Documentation Verification Report

MapComap

πŸ“ Source: Mathlib/Probability/Kernel/Composition/MapComap.lean

Statistics

MetricCount
Definitionscomap, fst, map, mapOfMeasurable, prodMkLeft, prodMkRight, sectL, sectR, snd, swapLeft, swapRight
11
Theoremscomap, fst, map, prodMkLeft, prodMkRight, snd, swapLeft, swapRight, comap, fst, map, prodMkLeft, prodMkRight, snd, swapLeft, swapRight, comap, fst, map, prodMkLeft, prodMkRight, snd, swapLeft, swapRight, comap, fst, map, prodMkLeft, prodMkRight, snd, swapRight, coe_comap, comap_apply, comap_apply', comap_comp_right, comap_id, comap_id', comap_map_comm, comap_sectL, comap_sectR, comap_zero, deterministic_map, fst_apply, fst_apply', fst_eq, fst_map_id_prod, fst_map_prod, fst_prodMkLeft, fst_prodMkRight, fst_real_apply, fst_swapRight, fst_zero, id_comap, id_map, instIsFiniteKernelSectLOfProd, instIsFiniteKernelSectROfProd, instIsMarkovKernelProdOfSectL, instIsMarkovKernelProdOfSectR, instIsMarkovKernelSectLOfProd, instIsMarkovKernelSectROfProd, instIsSFiniteKernelSectLOfProd, instIsSFiniteKernelSectROfProd, instIsZeroOrMarkovKernelSectLOfProd, instIsZeroOrMarkovKernelSectROfProd, instNeZeroMeasureCoeSectLOfProdMk, instNeZeroMeasureCoeSectROfProdMk, isFiniteKernel_of_isFiniteKernel_fst, isFiniteKernel_of_isFiniteKernel_snd, isSFiniteKernel_prodMkLeft_iff, isSFiniteKernel_prodMkLeft_unit, isSFiniteKernel_prodMkRight_iff, isSFiniteKernel_prodMkRight_unit, lintegral_comap, lintegral_fst, lintegral_map, lintegral_prodMkLeft, lintegral_prodMkRight, lintegral_snd, lintegral_swapLeft, lintegral_swapRight, mapOfMeasurable_eq_map, map_apply, map_apply', map_apply_eq_iff_map_symm_apply_eq, map_comp_right, map_const, map_id, map_id', map_of_not_measurable, map_prodMkLeft, map_prodMkRight, map_zero, prodMkLeft_add, prodMkLeft_apply, prodMkLeft_apply', prodMkLeft_zero, prodMkRight_add, prodMkRight_apply, prodMkRight_apply', prodMkRight_zero, sectL_apply, sectL_prodMkLeft, sectL_prodMkRight, sectL_swapRight, sectL_zero, sectR_apply, sectR_prodMkLeft, sectR_prodMkRight, sectR_swapRight, sectR_zero, snd_apply, snd_apply', snd_eq, snd_map_prod, snd_map_prod_id, snd_prodMkLeft, snd_prodMkRight, snd_swapRight, snd_zero, sum_comap_seq, sum_map_seq, sum_prodMkLeft, sum_prodMkRight, swapLeft_apply, swapLeft_apply', swapLeft_prodMkLeft, swapLeft_prodMkRight, swapLeft_zero, swapRight_apply, swapRight_apply', swapRight_eq, swapRight_zero
132
Total143

ProbabilityTheory.Kernel

Definitions

NameCategoryTheorems
comap πŸ“–CompOp
25 mathmath: sum_comap_seq, MeasureTheory.Measure.condKernel_def, IsMarkovKernel.comap, comap_prod, comap_id', ProbabilityTheory.condExpKernel_def, comap_sectL, comap_id, lintegral_comap, comap_comp_right, IsFiniteKernel.comap, comp_map, compProd_assoc, id_comap, ProbabilityTheory.condExpKernel_eq, IsSFiniteKernel.comap, comap_apply, comap_zero, comp_deterministic_eq_comap, comap_prod_swap, comap_sectR, IsZeroOrMarkovKernel.comap, comap_map_comm, comap_apply', coe_comap
fst πŸ“–CompOp
45 mathmath: density_fst_univ, ProbabilityTheory.setIntegral_condKernel_univ_left, fst_prod, ProbabilityTheory.setLIntegral_condKernel_univ_right, lintegral_fst, IsSFiniteKernel.fst, ProbabilityTheory.setIntegral_condKernel_univ_right, IsCondKernel.isProbabilityMeasure_ae, fst_comp, isCondKernelCDF_condKernelCDF, fst_prodMkRight, fst_real_apply, IsMarkovKernel.fst, fst_apply, ProbabilityTheory.setLIntegral_condKernel, ProbabilityTheory.lintegral_condKernel, fst_prodMkLeft, condKernel_apply_eq_condKernel, densityProcess_fst_univ_ae, ProbabilityTheory.setLIntegral_condKernel_univ_left, MeasureTheory.AEStronglyMeasurable.integral_kernel_condKernel, compProd_fst_condKernelReal, tendsto_densityProcess_fst_atTop_univ_of_monotone, isRatCondKernelCDF_density_Iic, disintegrate, fst_apply', ProbabilityTheory.setIntegral_condKernel, fst_eq, IsFiniteKernel.fst, fst_swapRight, isRatCondKernelCDFAux_density_Iic, tendsto_densityProcess_fst_atTop_ae_of_monotone, ProbabilityTheory.setLIntegral_condKernel_eq_measure_prod, fst_map_id_prod, IsCondKernel.disintegrate, densityProcess_fst_univ, fst_compProd, ProbabilityTheory.integral_condKernel, fst_map_prod, ProbabilityTheory.lintegral_condKernel_mem, snd_swapRight, tendsto_density_fst_atTop_ae_of_monotone, IsZeroOrMarkovKernel.fst, fst_zero, fst_compProd_apply
map πŸ“–CompOp
64 mathmath: deterministic_map, partialTraj_succ_of_le, map_apply, map_id', deterministic_comp_eq_map, ProbabilityTheory.condIndepFun_iff_map_prod_eq_prod_comp_trim, map_partialTraj_succ_self, MeasureTheory.Measure.map_comp, map_comp_right, map_apply', IsFiniteKernel.map, map_prod_eq, ProbabilityTheory.condIndepFun_iff_map_prod_eq_prod_map_map, IsSFiniteKernel.map, ProbabilityTheory.condDistrib_apply_ae_eq_condExpKernel_map, lintegral_map, MeasureTheory.Measure.compProd_map, partialTraj_le_def, ProbabilityTheory.condIndepFun_iff_compProd_map_prod_eq_compProd_prod_map_map, id_map, prodAssoc_symm_prod, prodAssoc_prod, snd_map_prod, ProbabilityTheory.condDistrib_comp, partialTraj_succ_map_frestrictLeβ‚‚, MeasureTheory.partialTraj_const, partialTraj_succ_self, swap_comp_eq_map, snd_map_prod_id, traj_map_frestrictLe_of_le, HasSubgaussianMGF.id_map_iff, swapRight_eq, prodComm_prod, snd_eq, mapOfMeasurable_eq_map, fst_eq, map_comp, map_const, comp_map, IsZeroOrMarkovKernel.map, traj_map_frestrictLe, map_prodMkRight, compProd_assoc, fst_map_id_prod, MeasureTheory.partialTraj_const_restrictβ‚‚, map_traj_succ_self, indepFun_iff_compProd_map_prod_eq_compProd_prod_map_map, IsMarkovKernel.map, map_prodMkLeft, partialTraj_map_frestrictLeβ‚‚, map_prod_map, ProbabilityTheory.bayesRisk_le_bayesRisk_map, sum_map_seq, fst_map_prod, comap_prod_swap, map_prod_swap, lmarginalPartialTraj_eq_lintegral_map, comap_map_comm, map_apply_eq_iff_map_symm_apply_eq, partialTraj_eq_prod, map_zero, map_id, map_of_not_measurable, traj_eq_prod
mapOfMeasurable πŸ“–CompOp
1 mathmath: mapOfMeasurable_eq_map
prodMkLeft πŸ“–CompOp
27 mathmath: IsSFiniteKernel.prodMkLeft, HasSubgaussianMGF.add_comp, prodMkLeft_apply, comp_eq_snd_compProd, swapLeft_prodMkRight, prodMkLeft_add, snd_compProd_prodMkLeft, fst_prodMkLeft, isSFiniteKernel_prodMkLeft_unit, compProd_prodMkLeft_eq_comp, snd_prodMkLeft, prodMkLeft_apply', swapLeft_prodMkLeft, sectL_prodMkLeft, prod_prodMkLeft_comp_prod_deterministic, sectR_prodMkLeft, lintegral_prodMkLeft, map_prodMkLeft, IsZeroOrMarkovKernel.prodMkLeft, isSFiniteKernel_prodMkLeft_iff, MeasureTheory.Measure.prodMkLeft_comp_compProd, comap_prod_swap, HasSubgaussianMGF.prodMkLeft_compProd, prodMkLeft_zero, IsMarkovKernel.prodMkLeft, IsFiniteKernel.prodMkLeft, sum_prodMkLeft
prodMkRight πŸ“–CompOp
23 mathmath: sectR_prodMkRight, isSFiniteKernel_prodMkRight_iff, fst_prodMkRight, prodMkRight_add, swapLeft_prodMkRight, isSFiniteKernel_prodMkRight_unit, prod_prodMkRight_comp_deterministic_prod, lintegral_prodMkRight, prodMkRight_zero, snd_prodMkRight, IsFiniteKernel.prodMkRight, prodMkRight_apply, sectL_prodMkRight, IsSFiniteKernel.prodMkRight, swapLeft_prodMkLeft, IsMarkovKernel.prodMkRight, prodMkRight_apply', map_prodMkRight, ProbabilityTheory.condIndepFun_iff_condDistrib_prod_ae_eq_prodMkRight, ProbabilityTheory.condIndepFun_iff_condDistrib_prod_ae_eq_prodMkLeft, sum_prodMkRight, IsZeroOrMarkovKernel.prodMkRight, comap_prod_swap
sectL πŸ“–CompOp
12 mathmath: sectR_swapRight, instIsZeroOrMarkovKernelSectLOfProd, sectL_prodMkRight, instIsSFiniteKernelSectLOfProd, sectL_swapRight, instNeZeroMeasureCoeSectLOfProdMk, comap_sectL, sectL_zero, sectL_prodMkLeft, sectL_apply, instIsFiniteKernelSectLOfProd, instIsMarkovKernelSectLOfProd
sectR πŸ“–CompOp
13 mathmath: sectR_apply, instIsFiniteKernelSectROfProd, sectR_prodMkRight, instNeZeroMeasureCoeSectROfProdMk, instIsMarkovKernelSectROfProd, sectR_swapRight, instIsSFiniteKernelSectROfProd, sectL_swapRight, sectR_zero, sectR_prodMkLeft, compProd_apply_eq_compProd_sectR, comap_sectR, instIsZeroOrMarkovKernelSectROfProd
snd πŸ“–CompOp
19 mathmath: snd_comp, snd_zero, comp_eq_snd_compProd, snd_compProd_prodMkLeft, snd_prodMkRight, snd_map_prod, snd_prod, IsFiniteKernel.snd, snd_map_prod_id, snd_prodMkLeft, lintegral_snd, IsZeroOrMarkovKernel.snd, IsMarkovKernel.snd, snd_eq, snd_apply', snd_apply, fst_swapRight, IsSFiniteKernel.snd, snd_swapRight
swapLeft πŸ“–CompOp
11 mathmath: swapLeft_zero, swapLeft_prodMkRight, IsMarkovKernel.swapLeft, sectR_swapRight, IsFiniteKernel.swapLeft, sectL_swapRight, IsSFiniteKernel.swapLeft, swapLeft_prodMkLeft, swapLeft_apply', lintegral_swapLeft, swapLeft_apply
swapRight πŸ“–CompOp
11 mathmath: lintegral_swapRight, swapRight_apply', swapRight_apply, IsMarkovKernel.swapRight, IsZeroOrMarkovKernel.swapRight, swapRight_eq, fst_swapRight, swapRight_zero, snd_swapRight, IsFiniteKernel.swapRight, IsSFiniteKernel.swapRight

Theorems

NameKindAssumesProvesValidatesDepends On
coe_comap πŸ“–mathematicalMeasurableDFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
instFunLike
comap
β€”β€”
comap_apply πŸ“–mathematicalMeasurableDFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
instFunLike
comap
β€”β€”
comap_apply' πŸ“–mathematicalMeasurableDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
instFunLike
comap
β€”β€”
comap_comp_right πŸ“–mathematicalMeasurablecomap
Measurable.comp
β€”ext
Measurable.comp
MeasureTheory.Measure.ext
comap_id πŸ“–mathematicalβ€”comap
measurable_id
β€”ext
measurable_id
MeasureTheory.Measure.ext
comap_id' πŸ“–mathematicalβ€”comap
measurable_id
β€”comap_id
comap_map_comm πŸ“–mathematicalMeasurablecomap
map
β€”ext
MeasureTheory.Measure.ext
comap_apply
map_apply
comap_sectL πŸ“–mathematicalMeasurablecomap
sectL
Prod.instMeasurableSpace
Measurable.prodMk
measurable_const
β€”ext
Measurable.prodMk
measurable_const
MeasureTheory.Measure.ext
comap_apply
sectL_apply
comap_sectR πŸ“–mathematicalMeasurablecomap
sectR
Prod.instMeasurableSpace
Measurable.prodMk
measurable_const
β€”ext
Measurable.prodMk
measurable_const
MeasureTheory.Measure.ext
comap_apply
sectR_apply
comap_zero πŸ“–mathematicalMeasurablecomap
ProbabilityTheory.Kernel
instZero
β€”ext
MeasureTheory.Measure.ext
deterministic_map πŸ“–mathematicalMeasurablemap
deterministic
Measurable.comp
β€”Measurable.comp
id_map
map_comp_right
fst_apply πŸ“–mathematicalβ€”DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
instFunLike
fst
MeasureTheory.Measure.map
Prod.instMeasurableSpace
β€”β€”
fst_apply' πŸ“–mathematicalMeasurableSetDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
instFunLike
fst
Prod.instMeasurableSpace
setOf
Set.instMembership
β€”fst_apply
MeasureTheory.Measure.map_apply
measurable_fst
fst_eq πŸ“–mathematicalβ€”fst
map
Prod.instMeasurableSpace
β€”mapOfMeasurable_eq_map
measurable_fst
fst_map_id_prod πŸ“–mathematicalMeasurablefst
map
Prod.instMeasurableSpace
β€”fst_map_prod
map_id'
fst_map_prod πŸ“–mathematicalMeasurablefst
map
Prod.instMeasurableSpace
β€”ext
MeasureTheory.Measure.ext
fst_apply'
map_apply'
Measurable.prod
measurable_fst
Mathlib.Tactic.Contrapose.contraposeβ‚„
Measurable.fst
map_of_not_measurable
fst_zero
fst_prodMkLeft πŸ“–mathematicalβ€”fst
Prod.instMeasurableSpace
prodMkLeft
β€”β€”
fst_prodMkRight πŸ“–mathematicalβ€”fst
Prod.instMeasurableSpace
prodMkRight
β€”β€”
fst_real_apply πŸ“–mathematicalMeasurableSetMeasureTheory.Measure.real
DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
instFunLike
fst
Prod.instMeasurableSpace
setOf
Set
Set.instMembership
β€”fst_apply'
fst_swapRight πŸ“–mathematicalβ€”fst
swapRight
snd
β€”ext
MeasureTheory.Measure.ext
fst_apply'
swapRight_apply'
measurable_fst
snd_apply'
fst_zero πŸ“–mathematicalβ€”fst
ProbabilityTheory.Kernel
Prod.instMeasurableSpace
instZero
β€”measurable_fst
mapOfMeasurable_eq_map
map_zero
id_comap πŸ“–mathematicalMeasurablecomap
id
deterministic
β€”ext
MeasureTheory.Measure.ext
comap_apply
deterministic_apply
id_apply
id_map πŸ“–mathematicalMeasurablemap
id
deterministic
β€”ext
MeasureTheory.Measure.ext
map_apply
deterministic_apply
id_apply
MeasureTheory.Measure.map_dirac
instIsFiniteKernelSectLOfProd πŸ“–mathematicalβ€”ProbabilityTheory.IsFiniteKernel
sectL
β€”sectL.eq_1
IsFiniteKernel.comap
instIsFiniteKernelSectROfProd πŸ“–mathematicalβ€”ProbabilityTheory.IsFiniteKernel
sectR
β€”sectR.eq_1
IsFiniteKernel.comap
instIsMarkovKernelProdOfSectL πŸ“–mathematicalProbabilityTheory.IsMarkovKernel
sectL
Prod.instMeasurableSpaceβ€”sectL_apply
MeasureTheory.IsProbabilityMeasure.measure_univ
ProbabilityTheory.IsMarkovKernel.is_probability_measure'
instIsMarkovKernelProdOfSectR πŸ“–mathematicalProbabilityTheory.IsMarkovKernel
sectR
Prod.instMeasurableSpaceβ€”sectR_apply
MeasureTheory.IsProbabilityMeasure.measure_univ
ProbabilityTheory.IsMarkovKernel.is_probability_measure'
instIsMarkovKernelSectLOfProd πŸ“–mathematicalβ€”ProbabilityTheory.IsMarkovKernel
sectL
β€”sectL.eq_1
IsMarkovKernel.comap
instIsMarkovKernelSectROfProd πŸ“–mathematicalβ€”ProbabilityTheory.IsMarkovKernel
sectR
β€”sectR.eq_1
IsMarkovKernel.comap
instIsSFiniteKernelSectLOfProd πŸ“–mathematicalβ€”ProbabilityTheory.IsSFiniteKernel
sectL
β€”sectL.eq_1
IsSFiniteKernel.comap
instIsSFiniteKernelSectROfProd πŸ“–mathematicalβ€”ProbabilityTheory.IsSFiniteKernel
sectR
β€”sectR.eq_1
IsSFiniteKernel.comap
instIsZeroOrMarkovKernelSectLOfProd πŸ“–mathematicalβ€”ProbabilityTheory.IsZeroOrMarkovKernel
sectL
β€”sectL.eq_1
IsZeroOrMarkovKernel.comap
instIsZeroOrMarkovKernelSectROfProd πŸ“–mathematicalβ€”ProbabilityTheory.IsZeroOrMarkovKernel
sectR
β€”sectR.eq_1
IsZeroOrMarkovKernel.comap
instNeZeroMeasureCoeSectLOfProdMk πŸ“–mathematicalβ€”MeasureTheory.Measure
MeasureTheory.Measure.instZero
DFunLike.coe
ProbabilityTheory.Kernel
instFunLike
sectL
β€”sectL_apply
instNeZeroMeasureCoeSectROfProdMk πŸ“–mathematicalβ€”MeasureTheory.Measure
MeasureTheory.Measure.instZero
DFunLike.coe
ProbabilityTheory.Kernel
instFunLike
sectR
β€”sectR_apply
isFiniteKernel_of_isFiniteKernel_fst πŸ“–mathematicalβ€”ProbabilityTheory.IsFiniteKernel
Prod.instMeasurableSpace
β€”bound_lt_top
le_trans
fst_apply'
MeasurableSet.univ
measure_le_bound
isFiniteKernel_of_isFiniteKernel_snd πŸ“–mathematicalβ€”ProbabilityTheory.IsFiniteKernel
Prod.instMeasurableSpace
β€”bound_lt_top
le_trans
snd_apply'
MeasurableSet.univ
measure_le_bound
isSFiniteKernel_prodMkLeft_iff πŸ“–mathematicalβ€”ProbabilityTheory.IsSFiniteKernel
Prod.instMeasurableSpace
prodMkLeft
β€”sectR_prodMkLeft
instIsSFiniteKernelSectROfProd
IsSFiniteKernel.prodMkLeft
isSFiniteKernel_prodMkLeft_unit πŸ“–mathematicalβ€”ProbabilityTheory.IsSFiniteKernel
Prod.instMeasurableSpace
PUnit.instMeasurableSpace
prodMkLeft
β€”Measurable.prodMk
measurable_const
measurable_id'
IsSFiniteKernel.comap
IsSFiniteKernel.prodMkLeft
isSFiniteKernel_prodMkRight_iff πŸ“–mathematicalβ€”ProbabilityTheory.IsSFiniteKernel
Prod.instMeasurableSpace
prodMkRight
β€”sectL_prodMkRight
instIsSFiniteKernelSectLOfProd
IsSFiniteKernel.prodMkRight
isSFiniteKernel_prodMkRight_unit πŸ“–mathematicalβ€”ProbabilityTheory.IsSFiniteKernel
Prod.instMeasurableSpace
PUnit.instMeasurableSpace
prodMkRight
β€”Measurable.prodMk
measurable_id'
measurable_const
IsSFiniteKernel.comap
IsSFiniteKernel.prodMkRight
lintegral_comap πŸ“–mathematicalMeasurableMeasureTheory.lintegral
DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
instFunLike
comap
β€”β€”
lintegral_fst πŸ“–mathematicalMeasurable
ENNReal
ENNReal.measurableSpace
MeasureTheory.lintegral
DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
instFunLike
fst
Prod.instMeasurableSpace
β€”fst_eq
lintegral_map
measurable_fst
lintegral_map πŸ“–mathematicalMeasurable
ENNReal
ENNReal.measurableSpace
MeasureTheory.lintegral
DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
instFunLike
map
β€”map_apply
MeasureTheory.lintegral_map
lintegral_prodMkLeft πŸ“–mathematicalβ€”MeasureTheory.lintegral
DFunLike.coe
ProbabilityTheory.Kernel
Prod.instMeasurableSpace
MeasureTheory.Measure
instFunLike
prodMkLeft
β€”β€”
lintegral_prodMkRight πŸ“–mathematicalβ€”MeasureTheory.lintegral
DFunLike.coe
ProbabilityTheory.Kernel
Prod.instMeasurableSpace
MeasureTheory.Measure
instFunLike
prodMkRight
β€”β€”
lintegral_snd πŸ“–mathematicalMeasurable
ENNReal
ENNReal.measurableSpace
MeasureTheory.lintegral
DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
instFunLike
snd
Prod.instMeasurableSpace
β€”snd_eq
lintegral_map
measurable_snd
lintegral_swapLeft πŸ“–mathematicalβ€”MeasureTheory.lintegral
DFunLike.coe
ProbabilityTheory.Kernel
Prod.instMeasurableSpace
MeasureTheory.Measure
instFunLike
swapLeft
β€”swapLeft_apply
lintegral_swapRight πŸ“–mathematicalMeasurable
ENNReal
Prod.instMeasurableSpace
ENNReal.measurableSpace
MeasureTheory.lintegral
DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
instFunLike
swapRight
β€”swapRight_eq
lintegral_map
measurable_swap
mapOfMeasurable_eq_map πŸ“–mathematicalMeasurablemapOfMeasurable
map
β€”β€”
map_apply πŸ“–mathematicalMeasurableDFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
instFunLike
map
MeasureTheory.Measure.map
β€”β€”
map_apply' πŸ“–mathematicalMeasurable
MeasurableSet
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
instFunLike
map
Set.preimage
β€”map_apply
MeasureTheory.Measure.map_apply
map_apply_eq_iff_map_symm_apply_eq πŸ“–mathematicalβ€”map
DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
MeasurableEquiv.instEquivLike
MeasurableEquiv.symm
β€”map_apply
MeasurableEquiv.measurable
MeasurableEquiv.map_apply_eq_iff_map_symm_apply_eq
map_comp_right πŸ“–mathematicalMeasurablemapβ€”ext
map_apply
MeasureTheory.Measure.map_map
Measurable.comp
map_const πŸ“–mathematicalMeasurablemap
const
MeasureTheory.Measure.map
β€”ext
MeasureTheory.Measure.ext
map_apply'
const_apply
MeasureTheory.Measure.map_apply
map_id πŸ“–mathematicalβ€”mapβ€”ext
MeasureTheory.Measure.ext
map_apply
MeasureTheory.Measure.map_id
map_id' πŸ“–mathematicalβ€”mapβ€”map_id
map_of_not_measurable πŸ“–mathematicalMeasurablemap
ProbabilityTheory.Kernel
instZero
β€”β€”
map_prodMkLeft πŸ“–mathematicalβ€”map
Prod.instMeasurableSpace
prodMkLeft
β€”map_of_not_measurable
prodMkLeft_zero
map_prodMkRight πŸ“–mathematicalβ€”map
Prod.instMeasurableSpace
prodMkRight
β€”map_of_not_measurable
prodMkRight_zero
map_zero πŸ“–mathematicalβ€”map
ProbabilityTheory.Kernel
instZero
β€”ext
MeasureTheory.Measure.ext
map_apply
MeasureTheory.Measure.map_zero
map_of_not_measurable
prodMkLeft_add πŸ“–mathematicalβ€”prodMkLeft
ProbabilityTheory.Kernel
instAdd
Prod.instMeasurableSpace
β€”ext
MeasureTheory.Measure.ext
prodMkLeft_apply πŸ“–mathematicalβ€”DFunLike.coe
ProbabilityTheory.Kernel
Prod.instMeasurableSpace
MeasureTheory.Measure
instFunLike
prodMkLeft
β€”β€”
prodMkLeft_apply' πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
Prod.instMeasurableSpace
instFunLike
prodMkLeft
β€”β€”
prodMkLeft_zero πŸ“–mathematicalβ€”prodMkLeft
ProbabilityTheory.Kernel
instZero
Prod.instMeasurableSpace
β€”ext
MeasureTheory.Measure.ext
prodMkRight_add πŸ“–mathematicalβ€”prodMkRight
ProbabilityTheory.Kernel
instAdd
Prod.instMeasurableSpace
β€”ext
MeasureTheory.Measure.ext
prodMkRight_apply πŸ“–mathematicalβ€”DFunLike.coe
ProbabilityTheory.Kernel
Prod.instMeasurableSpace
MeasureTheory.Measure
instFunLike
prodMkRight
β€”β€”
prodMkRight_apply' πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
Prod.instMeasurableSpace
instFunLike
prodMkRight
β€”β€”
prodMkRight_zero πŸ“–mathematicalβ€”prodMkRight
ProbabilityTheory.Kernel
instZero
Prod.instMeasurableSpace
β€”ext
MeasureTheory.Measure.ext
sectL_apply πŸ“–mathematicalβ€”DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
instFunLike
sectL
Prod.instMeasurableSpace
β€”β€”
sectL_prodMkLeft πŸ“–mathematicalβ€”DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
instFunLike
sectL
prodMkLeft
β€”β€”
sectL_prodMkRight πŸ“–mathematicalβ€”sectL
prodMkRight
β€”β€”
sectL_swapRight πŸ“–mathematicalβ€”sectL
swapLeft
sectR
β€”β€”
sectL_zero πŸ“–mathematicalβ€”sectL
ProbabilityTheory.Kernel
Prod.instMeasurableSpace
instZero
β€”comap_zero
sectR_apply πŸ“–mathematicalβ€”DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
instFunLike
sectR
Prod.instMeasurableSpace
β€”β€”
sectR_prodMkLeft πŸ“–mathematicalβ€”sectR
prodMkLeft
β€”β€”
sectR_prodMkRight πŸ“–mathematicalβ€”DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
instFunLike
sectR
prodMkRight
β€”β€”
sectR_swapRight πŸ“–mathematicalβ€”sectR
swapLeft
sectL
β€”β€”
sectR_zero πŸ“–mathematicalβ€”sectR
ProbabilityTheory.Kernel
Prod.instMeasurableSpace
instZero
β€”comap_zero
snd_apply πŸ“–mathematicalβ€”DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
instFunLike
snd
MeasureTheory.Measure.map
Prod.instMeasurableSpace
β€”β€”
snd_apply' πŸ“–mathematicalMeasurableSetDFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
instFunLike
snd
Prod.instMeasurableSpace
Set.preimage
β€”snd_apply
MeasureTheory.Measure.map_apply
measurable_snd
snd_eq πŸ“–mathematicalβ€”snd
map
Prod.instMeasurableSpace
β€”mapOfMeasurable_eq_map
measurable_snd
snd_map_prod πŸ“–mathematicalMeasurablesnd
map
Prod.instMeasurableSpace
β€”ext
MeasureTheory.Measure.ext
snd_apply'
map_apply'
Measurable.prod
measurable_snd
Mathlib.Tactic.Contrapose.contraposeβ‚„
Measurable.snd
map_of_not_measurable
snd_zero
snd_map_prod_id πŸ“–mathematicalMeasurablesnd
map
Prod.instMeasurableSpace
β€”snd_map_prod
map_id'
snd_prodMkLeft πŸ“–mathematicalβ€”snd
Prod.instMeasurableSpace
prodMkLeft
β€”β€”
snd_prodMkRight πŸ“–mathematicalβ€”snd
Prod.instMeasurableSpace
prodMkRight
β€”β€”
snd_swapRight πŸ“–mathematicalβ€”snd
swapRight
fst
β€”ext
MeasureTheory.Measure.ext
snd_apply'
swapRight_apply'
measurable_snd
fst_apply'
snd_zero πŸ“–mathematicalβ€”snd
ProbabilityTheory.Kernel
Prod.instMeasurableSpace
instZero
β€”measurable_snd
mapOfMeasurable_eq_map
map_zero
sum_comap_seq πŸ“–mathematicalMeasurablesum
instCountableNat
comap
seq
β€”ext
instCountableNat
MeasureTheory.Measure.ext
sum_apply
comap_apply'
MeasureTheory.Measure.sum_apply
measure_sum_seq
sum_map_seq πŸ“–mathematicalβ€”sum
instCountableNat
map
seq
β€”instCountableNat
ext
MeasureTheory.Measure.ext
sum_apply
map_apply'
MeasureTheory.Measure.sum_apply
measure_sum_seq
sum.congr_simp
map_of_not_measurable
sum_zero
sum_prodMkLeft πŸ“–mathematicalβ€”sum
Prod.instMeasurableSpace
prodMkLeft
β€”ext
MeasureTheory.Measure.ext
sum_prodMkRight πŸ“–mathematicalβ€”sum
Prod.instMeasurableSpace
prodMkRight
β€”ext
MeasureTheory.Measure.ext
swapLeft_apply πŸ“–mathematicalβ€”DFunLike.coe
ProbabilityTheory.Kernel
Prod.instMeasurableSpace
MeasureTheory.Measure
instFunLike
swapLeft
β€”β€”
swapLeft_apply' πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
Prod.instMeasurableSpace
instFunLike
swapLeft
β€”β€”
swapLeft_prodMkLeft πŸ“–mathematicalβ€”swapLeft
prodMkLeft
prodMkRight
β€”β€”
swapLeft_prodMkRight πŸ“–mathematicalβ€”swapLeft
prodMkRight
prodMkLeft
β€”β€”
swapLeft_zero πŸ“–mathematicalβ€”swapLeft
ProbabilityTheory.Kernel
Prod.instMeasurableSpace
instZero
β€”comap_zero
measurable_swap
swapRight_apply πŸ“–mathematicalβ€”DFunLike.coe
ProbabilityTheory.Kernel
Prod.instMeasurableSpace
MeasureTheory.Measure
instFunLike
swapRight
MeasureTheory.Measure.map
β€”β€”
swapRight_apply' πŸ“–mathematicalMeasurableSet
Prod.instMeasurableSpace
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
instFunLike
swapRight
setOf
Set.instMembership
β€”swapRight_apply
MeasureTheory.Measure.map_apply
measurable_swap
swapRight_eq πŸ“–mathematicalβ€”swapRight
map
Prod.instMeasurableSpace
β€”mapOfMeasurable_eq_map
measurable_swap
swapRight_zero πŸ“–mathematicalβ€”swapRight
ProbabilityTheory.Kernel
Prod.instMeasurableSpace
instZero
β€”measurable_swap
mapOfMeasurable_eq_map
map_zero

ProbabilityTheory.Kernel.IsFiniteKernel

Theorems

NameKindAssumesProvesValidatesDepends On
comap πŸ“–mathematicalMeasurableProbabilityTheory.IsFiniteKernel
ProbabilityTheory.Kernel.comap
β€”ProbabilityTheory.Kernel.bound_lt_top
ProbabilityTheory.Kernel.comap_apply'
ProbabilityTheory.Kernel.measure_le_bound
fst πŸ“–mathematicalβ€”ProbabilityTheory.IsFiniteKernel
ProbabilityTheory.Kernel.fst
β€”ProbabilityTheory.Kernel.fst_eq
map
map πŸ“–mathematicalβ€”ProbabilityTheory.IsFiniteKernel
ProbabilityTheory.Kernel.map
β€”ProbabilityTheory.Kernel.bound_lt_top
ProbabilityTheory.Kernel.map_apply'
MeasurableSet.univ
ProbabilityTheory.Kernel.measure_le_bound
ProbabilityTheory.Kernel.map_of_not_measurable
ENNReal.instCanonicallyOrderedAdd
prodMkLeft πŸ“–mathematicalβ€”ProbabilityTheory.IsFiniteKernel
Prod.instMeasurableSpace
ProbabilityTheory.Kernel.prodMkLeft
β€”measurable_snd
ProbabilityTheory.Kernel.prodMkLeft.eq_1
comap
prodMkRight πŸ“–mathematicalβ€”ProbabilityTheory.IsFiniteKernel
Prod.instMeasurableSpace
ProbabilityTheory.Kernel.prodMkRight
β€”measurable_fst
ProbabilityTheory.Kernel.prodMkRight.eq_1
comap
snd πŸ“–mathematicalβ€”ProbabilityTheory.IsFiniteKernel
ProbabilityTheory.Kernel.snd
β€”ProbabilityTheory.Kernel.snd_eq
map
swapLeft πŸ“–mathematicalβ€”ProbabilityTheory.IsFiniteKernel
Prod.instMeasurableSpace
ProbabilityTheory.Kernel.swapLeft
β€”measurable_swap
ProbabilityTheory.Kernel.swapLeft.eq_1
comap
swapRight πŸ“–mathematicalβ€”ProbabilityTheory.IsFiniteKernel
Prod.instMeasurableSpace
ProbabilityTheory.Kernel.swapRight
β€”ProbabilityTheory.Kernel.swapRight_eq
map

ProbabilityTheory.Kernel.IsMarkovKernel

Theorems

NameKindAssumesProvesValidatesDepends On
comap πŸ“–mathematicalMeasurableProbabilityTheory.IsMarkovKernel
ProbabilityTheory.Kernel.comap
β€”ProbabilityTheory.Kernel.comap_apply'
MeasureTheory.IsProbabilityMeasure.measure_univ
ProbabilityTheory.IsMarkovKernel.is_probability_measure'
fst πŸ“–mathematicalβ€”ProbabilityTheory.IsMarkovKernel
ProbabilityTheory.Kernel.fst
β€”ProbabilityTheory.Kernel.fst_eq
map
measurable_fst
map πŸ“–mathematicalMeasurableProbabilityTheory.IsMarkovKernel
ProbabilityTheory.Kernel.map
β€”ProbabilityTheory.Kernel.map_apply'
MeasurableSet.univ
Set.preimage_univ
MeasureTheory.IsProbabilityMeasure.measure_univ
ProbabilityTheory.IsMarkovKernel.is_probability_measure'
prodMkLeft πŸ“–mathematicalβ€”ProbabilityTheory.IsMarkovKernel
Prod.instMeasurableSpace
ProbabilityTheory.Kernel.prodMkLeft
β€”measurable_snd
ProbabilityTheory.Kernel.prodMkLeft.eq_1
comap
prodMkRight πŸ“–mathematicalβ€”ProbabilityTheory.IsMarkovKernel
Prod.instMeasurableSpace
ProbabilityTheory.Kernel.prodMkRight
β€”measurable_fst
ProbabilityTheory.Kernel.prodMkRight.eq_1
comap
snd πŸ“–mathematicalβ€”ProbabilityTheory.IsMarkovKernel
ProbabilityTheory.Kernel.snd
β€”ProbabilityTheory.Kernel.snd_eq
map
measurable_snd
swapLeft πŸ“–mathematicalβ€”ProbabilityTheory.IsMarkovKernel
Prod.instMeasurableSpace
ProbabilityTheory.Kernel.swapLeft
β€”measurable_swap
ProbabilityTheory.Kernel.swapLeft.eq_1
comap
swapRight πŸ“–mathematicalβ€”ProbabilityTheory.IsMarkovKernel
Prod.instMeasurableSpace
ProbabilityTheory.Kernel.swapRight
β€”ProbabilityTheory.Kernel.swapRight_eq
map
measurable_swap

ProbabilityTheory.Kernel.IsSFiniteKernel

Theorems

NameKindAssumesProvesValidatesDepends On
comap πŸ“–mathematicalMeasurableProbabilityTheory.IsSFiniteKernel
ProbabilityTheory.Kernel.comap
β€”instCountableNat
ProbabilityTheory.Kernel.IsFiniteKernel.comap
ProbabilityTheory.Kernel.isFiniteKernel_seq
ProbabilityTheory.Kernel.sum_comap_seq
fst πŸ“–mathematicalβ€”ProbabilityTheory.IsSFiniteKernel
ProbabilityTheory.Kernel.fst
β€”ProbabilityTheory.Kernel.fst_eq
map
map πŸ“–mathematicalβ€”ProbabilityTheory.IsSFiniteKernel
ProbabilityTheory.Kernel.map
β€”instCountableNat
ProbabilityTheory.Kernel.IsFiniteKernel.map
ProbabilityTheory.Kernel.isFiniteKernel_seq
ProbabilityTheory.Kernel.sum_map_seq
prodMkLeft πŸ“–mathematicalβ€”ProbabilityTheory.IsSFiniteKernel
Prod.instMeasurableSpace
ProbabilityTheory.Kernel.prodMkLeft
β€”measurable_snd
ProbabilityTheory.Kernel.prodMkLeft.eq_1
comap
prodMkRight πŸ“–mathematicalβ€”ProbabilityTheory.IsSFiniteKernel
Prod.instMeasurableSpace
ProbabilityTheory.Kernel.prodMkRight
β€”measurable_fst
ProbabilityTheory.Kernel.prodMkRight.eq_1
comap
snd πŸ“–mathematicalβ€”ProbabilityTheory.IsSFiniteKernel
ProbabilityTheory.Kernel.snd
β€”ProbabilityTheory.Kernel.snd_eq
map
swapLeft πŸ“–mathematicalβ€”ProbabilityTheory.IsSFiniteKernel
Prod.instMeasurableSpace
ProbabilityTheory.Kernel.swapLeft
β€”measurable_swap
ProbabilityTheory.Kernel.swapLeft.eq_1
comap
swapRight πŸ“–mathematicalβ€”ProbabilityTheory.IsSFiniteKernel
Prod.instMeasurableSpace
ProbabilityTheory.Kernel.swapRight
β€”ProbabilityTheory.Kernel.swapRight_eq
map

ProbabilityTheory.Kernel.IsZeroOrMarkovKernel

Theorems

NameKindAssumesProvesValidatesDepends On
comap πŸ“–mathematicalMeasurableProbabilityTheory.IsZeroOrMarkovKernel
ProbabilityTheory.Kernel.comap
β€”ProbabilityTheory.eq_zero_or_isMarkovKernel
ProbabilityTheory.Kernel.comap_zero
ProbabilityTheory.instIsZeroOrMarkovKernelOfNatKernel
ProbabilityTheory.Kernel.IsMarkovKernel.comap
ProbabilityTheory.IsMarkovKernel.IsZeroOrMarkovKernel
fst πŸ“–mathematicalβ€”ProbabilityTheory.IsZeroOrMarkovKernel
ProbabilityTheory.Kernel.fst
β€”ProbabilityTheory.Kernel.fst_eq
map
map πŸ“–mathematicalβ€”ProbabilityTheory.IsZeroOrMarkovKernel
ProbabilityTheory.Kernel.map
β€”ProbabilityTheory.eq_zero_or_isMarkovKernel
ProbabilityTheory.Kernel.map_zero
ProbabilityTheory.instIsZeroOrMarkovKernelOfNatKernel
ProbabilityTheory.Kernel.IsMarkovKernel.map
ProbabilityTheory.IsMarkovKernel.IsZeroOrMarkovKernel
ProbabilityTheory.Kernel.map_of_not_measurable
prodMkLeft πŸ“–mathematicalβ€”ProbabilityTheory.IsZeroOrMarkovKernel
Prod.instMeasurableSpace
ProbabilityTheory.Kernel.prodMkLeft
β€”measurable_snd
ProbabilityTheory.Kernel.prodMkLeft.eq_1
comap
prodMkRight πŸ“–mathematicalβ€”ProbabilityTheory.IsZeroOrMarkovKernel
Prod.instMeasurableSpace
ProbabilityTheory.Kernel.prodMkRight
β€”measurable_fst
ProbabilityTheory.Kernel.prodMkRight.eq_1
comap
snd πŸ“–mathematicalβ€”ProbabilityTheory.IsZeroOrMarkovKernel
ProbabilityTheory.Kernel.snd
β€”ProbabilityTheory.Kernel.snd_eq
map
swapRight πŸ“–mathematicalβ€”ProbabilityTheory.IsZeroOrMarkovKernel
Prod.instMeasurableSpace
ProbabilityTheory.Kernel.swapRight
β€”ProbabilityTheory.Kernel.swapRight_eq
map

---

← Back to Index