalFilter.EventuallyEq
MeasureTheory.Measure
MeasureTheory.ae
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
DFunLike.coe
ProbabilityTheory.Kernel
instFunLike
iIndepβ€”MeasureTheory.Measure.instOuterMeasureClass
iIndepSets_congr
iIndep_of_iIndep_of_le πŸ“–β€”iIndep
MeasurableSpace
MeasurableSpace.instLE
β€”β€”β€”
iIndep_precomp_of_bijective πŸ“–mathematicalFunction.BijectiveiIndep
MeasurableSpace
β€”iIndep.of_precomp
Function.Bijective.surjective
iIndep.precomp
Function.Bijective.injective
iIndep_zero_right πŸ“–mathematicalβ€”iIndep
MeasureTheory.Measure
MeasureTheory.Measure.instZero
β€”β€”
indepSet_congr πŸ“–mathematicalFilter.EventuallyEq
MeasureTheory.Measure
MeasureTheory.ae
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
DFunLike.coe
ProbabilityTheory.Kernel
instFunLike
IndepSetβ€”MeasureTheory.Measure.instOuterMeasureClass
indep_congr
indepSet_empty_left πŸ“–mathematicalβ€”IndepSet
Set
Set.instEmptyCollection
β€”Indep.symm
indepSet_empty_right
indepSet_empty_right πŸ“–mathematicalβ€”IndepSet
Set
Set.instEmptyCollection
β€”MeasurableSpace.generateFrom_singleton_empty
indep_bot_right
indepSet_iff_indepSets_singleton πŸ“–mathematicalMeasurableSetIndepSet
IndepSets
Set
Set.instSingletonSet
β€”Indep.indepSets
IndepSets.indep
MeasurableSpace.generateFrom_le
Set.mem_singleton_iff
IsPiSystem.singleton
indepSet_iff_measure_inter_eq_mul πŸ“–mathematicalMeasurableSetIndepSet
Filter.Eventually
ENNReal
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
instFunLike
Set.instInter
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
MeasureTheory.ae
MeasureTheory.Measure.instOuterMeasureClass
β€”MeasureTheory.Measure.instOuterMeasureClass
indepSet_iff_indepSets_singleton
indepSets_singleton_iff
indepSet_zero_left πŸ“–mathematicalβ€”IndepSet
ProbabilityTheory.Kernel
instZero
β€”MeasurableSpace.generateFrom_singleton
indepSet_zero_right πŸ“–mathematicalβ€”IndepSet
MeasureTheory.Measure
MeasureTheory.Measure.instZero
β€”MeasurableSpace.generateFrom_singleton
indepSets_congr πŸ“–mathematicalFilter.EventuallyEq
MeasureTheory.Measure
MeasureTheory.ae
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
DFunLike.coe
ProbabilityTheory.Kernel
instFunLike
IndepSetsβ€”MeasureTheory.Measure.instOuterMeasureClass
Filter.mp_mem
Filter.univ_mem'
indepSets_of_indepSets_of_le_left πŸ“–β€”IndepSets
Set
Set.instHasSubset
β€”β€”Set.mem_of_subset_of_mem
indepSets_of_indepSets_of_le_right πŸ“–β€”IndepSets
Set
Set.instHasSubset
β€”β€”Set.mem_of_subset_of_mem
indepSets_piiUnionInter_of_disjoint πŸ“–mathematicaliIndepSets
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
IndepSets
piiUnionInter
β€”MeasureTheory.Measure.instOuterMeasureClass
Finset.mem_union
Set.disjoint_left
Set.inter_univ
Set.disjoint_right
Set.univ_inter
Set.ext
Set.iInter_congr_Prop
Filter.mp_mem
Filter.univ_mem'
iIndepSets.ae_isProbabilityMeasure
Set.disjoint_iff_forall_ne
mul_one
one_mul
MeasureTheory.IsProbabilityMeasure.measure_univ
Finset.prod_congr
Finset.prod_mul_distrib
Finset.prod_ite_mem
Finset.union_inter_cancel_left
Finset.union_inter_cancel_right
indepSets_singleton_iff πŸ“–mathematicalβ€”IndepSets
Set
Set.instSingletonSet
Filter.Eventually
ENNReal
DFunLike.coe
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
instFunLike
Set.instInter
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
MeasureTheory.ae
MeasureTheory.Measure.instOuterMeasureClass
β€”MeasureTheory.Measure.instOuterMeasureClass
Set.mem_singleton_iff
indepSets_zero_left πŸ“–mathematicalβ€”IndepSets
ProbabilityTheory.Kernel
instZero
β€”MeasureTheory.Measure.instOuterMeasureClass
MulZeroClass.mul_zero
indepSets_zero_right πŸ“–mathematicalβ€”IndepSets
MeasureTheory.Measure
MeasureTheory.Measure.instZero
β€”MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.ae_zero
indep_bot_left πŸ“–mathematicalβ€”Indep
Bot.bot
MeasurableSpace
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
MeasurableSpace.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”Indep.symm
indep_bot_right
indep_bot_right πŸ“–mathematicalβ€”Indep
Bot.bot
MeasurableSpace
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
MeasurableSpace.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”MeasureTheory.Measure.instOuterMeasureClass
ProbabilityTheory.eq_zero_or_isMarkovKernel
MulZeroClass.mul_zero
Filter.Eventually.of_forall
MeasurableSpace.measurableSet_bot_iff
Set.mem_setOf_eq
Set.inter_empty
MeasureTheory.measure_empty
Set.inter_univ
MeasureTheory.IsProbabilityMeasure.measure_univ
ProbabilityTheory.IsMarkovKernel.is_probability_measure'
mul_one
indep_congr πŸ“–mathematicalFilter.EventuallyEq
MeasureTheory.Measure
MeasureTheory.ae
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
DFunLike.coe
ProbabilityTheory.Kernel
instFunLike
Indepβ€”MeasureTheory.Measure.instOuterMeasureClass
indepSets_congr
indep_iSup_of_antitone πŸ“–mathematicalIndep
MeasurableSpace
MeasurableSpace.instLE
Antitone
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
MeasurableSpace.instPartialOrder
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
MeasurableSpace.instCompleteLattice
β€”indep_iSup_of_directed_le
Antitone.directed_le
SemilatticeInf.instIsCodirectedOrder
indep_iSup_of_directed_le πŸ“–mathematicalIndep
MeasurableSpace
MeasurableSpace.instLE
Directed
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
MeasurableSpace.instCompleteLattice
β€”MeasurableSpace.isPiSystem_measurableSet
MeasurableSpace.generateFrom_measurableSet
isPiSystem_iUnion_of_directed_le
IndepSets.iUnion
Indep.indepSets
IndepSets.indep
iSup_le
MeasurableSpace.generateFrom_iUnion_measurableSet
indep_iSup_of_disjoint πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
iIndep
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Indep
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
MeasurableSpace.instCompleteLattice
Set.instMembership
β€”eq_or_ne
MeasureTheory.Measure.instOuterMeasureClass
exists_ae_eq_isMarkovKernel
iIndep.ae_isProbabilityMeasure
Indep.congr
Filter.EventuallyEq.symm
IndepSets.indep
ProbabilityTheory.IsMarkovKernel.IsZeroOrMarkovKernel
iSupβ‚‚_le
isPiSystem_piiUnionInter
MeasurableSpace.isPiSystem_measurableSet
generateFrom_piiUnionInter_measurableSet
indepSets_piiUnionInter_of_disjoint
iIndep.congr
indep_iSup_of_monotone πŸ“–mathematicalIndep
MeasurableSpace
MeasurableSpace.instLE
Monotone
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
MeasurableSpace.instPartialOrder
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
MeasurableSpace.instCompleteLattice
β€”indep_iSup_of_directed_le
Monotone.directed_le
SemilatticeSup.instIsDirectedOrder
indep_iff_forall_indepSet πŸ“–mathematicalβ€”Indep
IndepSet
β€”Indep.indepSet_of_measurableSet
MeasurableSpace.measurableSet_generateFrom
Set.mem_singleton
indep_of_indep_of_le_left πŸ“–β€”Indep
MeasurableSpace
MeasurableSpace.instLE
β€”β€”β€”
indep_of_indep_of_le_right πŸ“–β€”Indep
MeasurableSpace
MeasurableSpace.instLE
β€”β€”β€”
indep_zero_left πŸ“–mathematicalβ€”Indep
ProbabilityTheory.Kernel
instZero
β€”β€”
indep_zero_right πŸ“–mathematicalβ€”Indep
MeasureTheory.Measure
MeasureTheory.Measure.instZero
β€”β€”

ProbabilityTheory.Kernel.Indep

Theorems

NameKindAssumesProvesValidatesDepends On
indepSet_of_measurableSet πŸ“–mathematicalProbabilityTheory.Kernel.Indep
MeasurableSet
ProbabilityTheory.Kernel.IndepSetβ€”MeasurableSpace.generateFrom_induction
MeasurableSet.empty
MeasurableSet.compl
MeasurableSet.iUnion
instCountableNat
indepSets πŸ“–mathematicalProbabilityTheory.Kernel.Indep
MeasurableSpace.generateFrom
ProbabilityTheory.Kernel.IndepSetsβ€”MeasurableSpace.measurableSet_generateFrom

ProbabilityTheory.Kernel.IndepSet

Theorems

NameKindAssumesProvesValidatesDepends On
measure_inter_eq_mul πŸ“–mathematicalProbabilityTheory.Kernel.IndepSetFilter.Eventually
ENNReal
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
ProbabilityTheory.Kernel.instFunLike
Set.instInter
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
MeasureTheory.ae
MeasureTheory.Measure.instOuterMeasureClass
β€”ProbabilityTheory.Kernel.Indep.indepSets

ProbabilityTheory.Kernel.IndepSets

Theorems

NameKindAssumesProvesValidatesDepends On
bInter πŸ“–mathematicalSet
Set.instMembership
ProbabilityTheory.Kernel.IndepSets
Set.iInterβ€”MeasureTheory.Measure.instOuterMeasureClass
Set.biInter_subset_of_mem
bUnion πŸ“–mathematicalProbabilityTheory.Kernel.IndepSetsSet.iUnion
Set
Set.instMembership
β€”biUnion
biUnion πŸ“–mathematicalProbabilityTheory.Kernel.IndepSetsSet.iUnion
Set
Set.instMembership
β€”MeasureTheory.Measure.instOuterMeasureClass
iInter πŸ“–mathematicalProbabilityTheory.Kernel.IndepSetsSet.iInter
Set
β€”MeasureTheory.Measure.instOuterMeasureClass
Set.mem_iInter
iUnion πŸ“–mathematicalProbabilityTheory.Kernel.IndepSetsSet.iUnion
Set
β€”MeasureTheory.Measure.instOuterMeasureClass
Set.mem_iUnion
indep πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
IsPiSystem
MeasurableSpace.generateFrom
ProbabilityTheory.Kernel.IndepSets
ProbabilityTheory.Kernel.Indepβ€”ProbabilityTheory.eq_zero_or_isMarkovKernel
MeasurableSpace.induction_on_inter
MeasureTheory.Measure.instOuterMeasureClass
Set.empty_inter
MeasureTheory.measure_empty
MulZeroClass.zero_mul
indep_aux
MeasurableSpace.measurableSet_generateFrom
Filter.mp_mem
Filter.univ_mem'
Set.inter_comm
Set.diff_self_inter
Set.diff_eq_compl_inter
MeasureTheory.measure_diff
Set.inter_subset_left
MeasurableSet.nullMeasurableSet
MeasurableSet.inter
MeasureTheory.measure_ne_top
ProbabilityTheory.IsFiniteKernel.isFiniteMeasure
ProbabilityTheory.IsZeroOrMarkovKernel.isFiniteKernel
MeasureTheory.measure_compl
MeasureTheory.IsProbabilityMeasure.measure_univ
ProbabilityTheory.IsMarkovKernel.is_probability_measure'
mul_comm
ENNReal.mul_sub
mul_one
MeasureTheory.ae_all_iff
instCountableNat
Set.inter_iUnion
MeasureTheory.measure_iUnion
Function.onFun.eq_1
Disjoint.inter_left
Disjoint.inter_right
ENNReal.tsum_mul_right
indep' πŸ“–mathematicalMeasurableSet
IsPiSystem
ProbabilityTheory.Kernel.IndepSets
ProbabilityTheory.Kernel.Indep
MeasurableSpace.generateFrom
β€”indep
MeasurableSpace.generateFrom_le
indepSet_of_mem πŸ“–mathematicalSet
Set.instMembership
MeasurableSet
ProbabilityTheory.Kernel.IndepSets
ProbabilityTheory.Kernel.IndepSetβ€”MeasureTheory.Measure.instOuterMeasureClass
ProbabilityTheory.Kernel.indepSet_iff_measure_inter_eq_mul
indep_aux πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
IsPiSystem
MeasurableSpace.generateFrom
ProbabilityTheory.Kernel.IndepSets
Set
Set.instMembership
MeasurableSet
Filter.Eventually
ENNReal
DFunLike.coe
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
ProbabilityTheory.Kernel.instFunLike
Set.instInter
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
MeasureTheory.ae
MeasureTheory.Measure.instOuterMeasureClass
β€”MeasureTheory.Measure.instOuterMeasureClass
ProbabilityTheory.eq_zero_or_isMarkovKernel
MulZeroClass.mul_zero
MeasurableSpace.induction_on_inter
Set.inter_empty
MeasureTheory.measure_empty
Filter.mp_mem
Filter.univ_mem'
Set.diff_eq
Set.diff_self_inter
MeasureTheory.measure_diff
Set.inter_subset_left
MeasurableSet.nullMeasurableSet
MeasurableSet.inter
MeasureTheory.measure_ne_top
ProbabilityTheory.IsFiniteKernel.isFiniteMeasure
ProbabilityTheory.IsZeroOrMarkovKernel.isFiniteKernel
MeasureTheory.measure_compl
MeasureTheory.IsProbabilityMeasure.measure_univ
ProbabilityTheory.IsMarkovKernel.is_probability_measure'
ENNReal.mul_sub
mul_one
MeasureTheory.ae_all_iff
instCountableNat
Set.inter_iUnion
MeasureTheory.measure_iUnion
Pairwise.mono
Disjoint.inter_right'
Disjoint.inter_left'
ENNReal.tsum_mul_left
inter πŸ“–mathematicalProbabilityTheory.Kernel.IndepSetsSet
Set.instInter
β€”Set.mem_inter_iff
union πŸ“–mathematicalProbabilityTheory.Kernel.IndepSetsSet
Set.instUnion
β€”MeasureTheory.Measure.instOuterMeasureClass
Set.mem_union
union_iff πŸ“–mathematicalβ€”ProbabilityTheory.Kernel.IndepSets
Set
Set.instUnion
β€”ProbabilityTheory.Kernel.indepSets_of_indepSets_of_le_left
Set.subset_union_left
Set.subset_union_right
union

ProbabilityTheory.Kernel.iIndep

Theorems

NameKindAssumesProvesValidatesDepends On
ae_isProbabilityMeasure πŸ“–mathematicalProbabilityTheory.Kernel.iIndepFilter.Eventually
MeasureTheory.IsProbabilityMeasure
DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
ProbabilityTheory.Kernel.instFunLike
MeasureTheory.ae
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
β€”ProbabilityTheory.Kernel.iIndepSets.ae_isProbabilityMeasure
iIndepSets'
iIndepSets πŸ“–mathematicalMeasurableSpace.generateFrom
ProbabilityTheory.Kernel.iIndep
ProbabilityTheory.Kernel.iIndepSetsβ€”MeasurableSpace.measurableSet_generateFrom
iIndepSets' πŸ“–mathematicalProbabilityTheory.Kernel.iIndepProbabilityTheory.Kernel.iIndepSets
setOf
Set
MeasurableSet
β€”β€”
indep πŸ“–mathematicalProbabilityTheory.Kernel.iIndepProbabilityTheory.Kernel.Indepβ€”ProbabilityTheory.Kernel.iIndepSets.indepSets
meas_biInter πŸ“–mathematicalProbabilityTheory.Kernel.iIndep
MeasurableSet
Filter.Eventually
ENNReal
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
ProbabilityTheory.Kernel.instFunLike
Set.iInter
Finset
Finset.instMembership
Finset.prod
CommSemiring.toCommMonoid
ENNReal.instCommSemiring
MeasureTheory.ae
MeasureTheory.Measure.instOuterMeasureClass
β€”β€”
meas_iInter πŸ“–mathematicalProbabilityTheory.Kernel.iIndep
MeasurableSet
Filter.Eventually
ENNReal
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
ProbabilityTheory.Kernel.instFunLike
Set.iInter
Finset.prod
CommSemiring.toCommMonoid
ENNReal.instCommSemiring
Finset.univ
MeasureTheory.ae
MeasureTheory.Measure.instOuterMeasureClass
β€”Filter.mp_mem
MeasureTheory.Measure.instOuterMeasureClass
meas_biInter
Filter.univ_mem'
Set.iInter_congr_Prop
Set.iInter_true
of_precomp πŸ“–β€”ProbabilityTheory.Kernel.iIndep
MeasurableSpace
β€”β€”ProbabilityTheory.Kernel.iIndepSets.of_precomp
of_subsingleton πŸ“–mathematicalβ€”ProbabilityTheory.Kernel.iIndepβ€”β€”
precomp πŸ“–mathematicalProbabilityTheory.Kernel.iIndepMeasurableSpaceβ€”ProbabilityTheory.Kernel.iIndepSets.precomp

ProbabilityTheory.Kernel.iIndepSet

Theorems

NameKindAssumesProvesValidatesDepends On
indep_generateFrom_le πŸ“–mathematicalMeasurableSet
ProbabilityTheory.Kernel.iIndepSet
Preorder.toLT
ProbabilityTheory.Kernel.Indep
MeasurableSpace.generateFrom
Set
Set.instSingletonSet
setOf
Preorder.toLE
β€”Set.setOf_eq_eq_singleton'
indep_generateFrom_of_disjoint
Set.disjoint_singleton_left
LT.lt.not_ge
indep_generateFrom_le_nat πŸ“–mathematicalMeasurableSet
ProbabilityTheory.Kernel.iIndepSet
ProbabilityTheory.Kernel.Indep
MeasurableSpace.generateFrom
Set
Set.instSingletonSet
setOf
β€”indep_generateFrom_le
indep_generateFrom_lt πŸ“–mathematicalMeasurableSet
ProbabilityTheory.Kernel.iIndepSet
ProbabilityTheory.Kernel.Indep
MeasurableSpace.generateFrom
Set
Set.instSingletonSet
setOf
Preorder.toLT
β€”Set.setOf_eq_eq_singleton'
indep_generateFrom_of_disjoint
Set.disjoint_singleton_left
lt_irrefl
indep_generateFrom_of_disjoint πŸ“–mathematicalMeasurableSet
ProbabilityTheory.Kernel.iIndepSet
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
ProbabilityTheory.Kernel.Indep
MeasurableSpace.generateFrom
setOf
Set.instMembership
β€”eq_or_ne
MeasureTheory.Measure.instOuterMeasureClass
ProbabilityTheory.Kernel.exists_ae_eq_isMarkovKernel
ProbabilityTheory.Kernel.iIndep.ae_isProbabilityMeasure
ProbabilityTheory.Kernel.Indep.congr
Filter.EventuallyEq.symm
generateFrom_piiUnionInter_singleton_left
ProbabilityTheory.Kernel.IndepSets.indep'
ProbabilityTheory.IsMarkovKernel.IsZeroOrMarkovKernel
generateFrom_piiUnionInter_le
MeasurableSpace.generateFrom_le
Set.mem_singleton_iff
MeasurableSpace.measurableSet_generateFrom
isPiSystem_piiUnionInter
IsPiSystem.singleton
ProbabilityTheory.Kernel.indepSets_piiUnionInter_of_disjoint
ProbabilityTheory.Kernel.iIndep.iIndepSets
congr
meas_biInter πŸ“–mathematicalProbabilityTheory.Kernel.iIndepSetFilter.Eventually
ENNReal
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
ProbabilityTheory.Kernel.instFunLike
Set.iInter
Finset
Finset.instMembership
Finset.prod
CommSemiring.toCommMonoid
ENNReal.instCommSemiring
MeasureTheory.ae
MeasureTheory.Measure.instOuterMeasureClass
β€”ProbabilityTheory.Kernel.iIndep.iIndepSets
of_precomp πŸ“–β€”ProbabilityTheory.Kernel.iIndepSet
Set
β€”β€”ProbabilityTheory.Kernel.iIndep.of_precomp
precomp πŸ“–mathematicalProbabilityTheory.Kernel.iIndepSetSetβ€”ProbabilityTheory.Kernel.iIndep.precomp

ProbabilityTheory.Kernel.iIndepSets

Theorems

NameKindAssumesProvesValidatesDepends On
ae_isProbabilityMeasure πŸ“–mathematicalProbabilityTheory.Kernel.iIndepSetsFilter.Eventually
MeasureTheory.IsProbabilityMeasure
DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
ProbabilityTheory.Kernel.instFunLike
MeasureTheory.ae
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
β€”Filter.mp_mem
MeasureTheory.Measure.instOuterMeasureClass
meas_biInter
instIsEmptyFalse
Filter.univ_mem'
Set.iInter_congr_Prop
Set.iInter_of_empty
Set.iInter_univ
Finset.prod_const
pow_zero
iIndep πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
IsPiSystem
MeasurableSpace.generateFrom
ProbabilityTheory.Kernel.iIndepSets
ProbabilityTheory.Kernel.iIndepβ€”eq_or_ne
MeasureTheory.Measure.instOuterMeasureClass
ProbabilityTheory.Kernel.exists_ae_eq_isMarkovKernel
ae_isProbabilityMeasure
ProbabilityTheory.Kernel.iIndep.congr
Filter.EventuallyEq.symm
Finset.induction
instIsEmptyFalse
Set.iInter_congr_Prop
Set.iInter_of_empty
Set.iInter_univ
MeasureTheory.IsProbabilityMeasure.measure_univ
ProbabilityTheory.IsMarkovKernel.is_probability_measure'
isPiSystem_piiUnionInter
Eq.trans_le
generateFrom_piiUnionInter_le
ProbabilityTheory.Kernel.IndepSets.indep
ProbabilityTheory.IsMarkovKernel.IsZeroOrMarkovKernel
piiUnionInter_of_notMem
congr
ProbabilityTheory.Kernel.Indep.symm
Finset.mem_insert_self
le_generateFrom_piiUnionInter
Finset.measurableSet_biInter
Filter.mp_mem
Filter.univ_mem'
Finset.set_biInter_insert
Finset.prod_insert
iIndepSet_of_mem πŸ“–mathematicalSet
Set.instMembership
MeasurableSet
ProbabilityTheory.Kernel.iIndepSets
ProbabilityTheory.Kernel.iIndepSetβ€”MeasureTheory.Measure.instOuterMeasureClass
ProbabilityTheory.Kernel.iIndepSet_iff_meas_biInter
meas_biInter
indepSets πŸ“–mathematicalProbabilityTheory.Kernel.iIndepSetsProbabilityTheory.Kernel.IndepSetsβ€”Finset.mem_insert
Finset.mem_singleton
Finset.set_biInter_insert
Finset.set_biInter_singleton
Filter.mp_mem
MeasureTheory.Measure.instOuterMeasureClass
Filter.univ_mem'
meas_biInter πŸ“–mathematicalProbabilityTheory.Kernel.iIndepSets
Set
Set.instMembership
Filter.Eventually
ENNReal
DFunLike.coe
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
ProbabilityTheory.Kernel.instFunLike
Set.iInter
Finset
Finset.instMembership
Finset.prod
CommSemiring.toCommMonoid
ENNReal.instCommSemiring
MeasureTheory.ae
MeasureTheory.Measure.instOuterMeasureClass
β€”β€”
meas_iInter πŸ“–mathematicalProbabilityTheory.Kernel.iIndepSets
Set
Set.instMembership
Filter.Eventually
ENNReal
DFunLike.coe
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
ProbabilityTheory.Kernel.instFunLike
Set.iInter
Finset.prod
CommSemiring.toCommMonoid
ENNReal.instCommSemiring
Finset.univ
MeasureTheory.ae
MeasureTheory.Measure.instOuterMeasureClass
β€”Filter.mp_mem
MeasureTheory.Measure.instOuterMeasureClass
meas_biInter
Filter.univ_mem'
Set.iInter_congr_Prop
Set.iInter_true
of_precomp πŸ“–β€”ProbabilityTheory.Kernel.iIndepSets
Set
β€”β€”Function.Surjective.hasRightInverse
Function.comp_assoc
Function.RightInverse.comp_eq_id
precomp
Function.RightInverse.injective
of_subsingleton πŸ“–mathematicalβ€”ProbabilityTheory.Kernel.iIndepSetsβ€”MeasureTheory.Measure.instOuterMeasureClass
Set.Subsingleton.eq_empty_or_singleton
Set.subsingleton_of_subsingleton
Set.iInter_congr_Prop
Set.iInter_of_empty
instIsEmptyFalse
Set.iInter_univ
MeasureTheory.IsProbabilityMeasure.measure_univ
ProbabilityTheory.IsMarkovKernel.is_probability_measure'
Set.iInter_iInter_eq_left
Finset.prod_singleton
piiUnionInter_of_notMem πŸ“–mathematicalProbabilityTheory.Kernel.iIndepSets
Finset
Finset.instMembership
ProbabilityTheory.Kernel.IndepSets
piiUnionInter
SetLike.coe
Finset.instSetLike
β€”MeasureTheory.Measure.instOuterMeasureClass
Finset.mem_insert
Finset.coe_subset
Filter.mp_mem
Filter.univ_mem'
Finset.set_biInter_insert
Set.inter_comm
Finset.prod_insert
mul_comm
precomp πŸ“–mathematicalProbabilityTheory.Kernel.iIndepSetsSetβ€”Function.Injective.extend_apply
Filter.mp_mem
MeasureTheory.Measure.instOuterMeasureClass
Filter.univ_mem'
Set.iInter_congr_Prop
Set.iInter_exists
Set.biInter_and'
Set.iInter_iInter_eq_right
Finset.prod_image
Function.Injective.injOn
Finset.prod_congr

---

← Back to Index