Documentation Verification Report

Comp

πŸ“ Source: Mathlib/Probability/Kernel/Composition/Comp.lean

Statistics

MetricCount
DefinitionsComp, Comp, Comp, comp, instMonoid, Β«term_βˆ˜β‚–_Β», Comp
7
Theoremscomp, comp, comp, comp, ae_ae_of_ae_comp, ae_comp_iff, ae_comp_of_ae_ae, ae_lt_top_of_comp_ne_top, ae_null_of_comp_null, comp_add_left, comp_add_right, comp_apply, comp_apply', comp_apply_univ_le, comp_assoc, comp_discard, comp_discard', comp_id, comp_null, comp_restrict, comp_sum_left, comp_sum_right, comp_zero, const_comp, const_comp', id_comp, lintegral_comp, pow_add, pow_add_apply_eq_lintegral, pow_succ_apply_eq_lintegral, swap_copy, zero_comp
32
Total39

Functor

Definitions

NameCategoryTheorems
Comp πŸ“–CompOp
32 mathmath: Comp.run_seq, LawfulBitraversable.comp_bitraverse, Bitraversable.tfst_comp_tfst, LawfulTraversable.comp_traverse, Comp.map_pure, Comp.seq_pure, Bitraversable.tsnd_comp_tfst, Bitraversable.tfst_tsnd, Multiset.comp_traverse, Bitraversable.comp_tsnd, Comp.pure_seq_eq_map, Equiv.comp_traverse, Traversable.comp_sequence, Sum.comp_traverse, Comp.instCommApplicative, Bitraversable.tsnd_comp_tsnd, Option.comp_traverse, LawfulBitraversable.bitraverse_comp, Bitraversable.tfst_comp_tsnd, List.comp_traverse, Comp.run_pure, Bitraversable.tsnd_tfst, Comp.run_map, Traversable.traverse_comp, Comp.seq_assoc, List.Vector.comp_traverse, Bitraversable.comp_tfst, Comp.instLawfulApplicativeComp, Comp.seq_mk, Comp.map_mk, Comp.lawfulFunctor, Tree.comp_traverse

Mathlib.Tactic.Linarith

Definitions

NameCategoryTheorems
Comp πŸ“–CompDataβ€”

MvQPF

Definitions

NameCategoryTheorems
Comp πŸ“–CompOp
2 mathmath: Comp.get_map, Comp.map_mk

ProbabilityTheory

Definitions

NameCategoryTheorems
Β«term_βˆ˜β‚–_Β» πŸ“–CompOpβ€”

ProbabilityTheory.Kernel

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
73 mathmath: parallelComp_comp_parallelComp, parallelComp_comp_prod, partialTraj_succ_of_le, comp_assoc, swap_swap, partialTraj_comp_partialTraj', parallelComp_comm, deterministic_comp_eq_map, const_comp', fst_comp, pow_add, snd_comp, IsSFiniteKernel.comp, partialTraj_comp_partialTraj'', swap_prod, comp_eq_snd_compProd, zero_comp, ProbabilityTheory.avgRisk_le_iSup_risk, prod_const_comp, snd_compProd_prodMkLeft, prod_prodMkRight_comp_deterministic_prod, deterministic_comp_deterministic, comp_zero, partialTraj_succ_eq_comp, partialTraj_le_def, ae_comp_iff, comp_discard, traj_comp_partialTraj, comp_sum_left, compProd_prodMkLeft_eq_comp, comp_apply, MeasureTheory.Measure.parallelComp_comp_compProd, parallelComp_id_right_comp_parallelComp, MeasureTheory.Measure.comp_eq_comp_const_apply, comp_discard', swap_copy, IsMarkovKernel.comp, comp_const, parallelComp_comp_copy, swap_comp_eq_map, deterministic_comp_copy, ProbabilityTheory.hasFiniteIntegral_comp_iff, partialTraj_comp_partialTraj, ProbabilityTheory.bayesRisk_le_bayesRisk_comp, const_prod_comp, continuous_integral_integral_comp, map_comp, comp_restrict, comp_map, MeasureTheory.Measure.comp_assoc, comp_sum_right, prod_prodMkLeft_comp_prod_deterministic, IsZeroOrMarkovKernel.comp, compProd_def, id_comp, lintegral_comp, ae_comp_of_ae_ae, Invariant.comp, comp_apply', comp_add_right, IsFiniteKernel.comp, comp_id, comp_deterministic_eq_comap, comp_apply_univ_le, comp_add_left, swap_parallelComp, const_comp, comp_boolKernel, Invariant.comp_const, comp_null, parallelComp_id_left_comp_parallelComp, ProbabilityTheory.deterministic_comp_posterior, ProbabilityTheory.posterior_comp
instMonoid πŸ“–CompOp
5 mathmath: pow_add, isIrreducible_iff, pow_add_apply_eq_lintegral, IsIrreducible.irreducible, pow_succ_apply_eq_lintegral

Theorems

NameKindAssumesProvesValidatesDepends On
ae_ae_of_ae_comp πŸ“–β€”Filter.Eventually
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
DFunLike.coe
ProbabilityTheory.Kernel
instFunLike
comp
β€”β€”MeasureTheory.Measure.instOuterMeasureClass
ae_null_of_comp_null
ae_comp_iff πŸ“–mathematicalMeasurableSet
setOf
Filter.Eventually
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
DFunLike.coe
ProbabilityTheory.Kernel
instFunLike
comp
β€”MeasureTheory.Measure.instOuterMeasureClass
ae_ae_of_ae_comp
ae_comp_of_ae_ae
ae_comp_of_ae_ae πŸ“–mathematicalMeasurableSet
setOf
Filter.Eventually
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
DFunLike.coe
ProbabilityTheory.Kernel
instFunLike
compβ€”MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.ae_iff
comp_null
MeasurableSet.compl
ae_lt_top_of_comp_ne_top πŸ“–mathematicalβ€”Filter.Eventually
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
instFunLike
Top.top
instTopENNReal
MeasureTheory.ae
MeasureTheory.Measure.instOuterMeasureClass
β€”MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.ae_lt_top
measurable_coe
MeasureTheory.measurableSet_toMeasurable
comp_apply'
MeasureTheory.measure_toMeasurable
Filter.mp_mem
Filter.univ_mem'
LE.le.trans_lt
MeasureTheory.measure_mono
MeasureTheory.subset_toMeasurable
ae_null_of_comp_null πŸ“–mathematicalDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
instFunLike
comp
instZeroENNReal
Filter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure.instOuterMeasureClass
Pi.instZero
β€”MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.exists_measurable_superset_of_null
Filter.eventuallyLE_antisymm_iff
Filter.EventuallyLE.trans_eq
MeasureTheory.ae_of_all
MeasureTheory.measure_mono
comp_null
zero_le
ENNReal.instCanonicallyOrderedAdd
comp_add_left πŸ“–mathematicalβ€”comp
ProbabilityTheory.Kernel
instAdd
β€”ext
MeasureTheory.Measure.ext
comp_apply'
MeasureTheory.lintegral_add_left
measurable_coe
comp_add_right πŸ“–mathematicalβ€”comp
ProbabilityTheory.Kernel
instAdd
β€”ext
MeasureTheory.Measure.ext
comp_apply'
MeasureTheory.lintegral_add_measure
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
instFunLike
comp
MeasureTheory.Measure.bind
β€”β€”
comp_apply' πŸ“–mathematicalMeasurableSetDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
instFunLike
comp
MeasureTheory.lintegral
β€”comp_apply
MeasureTheory.Measure.bind_apply
aemeasurable
comp_apply_univ_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
instFunLike
comp
Set.univ
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
bound
β€”comp_apply'
MeasurableSet.univ
MeasureTheory.lintegral_mono
measure_le_bound
MeasureTheory.lintegral_const
mul_comm
comp_assoc πŸ“–mathematicalβ€”compβ€”ext_fun
lintegral_comp
Measurable.lintegral_kernel
comp_discard πŸ“–mathematicalβ€”comp
PUnit.instMeasurableSpace
discard
β€”ext
MeasureTheory.Measure.ext
IsScalarTower.right
Measurable.smul_measure
measurable_coe
MeasurableSet.univ
MeasureTheory.IsProbabilityMeasure.measure_univ
ProbabilityTheory.IsMarkovKernel.is_probability_measure'
one_smul
comp_discard'
MeasureTheory.Measure.dirac_apply'
discard_apply
comp_discard' πŸ“–mathematicalβ€”comp
PUnit.instMeasurableSpace
discard
ENNReal
MeasureTheory.Measure
MeasureTheory.Measure.instSMul
Algebra.toSMul
ENNReal.instCommSemiring
CommSemiring.toSemiring
Algebra.id
IsScalarTower.right
DFunLike.coe
Set
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
instFunLike
Set.univ
MeasureTheory.Measure.dirac
Measurable.smul_measure
measurable_coe
MeasurableSet.univ
β€”ext
IsScalarTower.right
Measurable.smul_measure
measurable_coe
MeasurableSet.univ
MeasureTheory.Measure.ext
comp_apply'
discard_apply
MeasureTheory.Measure.dirac_apply'
MeasureTheory.lintegral_const
mul_comm
comp_id πŸ“–mathematicalβ€”comp
id
β€”ext
MeasureTheory.Measure.ext
comp_apply'
id_apply
MeasureTheory.lintegral_dirac'
measurable_coe
comp_null πŸ“–mathematicalMeasurableSetDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
instFunLike
comp
instZeroENNReal
Filter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure.instOuterMeasureClass
Pi.instZero
β€”MeasureTheory.Measure.instOuterMeasureClass
comp_apply'
MeasureTheory.lintegral_eq_zero_iff
measurable_coe
comp_restrict πŸ“–mathematicalMeasurableSetcomp
restrict
β€”ext
MeasureTheory.Measure.ext
comp_apply'
restrict_apply'
MeasurableSet.inter
comp_sum_left πŸ“–mathematicalβ€”comp
sum
β€”ext
MeasureTheory.Measure.ext
comp_apply'
MeasureTheory.Measure.sum_apply
MeasureTheory.lintegral_tsum
Measurable.aemeasurable
measurable_coe
comp_sum_right πŸ“–mathematicalβ€”comp
sum
β€”ext
MeasureTheory.Measure.ext
comp_apply'
MeasureTheory.Measure.sum_apply
MeasureTheory.lintegral_sum_measure
comp_zero πŸ“–mathematicalβ€”comp
ProbabilityTheory.Kernel
instZero
β€”ext
MeasureTheory.Measure.ext
MeasureTheory.Measure.bind_zero_left
const_comp πŸ“–mathematicalβ€”DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
instFunLike
comp
const
ENNReal
MeasureTheory.Measure.instSMul
Algebra.toSMul
ENNReal.instCommSemiring
CommSemiring.toSemiring
Algebra.id
IsScalarTower.right
Set
MeasureTheory.Measure.instFunLike
Set.univ
β€”IsScalarTower.right
MeasureTheory.Measure.ext
comp_apply'
MeasureTheory.lintegral_const
mul_comm
const_comp' πŸ“–mathematicalβ€”comp
const
β€”ext
MeasureTheory.Measure.ext
IsScalarTower.right
const_comp
MeasureTheory.IsProbabilityMeasure.measure_univ
ProbabilityTheory.IsMarkovKernel.is_probability_measure'
one_smul
id_comp πŸ“–mathematicalβ€”comp
id
β€”ext
MeasureTheory.Measure.ext
comp_apply'
id_apply
MeasureTheory.Measure.dirac_apply'
MeasureTheory.lintegral_indicator_one
lintegral_comp πŸ“–mathematicalMeasurable
ENNReal
ENNReal.measurableSpace
MeasureTheory.lintegral
DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
instFunLike
comp
β€”comp_apply
MeasureTheory.Measure.lintegral_bind
aemeasurable
Measurable.aemeasurable
pow_add πŸ“–mathematicalβ€”ProbabilityTheory.Kernel
Monoid.toNatPow
instMonoid
comp
β€”pow_add
pow_add_apply_eq_lintegral πŸ“–mathematicalMeasurableSetDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
instFunLike
Monoid.toNatPow
instMonoid
MeasureTheory.lintegral
β€”add_comm
pow_add
comp_apply'
pow_succ_apply_eq_lintegral πŸ“–mathematicalMeasurableSetDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
instFunLike
Monoid.toNatPow
instMonoid
MeasureTheory.lintegral
β€”pow_one
pow_add_apply_eq_lintegral
swap_copy πŸ“–mathematicalβ€”comp
Prod.instMeasurableSpace
swap
copy
β€”ext
MeasureTheory.Measure.ext
comp_apply
copy_apply
MeasureTheory.Measure.dirac_bind
measurable
swap_apply'
MeasureTheory.Measure.dirac_apply'
zero_comp πŸ“–mathematicalβ€”comp
ProbabilityTheory.Kernel
instZero
β€”ext
MeasureTheory.Measure.ext
MeasureTheory.Measure.bind_zero_right

ProbabilityTheory.Kernel.IsFiniteKernel

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–mathematicalβ€”ProbabilityTheory.IsFiniteKernel
ProbabilityTheory.Kernel.comp
β€”ENNReal.mul_lt_top
ProbabilityTheory.Kernel.bound_lt_top
ProbabilityTheory.Kernel.comp_apply_univ_le
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
ProbabilityTheory.Kernel.measure_le_bound

ProbabilityTheory.Kernel.IsMarkovKernel

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–mathematicalβ€”ProbabilityTheory.IsMarkovKernel
ProbabilityTheory.Kernel.comp
β€”ProbabilityTheory.Kernel.comp_apply
MeasureTheory.Measure.bind_apply
MeasurableSet.univ
ProbabilityTheory.Kernel.aemeasurable
MeasureTheory.IsProbabilityMeasure.measure_univ
ProbabilityTheory.IsMarkovKernel.is_probability_measure'
MeasureTheory.lintegral_const
mul_one

ProbabilityTheory.Kernel.IsSFiniteKernel

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–mathematicalβ€”ProbabilityTheory.IsSFiniteKernel
ProbabilityTheory.Kernel.comp
β€”instCountableNat
ProbabilityTheory.Kernel.kernel_sum_seq
ProbabilityTheory.Kernel.comp_sum_left
ProbabilityTheory.Kernel.sum.congr_simp
ProbabilityTheory.Kernel.comp_sum_right
ProbabilityTheory.Kernel.isSFiniteKernel_sum
ProbabilityTheory.Kernel.IsFiniteKernel.isSFiniteKernel
ProbabilityTheory.Kernel.IsFiniteKernel.comp
ProbabilityTheory.Kernel.isFiniteKernel_seq

ProbabilityTheory.Kernel.IsZeroOrMarkovKernel

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–mathematicalβ€”ProbabilityTheory.IsZeroOrMarkovKernel
ProbabilityTheory.Kernel.comp
β€”ProbabilityTheory.eq_zero_or_isMarkovKernel
ProbabilityTheory.Kernel.comp_zero
ProbabilityTheory.instIsZeroOrMarkovKernelOfNatKernel
ProbabilityTheory.Kernel.zero_comp
ProbabilityTheory.IsMarkovKernel.IsZeroOrMarkovKernel
ProbabilityTheory.Kernel.IsMarkovKernel.comp

Relation

Definitions

NameCategoryTheorems
Comp πŸ“–MathDef
12 mathmath: List.perm_comp_perm, comp_iff, eq_comp, List.perm_comp_forallβ‚‚, flip_comp, comp_eq, List.forallβ‚‚_comp_perm_eq_perm_comp_forallβ‚‚, fun_eq_comp, List.eq_map_comp_perm, comp_eq_fun, iff_comp, comp_assoc

---

← Back to Index