Documentation Verification Report

CompProd

πŸ“ Source: Mathlib/Probability/Kernel/Composition/CompProd.lean

Statistics

MetricCount
DefinitionscompProd, Β«term_βŠ—β‚–_Β»
2
TheoremscompProd, compProd, compProd, compProd, ae_ae_of_ae_compProd, ae_compProd_iff, ae_compProd_of_ae_ae, ae_kernel_lt_top, ae_null_of_compProd_null, comapRight_compProd_id_prod, compProd_add_left, compProd_add_right, compProd_apply, compProd_apply_prod, compProd_apply_univ, compProd_apply_univ_le, compProd_assoc, compProd_congr, compProd_def, compProd_deterministic_apply, compProd_eq_sum_compProd, compProd_eq_sum_compProd_left, compProd_eq_sum_compProd_right, compProd_eq_tsum_compProd, compProd_eq_zero_iff, compProd_null, compProd_of_not_isSFiniteKernel_left, compProd_of_not_isSFiniteKernel_right, compProd_preimage_fst, compProd_restrict, compProd_restrict_left, compProd_restrict_right, compProd_sum_left, compProd_sum_right, compProd_zero_left, compProd_zero_right, fst_compProd, fst_compProd_apply, le_compProd_apply, lintegral_compProd, lintegral_compProd', lintegral_compProdβ‚€, setLIntegral_compProd, setLIntegral_compProd_univ_left, setLIntegral_compProd_univ_right
45
Total47

ProbabilityTheory

Definitions

NameCategoryTheorems
Β«term_βŠ—β‚–_Β» πŸ“–CompOpβ€”

ProbabilityTheory.Kernel

Definitions

NameCategoryTheorems
compProd πŸ“–CompOp
58 mathmath: ae_compProd_of_ae_ae, IsMarkovKernel.compProd, MeasureTheory.Measure.comp_compProd_comm, compProd_congr, HasSubgaussianMGF.add_compProd, compProd_null, ae_compProd_iff, compProd_restrict_left, HasSubgaussianMGF.integrable_exp_add_compProd, HasSubgaussianMGF.add_comp, compProd_zero_right, compProd_of_not_isSFiniteKernel_right, compProd_deterministic_apply, compProd_eq_tsum_compProd, comapRight_compProd_id_prod, comp_eq_snd_compProd, le_compProd_apply, snd_compProd_prodMkLeft, compProd_eq_sum_compProd, ProbabilityTheory.bayesRisk_compProd_le_bayesRisk, MeasureTheory.Measure.compProd_assoc', compProd_of_not_isSFiniteKernel_left, setLIntegral_compProd_univ_left, compProd_prodMkLeft_eq_comp, compProd_eq_zero_iff, lintegral_compProd', compProd_fst_condKernelReal, continuous_integral_integral, compProd_apply_univ_le, compProd_sum_left, disintegrate, ProbabilityTheory.compProd_toKernel, setLIntegral_compProd, compProd_preimage_fst, compProd_eq_sum_compProd_left, MeasureTheory.Measure.compProd_assoc, compProd_add_right, compProd_apply_univ, IsZeroOrMarkovKernel.compProd, setLIntegral_compProd_univ_right, compProd_zero_left, compProd_restrict, compProd_assoc, compProd_def, IsCondKernel.disintegrate, compProd_add_left, ProbabilityTheory.hasFiniteIntegral_compProd_iff, compProd_apply_eq_compProd_sectR, compProd_apply, fst_compProd, IsFiniteKernel.compProd, compProd_eq_sum_compProd_right, compProd_sum_right, lintegral_compProd, compProd_apply_prod, IsSFiniteKernel.compProd, compProd_restrict_right, fst_compProd_apply

Theorems

NameKindAssumesProvesValidatesDepends On
ae_ae_of_ae_compProd πŸ“–β€”Filter.Eventually
MeasureTheory.ae
MeasureTheory.Measure
Prod.instMeasurableSpace
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
DFunLike.coe
ProbabilityTheory.Kernel
instFunLike
compProd
β€”β€”MeasureTheory.Measure.instOuterMeasureClass
ae_null_of_compProd_null
ae_compProd_iff πŸ“–mathematicalMeasurableSet
Prod.instMeasurableSpace
setOf
Filter.Eventually
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
DFunLike.coe
ProbabilityTheory.Kernel
instFunLike
compProd
β€”MeasureTheory.Measure.instOuterMeasureClass
ae_ae_of_ae_compProd
ae_compProd_of_ae_ae
ae_compProd_of_ae_ae πŸ“–mathematicalMeasurableSet
Prod.instMeasurableSpace
setOf
Filter.Eventually
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
DFunLike.coe
ProbabilityTheory.Kernel
instFunLike
compProdβ€”MeasureTheory.Measure.instOuterMeasureClass
compProd_null
MeasurableSet.compl
MeasureTheory.ae.congr_simp
compProd_of_not_isSFiniteKernel_right
MeasureTheory.ae_zero
compProd_of_not_isSFiniteKernel_left
ae_kernel_lt_top πŸ“–mathematicalβ€”Filter.Eventually
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
Prod.instMeasurableSpace
instFunLike
Set.preimage
Top.top
instTopENNReal
MeasureTheory.ae
MeasureTheory.Measure.instOuterMeasureClass
β€”MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
Set.preimage_mono
MeasureTheory.subset_toMeasurable
MeasureTheory.measurableSet_toMeasurable
MeasureTheory.measure_toMeasurable
MeasureTheory.ae_lt_top
measurable_kernel_prodMk_left'
compProd_apply
Filter.mp_mem
Filter.univ_mem'
LE.le.trans_lt
ae_null_of_compProd_null πŸ“–mathematicalDFunLike.coe
MeasureTheory.Measure
Prod.instMeasurableSpace
Set
ENNReal
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
instFunLike
compProd
instZeroENNReal
Filter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure.instOuterMeasureClass
Set.preimage
Pi.instZero
β€”MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.exists_measurable_superset_of_null
Filter.eventuallyLE_antisymm_iff
Filter.EventuallyLE.trans_eq
Filter.Eventually.of_forall
MeasureTheory.measure_mono
Set.preimage_mono
compProd_null
zero_le
ENNReal.instCanonicallyOrderedAdd
comapRight_compProd_id_prod πŸ“–mathematicalMeasurableEmbeddingcomapRight
Prod.instMeasurableSpace
compProd
MeasurableEmbedding.prodMap
MeasurableEmbedding.id
β€”ext
MeasurableEmbedding.prodMap
MeasurableEmbedding.id
MeasureTheory.Measure.ext
comapRight_apply'
compProd_apply
MeasurableEmbedding.measurableSet_image
IsSFiniteKernel.comapRight
MeasureTheory.lintegral_congr
measurable_prodMk_left
Set.ext
compProd_add_left πŸ“–mathematicalβ€”compProd
ProbabilityTheory.Kernel
instAdd
Prod.instMeasurableSpace
β€”ext
MeasureTheory.Measure.ext
compProd_apply
IsSFiniteKernel.add
MeasureTheory.lintegral_add_measure
compProd_of_not_isSFiniteKernel_right
add_zero
compProd_add_right πŸ“–mathematicalβ€”compProd
ProbabilityTheory.Kernel
Prod.instMeasurableSpace
instAdd
β€”ext
MeasureTheory.Measure.ext
compProd_apply
IsSFiniteKernel.add
MeasureTheory.lintegral_add_left
measurable_kernel_prodMk_left'
compProd_of_not_isSFiniteKernel_left
add_zero
compProd_apply πŸ“–mathematicalMeasurableSet
Prod.instMeasurableSpace
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
instFunLike
compProd
MeasureTheory.lintegral
Set.preimage
β€”compProd_def
comp_apply
copy_apply
MeasureTheory.Measure.dirac_bind
measurable
parallelComp_apply
IsFiniteKernel.isSFiniteKernel
ProbabilityTheory.IsZeroOrMarkovKernel.isFiniteKernel
ProbabilityTheory.IsMarkovKernel.IsZeroOrMarkovKernel
instIsMarkovKernelId
id_apply
MeasureTheory.Measure.bind_apply
Measurable.aemeasurable
MeasureTheory.lintegral_prod
ProbabilityTheory.IsSFiniteKernel.sFinite
measurable_coe
MeasureTheory.lintegral_dirac'
MeasurableEquiv.measurable
Measurable.lintegral_prod_left
Measurable.fun_comp
Measurable.prodMk
Measurable.snd
measurable_id'
Measurable.fst
isFiniteKernel_of_isFiniteKernel_snd
IsZeroOrMarkovKernel.snd
instIsMarkovKernelProdCopy
MeasureTheory.Measure.dirac_prod_dirac
deterministic_apply
MeasureTheory.instSFiniteOfSigmaFinite
MeasureTheory.Measure.dirac.instSigmaFinite
swap_apply'
Measurable.indicator
measurable_const
measurable_prodMk_right
Set.indicator_apply
MeasureTheory.lintegral_indicator_one
measurable_prodMk_left
compProd_apply_prod πŸ“–mathematicalMeasurableSetDFunLike.coe
MeasureTheory.Measure
Prod.instMeasurableSpace
Set
ENNReal
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
instFunLike
compProd
SProd.sprod
Set.instSProd
MeasureTheory.lintegral
MeasureTheory.Measure.restrict
β€”compProd_apply
MeasurableSet.prod
MeasureTheory.lintegral_indicator
Set.mk_preimage_prod_right
Set.indicator_of_mem
Set.mk_preimage_prod_right_eq_empty
MeasureTheory.measure_empty
MeasureTheory.Measure.instOuterMeasureClass
Set.indicator_of_notMem
compProd_apply_univ πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Prod.instMeasurableSpace
Set
ENNReal
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
instFunLike
compProd
Set.univ
β€”compProd_apply
MeasurableSet.univ
IsFiniteKernel.isSFiniteKernel
ProbabilityTheory.IsZeroOrMarkovKernel.isFiniteKernel
ProbabilityTheory.IsMarkovKernel.IsZeroOrMarkovKernel
MeasureTheory.IsProbabilityMeasure.measure_univ
ProbabilityTheory.IsMarkovKernel.is_probability_measure'
MeasureTheory.lintegral_const
one_mul
compProd_apply_univ_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Prod.instMeasurableSpace
Set
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
instFunLike
compProd
Set.univ
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
bound
β€”compProd_apply
MeasurableSet.univ
IsFiniteKernel.isSFiniteKernel
MeasureTheory.lintegral_mono
measure_le_bound
MeasureTheory.lintegral_const
mul_comm
compProd_of_not_isSFiniteKernel_left
ENNReal.instCanonicallyOrderedAdd
compProd_assoc πŸ“–mathematicalβ€”map
Prod.instMeasurableSpace
compProd
comap
DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
MeasurableEquiv.instEquivLike
MeasurableEquiv.prodAssoc
MeasurableEquiv.measurable
MeasurableEquiv.symm
β€”MeasurableEquiv.measurable
ext
MeasureTheory.Measure.ext
compProd_apply
IsSFiniteKernel.compProd
map_apply'
MeasurableSet.preimage
lintegral_compProd
measurable_kernel_prodMk_left'
Measurable.fun_comp
Measurable.prodMk
measurable_const
measurable_id'
IsSFiniteKernel.comap
Measurable.comp
MeasurableEquiv.self_comp_symm
comap.congr_simp
comap_id
compProd_of_not_isSFiniteKernel_right
compProd_zero_right
map_zero
compProd_of_not_isSFiniteKernel_left
compProd_zero_left
compProd_congr πŸ“–mathematicalFilter.Eventually
MeasureTheory.Measure
DFunLike.coe
ProbabilityTheory.Kernel
Prod.instMeasurableSpace
instFunLike
MeasureTheory.ae
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
compProdβ€”MeasureTheory.Measure.instOuterMeasureClass
ext
MeasureTheory.Measure.ext
compProd_apply
MeasureTheory.lintegral_congr_ae
Filter.mp_mem
Filter.univ_mem'
compProd_of_not_isSFiniteKernel_left
compProd_def πŸ“–mathematicalβ€”compProd
comp
Prod.instMeasurableSpace
swap
parallelComp
id
deterministic
DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
MeasurableEquiv.instEquivLike
MeasurableEquiv.symm
MeasurableEquiv.prodAssoc
copy
β€”β€”
compProd_deterministic_apply πŸ“–mathematicalMeasurable
Prod.instMeasurableSpace
MeasurableSet
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
instFunLike
compProd
deterministic
setOf
Set.instMembership
β€”compProd_apply
IsFiniteKernel.isSFiniteKernel
ProbabilityTheory.IsZeroOrMarkovKernel.isFiniteKernel
ProbabilityTheory.IsMarkovKernel.IsZeroOrMarkovKernel
isMarkovKernel_deterministic
MeasureTheory.Measure.dirac_apply
Set.indicator_apply
Measurable.prodMk
measurable_id
Measurable.comp
measurable_prodMk_left
MeasureTheory.lintegral_add_compl
MeasureTheory.setLIntegral_congr_fun
MeasurableSet.compl
MeasureTheory.lintegral_zero
MeasureTheory.setLIntegral_one
add_zero
compProd_eq_sum_compProd πŸ“–mathematicalβ€”compProd
sum
Prod.instMeasurableSpace
instCountableNat
seq
β€”instCountableNat
sum.congr_simp
compProd_eq_sum_compProd_left πŸ“–mathematicalβ€”compProd
sum
Prod.instMeasurableSpace
instCountableNat
seq
β€”instCountableNat
compProd_def
sum.congr_simp
comp_sum_left
comp_sum_right
parallelComp_sum_right
IsFiniteKernel.isSFiniteKernel
isFiniteKernel_seq
kernel_sum_seq
compProd_eq_sum_compProd_right πŸ“–mathematicalβ€”compProd
sum
Prod.instMeasurableSpace
instCountableNat
seq
β€”instCountableNat
compProd_def
sum.congr_simp
comp_sum_left
comp_sum_right
parallelComp_sum_left
IsFiniteKernel.isSFiniteKernel
isFiniteKernel_seq
kernel_sum_seq
compProd_eq_tsum_compProd πŸ“–mathematicalMeasurableSet
Prod.instMeasurableSpace
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
instFunLike
compProd
tsum
ENNReal.instAddCommMonoid
ENNReal.instTopologicalSpace
seq
SummationFilter.unconditional
β€”instCountableNat
compProd_eq_sum_compProd
sum_apply'
compProd_eq_zero_iff πŸ“–mathematicalβ€”compProd
ProbabilityTheory.Kernel
Prod.instMeasurableSpace
instZero
Filter.Eventually
MeasureTheory.Measure
DFunLike.coe
instFunLike
MeasureTheory.Measure.instZero
MeasureTheory.ae
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
β€”MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.lintegral_eq_zero_iff
Measurable.comp
measurable_coe
MeasurableSet.univ
measurable_prodMk_left
MeasureTheory.setLIntegral_univ
compProd_apply_prod
Set.univ_prod_univ
compProd_zero_right
compProd_congr
IsFiniteKernel.isSFiniteKernel
ProbabilityTheory.isFiniteKernel_zero
compProd_null πŸ“–mathematicalMeasurableSet
Prod.instMeasurableSpace
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
instFunLike
compProd
instZeroENNReal
Filter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure.instOuterMeasureClass
Set.preimage
Pi.instZero
β€”MeasureTheory.Measure.instOuterMeasureClass
compProd_apply
MeasureTheory.lintegral_eq_zero_iff
measurable_kernel_prodMk_left'
compProd_of_not_isSFiniteKernel_left πŸ“–mathematicalProbabilityTheory.IsSFiniteKernelcompProd
ProbabilityTheory.Kernel
Prod.instMeasurableSpace
instZero
β€”compProd_def
parallelComp_of_not_isSFiniteKernel_right
comp_zero
zero_comp
compProd_of_not_isSFiniteKernel_right πŸ“–mathematicalProbabilityTheory.IsSFiniteKernel
Prod.instMeasurableSpace
compProd
ProbabilityTheory.Kernel
instZero
β€”compProd_def
parallelComp_of_not_isSFiniteKernel_left
comp_zero
zero_comp
compProd_preimage_fst πŸ“–mathematicalMeasurableSetDFunLike.coe
MeasureTheory.Measure
Prod.instMeasurableSpace
Set
ENNReal
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
instFunLike
compProd
Set.preimage
β€”compProd_apply
measurable_fst
IsFiniteKernel.isSFiniteKernel
ProbabilityTheory.IsZeroOrMarkovKernel.isFiniteKernel
ProbabilityTheory.IsMarkovKernel.IsZeroOrMarkovKernel
MeasureTheory.IsProbabilityMeasure.measure_univ
ProbabilityTheory.IsMarkovKernel.is_probability_measure'
Set.indicator_of_mem
MeasureTheory.measure_empty
MeasureTheory.Measure.instOuterMeasureClass
Set.indicator_of_notMem
MeasureTheory.lintegral_indicator_const
one_mul
compProd_restrict πŸ“–mathematicalMeasurableSetcompProd
restrict
Prod.instMeasurableSpace
SProd.sprod
Set
Set.instSProd
MeasurableSet.prod
β€”ext
MeasurableSet.prod
MeasureTheory.Measure.ext
compProd_apply
IsSFiniteKernel.restrict
restrict_apply'
MeasurableSet.inter
MeasureTheory.Measure.restrict_apply'
Set.indicator_apply
MeasureTheory.measure_empty
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.lintegral_indicator
compProd_restrict_left πŸ“–mathematicalMeasurableSetcompProd
restrict
Prod.instMeasurableSpace
SProd.sprod
Set
Set.instSProd
Set.univ
MeasurableSet.prod
MeasurableSet.univ
β€”MeasurableSet.prod
MeasurableSet.univ
compProd_restrict
restrict_univ
compProd_restrict_right πŸ“–mathematicalMeasurableSetcompProd
restrict
Prod.instMeasurableSpace
SProd.sprod
Set
Set.instSProd
Set.univ
MeasurableSet.prod
MeasurableSet.univ
β€”MeasurableSet.prod
MeasurableSet.univ
compProd_restrict
restrict_univ
compProd_sum_left πŸ“–mathematicalProbabilityTheory.IsSFiniteKernelcompProd
sum
Prod.instMeasurableSpace
β€”ext
MeasureTheory.Measure.ext
compProd_apply
isSFiniteKernel_sum
MeasureTheory.lintegral_sum_measure
MeasureTheory.Measure.sum_apply
compProd_of_not_isSFiniteKernel_right
sum.congr_simp
sum_zero
compProd_sum_right πŸ“–mathematicalProbabilityTheory.IsSFiniteKernel
Prod.instMeasurableSpace
compProd
sum
β€”ext
MeasureTheory.Measure.ext
compProd_apply
isSFiniteKernel_sum
MeasureTheory.Measure.sum_apply
MeasureTheory.lintegral_tsum
Measurable.aemeasurable
measurable_kernel_prodMk_left'
measurable_prodMk_left
compProd_of_not_isSFiniteKernel_left
sum.congr_simp
sum_zero
compProd_zero_left πŸ“–mathematicalβ€”compProd
ProbabilityTheory.Kernel
instZero
Prod.instMeasurableSpace
β€”ext
MeasureTheory.Measure.ext
compProd_apply
IsFiniteKernel.isSFiniteKernel
ProbabilityTheory.isFiniteKernel_zero
MeasureTheory.lintegral_zero_measure
compProd_of_not_isSFiniteKernel_right
compProd_zero_right πŸ“–mathematicalβ€”compProd
ProbabilityTheory.Kernel
Prod.instMeasurableSpace
instZero
β€”ext
MeasureTheory.Measure.ext
compProd_apply
IsFiniteKernel.isSFiniteKernel
ProbabilityTheory.isFiniteKernel_zero
MeasureTheory.lintegral_const
MulZeroClass.zero_mul
compProd_of_not_isSFiniteKernel_left
fst_compProd πŸ“–mathematicalβ€”fst
compProd
β€”ext
MeasureTheory.Measure.ext
fst_compProd_apply
IsFiniteKernel.isSFiniteKernel
ProbabilityTheory.IsZeroOrMarkovKernel.isFiniteKernel
ProbabilityTheory.IsMarkovKernel.IsZeroOrMarkovKernel
MeasureTheory.IsProbabilityMeasure.measure_univ
ProbabilityTheory.IsMarkovKernel.is_probability_measure'
MeasureTheory.lintegral_indicator
MeasureTheory.lintegral_const
MeasureTheory.Measure.restrict_apply
Set.univ_inter
one_mul
fst_compProd_apply πŸ“–mathematicalMeasurableSetDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
instFunLike
fst
compProd
MeasureTheory.lintegral
Set.indicator
instZeroENNReal
Prod.instMeasurableSpace
Set.univ
β€”fst_apply'
compProd_apply
measurable_fst
Set.indicator_of_mem
MeasureTheory.measure_empty
MeasureTheory.Measure.instOuterMeasureClass
Set.indicator_of_notMem
le_compProd_apply πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
MeasureTheory.lintegral
DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
instFunLike
Set
MeasureTheory.Measure.instFunLike
Prod.instMeasurableSpace
setOf
Set.instMembership
compProd
β€”MeasureTheory.lintegral_mono
MeasureTheory.measure_mono
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.subset_toMeasurable
compProd_apply
MeasureTheory.measurableSet_toMeasurable
MeasureTheory.measure_toMeasurable
lintegral_compProd πŸ“–mathematicalMeasurable
ENNReal
Prod.instMeasurableSpace
ENNReal.measurableSpace
MeasureTheory.lintegral
DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
instFunLike
compProd
β€”lintegral_compProd'
lintegral_compProd' πŸ“–mathematicalMeasurable
ENNReal
Prod.instMeasurableSpace
ENNReal.measurableSpace
MeasureTheory.lintegral
DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
instFunLike
compProd
β€”MeasureTheory.SimpleFunc.iSup_eapprox_apply
MeasureTheory.SimpleFunc.monotone_eapprox
MeasureTheory.lintegral_iSup
MeasureTheory.SimpleFunc.measurable
Measurable.comp
measurable_prodMk_left
Measurable.lintegral_kernel_prod_right''
MeasureTheory.lintegral_mono
MeasureTheory.SimpleFunc.induction
Set.piecewise_eq_indicator
MeasureTheory.lintegral_indicator_const
compProd_apply
MeasureTheory.lintegral_const_mul
measurable_kernel_prodMk_left
Measurable.prodMk
Measurable.snd
measurable_fst
measurable_snd
MeasureTheory.lintegral_indicator_const_comp
MeasureTheory.lintegral_add_left
lintegral_compProdβ‚€ πŸ“–mathematicalAEMeasurable
ENNReal
ENNReal.measurableSpace
Prod.instMeasurableSpace
DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
instFunLike
compProd
MeasureTheory.lintegralβ€”MeasureTheory.lintegral_congr_ae
Filter.mp_mem
MeasureTheory.Measure.instOuterMeasureClass
ae_ae_of_ae_compProd
Filter.univ_mem'
lintegral_compProd
setLIntegral_compProd πŸ“–mathematicalMeasurable
ENNReal
Prod.instMeasurableSpace
ENNReal.measurableSpace
MeasurableSet
MeasureTheory.lintegral
MeasureTheory.Measure.restrict
DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
instFunLike
compProd
SProd.sprod
Set
Set.instSProd
β€”MeasurableSet.prod
compProd_restrict
lintegral_compProd
IsSFiniteKernel.restrict
setLIntegral_compProd_univ_left πŸ“–mathematicalMeasurable
ENNReal
Prod.instMeasurableSpace
ENNReal.measurableSpace
MeasurableSet
MeasureTheory.lintegral
MeasureTheory.Measure.restrict
DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
instFunLike
compProd
SProd.sprod
Set
Set.instSProd
Set.univ
β€”setLIntegral_compProd
MeasurableSet.univ
MeasureTheory.Measure.restrict_univ
setLIntegral_compProd_univ_right πŸ“–mathematicalMeasurable
ENNReal
Prod.instMeasurableSpace
ENNReal.measurableSpace
MeasurableSet
MeasureTheory.lintegral
MeasureTheory.Measure.restrict
DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
instFunLike
compProd
SProd.sprod
Set
Set.instSProd
Set.univ
β€”setLIntegral_compProd
MeasurableSet.univ
MeasureTheory.Measure.restrict_univ

ProbabilityTheory.Kernel.IsFiniteKernel

Theorems

NameKindAssumesProvesValidatesDepends On
compProd πŸ“–mathematicalβ€”ProbabilityTheory.IsFiniteKernel
Prod.instMeasurableSpace
ProbabilityTheory.Kernel.compProd
β€”ProbabilityTheory.Kernel.compProd_def
comp
ProbabilityTheory.Kernel.isFiniteKernel_of_isFiniteKernel_snd
ProbabilityTheory.IsZeroOrMarkovKernel.isFiniteKernel
ProbabilityTheory.Kernel.IsZeroOrMarkovKernel.snd
ProbabilityTheory.IsMarkovKernel.IsZeroOrMarkovKernel
ProbabilityTheory.Kernel.instIsMarkovKernelProdSwap
ProbabilityTheory.Kernel.instIsFiniteKernelProdParallelComp
ProbabilityTheory.Kernel.instIsMarkovKernelId
ProbabilityTheory.Kernel.isMarkovKernel_deterministic
ProbabilityTheory.Kernel.instIsMarkovKernelProdCopy

ProbabilityTheory.Kernel.IsMarkovKernel

Theorems

NameKindAssumesProvesValidatesDepends On
compProd πŸ“–mathematicalβ€”ProbabilityTheory.IsMarkovKernel
Prod.instMeasurableSpace
ProbabilityTheory.Kernel.compProd
β€”ProbabilityTheory.Kernel.compProd_apply
ProbabilityTheory.Kernel.IsFiniteKernel.isSFiniteKernel
ProbabilityTheory.IsZeroOrMarkovKernel.isFiniteKernel
ProbabilityTheory.IsMarkovKernel.IsZeroOrMarkovKernel
MeasureTheory.IsProbabilityMeasure.measure_univ
ProbabilityTheory.IsMarkovKernel.is_probability_measure'
MeasureTheory.lintegral_const
mul_one

ProbabilityTheory.Kernel.IsSFiniteKernel

Theorems

NameKindAssumesProvesValidatesDepends On
compProd πŸ“–mathematicalβ€”ProbabilityTheory.IsSFiniteKernel
Prod.instMeasurableSpace
ProbabilityTheory.Kernel.compProd
β€”ProbabilityTheory.Kernel.compProd_def
comp
ProbabilityTheory.Kernel.IsFiniteKernel.isSFiniteKernel
ProbabilityTheory.Kernel.isFiniteKernel_of_isFiniteKernel_snd
ProbabilityTheory.IsZeroOrMarkovKernel.isFiniteKernel
ProbabilityTheory.Kernel.IsZeroOrMarkovKernel.snd
ProbabilityTheory.IsMarkovKernel.IsZeroOrMarkovKernel
ProbabilityTheory.Kernel.instIsMarkovKernelProdSwap
ProbabilityTheory.Kernel.instIsSFiniteKernelProdParallelComp
ProbabilityTheory.Kernel.isMarkovKernel_deterministic
ProbabilityTheory.Kernel.instIsMarkovKernelProdCopy

ProbabilityTheory.Kernel.IsZeroOrMarkovKernel

Theorems

NameKindAssumesProvesValidatesDepends On
compProd πŸ“–mathematicalβ€”ProbabilityTheory.IsZeroOrMarkovKernel
Prod.instMeasurableSpace
ProbabilityTheory.Kernel.compProd
β€”ProbabilityTheory.Kernel.compProd_def
comp
ProbabilityTheory.IsMarkovKernel.IsZeroOrMarkovKernel
ProbabilityTheory.Kernel.instIsMarkovKernelProdCopy
ProbabilityTheory.Kernel.instIsZeroOrMarkovKernelProdParallelComp
ProbabilityTheory.Kernel.instIsMarkovKernelId
ProbabilityTheory.Kernel.isMarkovKernel_deterministic
ProbabilityTheory.Kernel.instIsMarkovKernelProdSwap

---

← Back to Index