Documentation Verification Report

Prod

πŸ“ Source: Mathlib/Probability/Kernel/Composition/Prod.lean

Statistics

MetricCount
Definitionsprod, Β«term_Γ—β‚–_Β»
2
Theoremsprod, prod, prod, prod, comap_prod, comap_prod_swap, const_prod_comp, deterministic_prod_apply', deterministic_prod_deterministic, fst_prod, id_prod_apply', id_prod_eq, lintegral_deterministic_prod, lintegral_id_prod, lintegral_prod, lintegral_prod_deterministic, lintegral_prod_id, lintegral_prod_symm, map_prod_eq, map_prod_map, map_prod_swap, parallelComp_comp_copy, prodAssoc_prod, prodAssoc_symm_prod, prodComm_prod, prod_apply, prod_apply', prod_apply_prod, prod_const, prod_const_comp, prod_of_not_isSFiniteKernel_left, prod_of_not_isSFiniteKernel_right, prod_zero, snd_prod, swap_prod, zero_prod
36
Total38

ProbabilityTheory

Definitions

NameCategoryTheorems
Β«term_Γ—β‚–_Β» πŸ“–CompOpβ€”

ProbabilityTheory.Kernel

Definitions

NameCategoryTheorems
prod πŸ“–CompOp
53 mathmath: prod_apply', parallelComp_comp_prod, partialTraj_succ_of_le, fst_prod, lintegral_id_prod, ProbabilityTheory.condIndepFun_iff_map_prod_eq_prod_comp_trim, deterministic_prod_apply', swap_prod, map_prod_eq, prod_apply, prod_const_comp, ProbabilityTheory.condIndepFun_iff_map_prod_eq_prod_map_map, prod_prodMkRight_comp_deterministic_prod, prod_of_not_isSFiniteKernel_right, IsMarkovKernel.prod, partialTraj_le_def, ProbabilityTheory.condIndepFun_iff_compProd_map_prod_eq_compProd_prod_map_map, id_prod_apply', prodAssoc_symm_prod, ProbabilityTheory.posterior_prod_id_comp, prodAssoc_prod, compProd_prodMkLeft_eq_comp, prod_of_not_isSFiniteKernel_left, snd_prod, MeasureTheory.partialTraj_const, IsSFiniteKernel.prod, comap_prod, partialTraj_succ_self, parallelComp_comp_copy, lintegral_prod, MeasureTheory.Measure.compProd_eq_comp_prod, lintegral_prod_symm, prodComm_prod, const_prod_comp, deterministic_prod_deterministic, lintegral_deterministic_prod, IsZeroOrMarkovKernel.prod, prod_prodMkLeft_comp_prod_deterministic, prod_zero, IsFiniteKernel.prod, lintegral_prod_deterministic, indepFun_iff_compProd_map_prod_eq_compProd_prod_map_map, map_prod_map, prod_const, comap_prod_swap, id_prod_eq, map_prod_swap, partialTraj_eq_prod, prod_apply_prod, zero_prod, lintegral_prod_id, traj_eq_prod, ProbabilityTheory.condIndepFun_iff_map_prod_eq_prod_condDistrib_prod_condDistrib

Theorems

NameKindAssumesProvesValidatesDepends On
comap_prod πŸ“–mathematicalMeasurablecomap
Prod.instMeasurableSpace
prod
β€”ext
comap_apply
prod_apply
IsSFiniteKernel.comap
comap_prod_swap πŸ“–mathematicalβ€”comap
Prod.instMeasurableSpace
prod
prodMkRight
prodMkLeft
measurable_swap
map
β€”measurable_swap
ext_fun_iff
lintegral_comap
lintegral_map
lintegral_prod
IsSFiniteKernel.prodMkRight
IsSFiniteKernel.prodMkLeft
Measurable.fun_comp
MeasureTheory.lintegral_lintegral_swap
ProbabilityTheory.IsSFiniteKernel.sFinite
Measurable.comp_aemeasurable'
AEMeasurable.prodMk
AEMeasurable.snd
aemeasurable_id
AEMeasurable.fst
const_prod_comp πŸ“–mathematicalβ€”comp
Prod.instMeasurableSpace
prod
const
β€”ext
MeasureTheory.Measure.ext
comp_apply'
prod_apply
const.instIsSFiniteKernel
IsSFiniteKernel.comp
MeasureTheory.Measure.prod_apply_symm
ProbabilityTheory.IsSFiniteKernel.sFinite
lintegral_comp
measurable_measure_prodMk_right
deterministic_prod_apply' πŸ“–mathematicalMeasurable
MeasurableSet
Prod.instMeasurableSpace
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
instFunLike
prod
deterministic
Set.preimage
β€”prod_apply'
IsFiniteKernel.isSFiniteKernel
ProbabilityTheory.IsZeroOrMarkovKernel.isFiniteKernel
ProbabilityTheory.IsMarkovKernel.IsZeroOrMarkovKernel
isMarkovKernel_deterministic
lintegral_deterministic'
measurable_measure_prodMk_left
ProbabilityTheory.IsSFiniteKernel.sFinite
deterministic_prod_deterministic πŸ“–mathematicalMeasurableprod
deterministic
Prod.instMeasurableSpace
Measurable.prodMk
β€”ext
Measurable.prodMk
MeasureTheory.Measure.ext
prod_apply
IsFiniteKernel.isSFiniteKernel
ProbabilityTheory.IsZeroOrMarkovKernel.isFiniteKernel
ProbabilityTheory.IsMarkovKernel.IsZeroOrMarkovKernel
isMarkovKernel_deterministic
MeasureTheory.Measure.dirac_prod_dirac
fst_prod πŸ“–mathematicalβ€”fst
prod
β€”prod.eq_1
fst_comp
ext
comp_apply
copy_apply
MeasureTheory.Measure.dirac_bind
measurable
fst_apply
parallelComp_apply
IsFiniteKernel.isSFiniteKernel
ProbabilityTheory.IsZeroOrMarkovKernel.isFiniteKernel
ProbabilityTheory.IsMarkovKernel.IsZeroOrMarkovKernel
IsScalarTower.right
MeasureTheory.Measure.map_fst_prod
ProbabilityTheory.IsSFiniteKernel.sFinite
MeasureTheory.IsProbabilityMeasure.measure_univ
ProbabilityTheory.IsMarkovKernel.is_probability_measure'
one_smul
id_prod_apply' πŸ“–mathematicalMeasurableSet
Prod.instMeasurableSpace
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
instFunLike
prod
id
Set.preimage
β€”measurable_id
id.eq_1
deterministic_prod_apply'
id_prod_eq πŸ“–mathematicalβ€”id
MeasurableSpace
Prod.instMeasurableSpace
prod
deterministic
measurable_fst
measurable_snd
β€”measurable_fst
measurable_snd
Measurable.prodMk
deterministic_prod_deterministic
lintegral_deterministic_prod πŸ“–mathematicalMeasurable
ENNReal
Prod.instMeasurableSpace
ENNReal.measurableSpace
MeasureTheory.lintegral
DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
instFunLike
prod
deterministic
β€”lintegral_prod
IsFiniteKernel.isSFiniteKernel
ProbabilityTheory.IsZeroOrMarkovKernel.isFiniteKernel
ProbabilityTheory.IsMarkovKernel.IsZeroOrMarkovKernel
isMarkovKernel_deterministic
lintegral_deterministic'
Measurable.lintegral_prod_right'
ProbabilityTheory.IsSFiniteKernel.sFinite
lintegral_id_prod πŸ“–mathematicalMeasurable
ENNReal
Prod.instMeasurableSpace
ENNReal.measurableSpace
MeasureTheory.lintegral
DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
instFunLike
prod
id
β€”measurable_id
id.eq_1
lintegral_deterministic_prod
lintegral_prod πŸ“–mathematicalMeasurable
ENNReal
Prod.instMeasurableSpace
ENNReal.measurableSpace
MeasureTheory.lintegral
DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
instFunLike
prod
β€”lintegral_comp
copy_apply
MeasureTheory.lintegral_dirac'
Measurable.lintegral_kernel
parallelComp_apply
MeasureTheory.lintegral_prod
Measurable.aemeasurable
ProbabilityTheory.IsSFiniteKernel.sFinite
lintegral_prod_deterministic πŸ“–mathematicalMeasurable
ENNReal
Prod.instMeasurableSpace
ENNReal.measurableSpace
MeasureTheory.lintegral
DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
instFunLike
prod
deterministic
β€”lintegral_prod_symm
IsFiniteKernel.isSFiniteKernel
ProbabilityTheory.IsZeroOrMarkovKernel.isFiniteKernel
ProbabilityTheory.IsMarkovKernel.IsZeroOrMarkovKernel
isMarkovKernel_deterministic
lintegral_deterministic'
Measurable.lintegral_prod_left'
ProbabilityTheory.IsSFiniteKernel.sFinite
lintegral_prod_id πŸ“–mathematicalMeasurable
ENNReal
Prod.instMeasurableSpace
ENNReal.measurableSpace
MeasureTheory.lintegral
DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
instFunLike
prod
id
β€”measurable_id
id.eq_1
lintegral_prod_deterministic
lintegral_prod_symm πŸ“–mathematicalMeasurable
ENNReal
Prod.instMeasurableSpace
ENNReal.measurableSpace
MeasureTheory.lintegral
DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
instFunLike
prod
β€”prod_apply
MeasureTheory.lintegral_prod_symm
ProbabilityTheory.IsSFiniteKernel.sFinite
Measurable.aemeasurable
map_prod_eq πŸ“–mathematicalMeasurableprod
map
Prod.instMeasurableSpace
β€”map_prod_map
measurable_id
map_id
map_prod_map πŸ“–mathematicalMeasurableprod
map
Prod.instMeasurableSpace
β€”ext
map_apply
Measurable.prodMap
prod_apply
MeasureTheory.Measure.map_prod_map
ProbabilityTheory.IsSFiniteKernel.sFinite
IsSFiniteKernel.map
map_prod_swap πŸ“–mathematicalβ€”map
Prod.instMeasurableSpace
prod
β€”ext_fun_iff
lintegral_map
measurable_swap
lintegral_prod
Measurable.fun_comp
MeasureTheory.lintegral_lintegral_swap
ProbabilityTheory.IsSFiniteKernel.sFinite
Measurable.comp_aemeasurable'
AEMeasurable.prodMk
AEMeasurable.snd
aemeasurable_id
AEMeasurable.fst
parallelComp_comp_copy πŸ“–mathematicalβ€”comp
Prod.instMeasurableSpace
parallelComp
copy
prod
β€”β€”
prodAssoc_prod πŸ“–mathematicalβ€”map
Prod.instMeasurableSpace
prod
DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
MeasurableEquiv.instEquivLike
MeasurableEquiv.prodAssoc
β€”ext
map_apply
MeasurableEquiv.measurable
prod_apply
IsSFiniteKernel.prod
MeasureTheory.Measure.prodAssoc_prod
ProbabilityTheory.IsSFiniteKernel.sFinite
prodAssoc_symm_prod πŸ“–mathematicalβ€”map
Prod.instMeasurableSpace
prod
DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
MeasurableEquiv.instEquivLike
MeasurableEquiv.symm
MeasurableEquiv.prodAssoc
β€”prodAssoc_prod
map_comp_right
MeasurableEquiv.measurable
MeasurableEquiv.symm_comp_self
map_id
prodComm_prod πŸ“–mathematicalβ€”map
Prod.instMeasurableSpace
prod
DFunLike.coe
MeasurableEquiv
EquivLike.toFunLike
MeasurableEquiv.instEquivLike
MeasurableEquiv.prodComm
β€”map_prod_swap
prod_apply πŸ“–mathematicalβ€”DFunLike.coe
ProbabilityTheory.Kernel
Prod.instMeasurableSpace
MeasureTheory.Measure
instFunLike
prod
MeasureTheory.Measure.prod
β€”MeasureTheory.Measure.ext
prod_apply'
MeasureTheory.Measure.prod_apply
ProbabilityTheory.IsSFiniteKernel.sFinite
prod_apply' πŸ“–mathematicalMeasurableSet
Prod.instMeasurableSpace
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
instFunLike
prod
MeasureTheory.lintegral
Set.preimage
β€”copy_apply
MeasureTheory.Measure.dirac_bind
measurable
parallelComp_apply
MeasureTheory.Measure.prod_apply
ProbabilityTheory.IsSFiniteKernel.sFinite
prod_apply_prod πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Prod.instMeasurableSpace
Set
ENNReal
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
instFunLike
prod
SProd.sprod
Set.instSProd
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
β€”prod_apply
MeasureTheory.Measure.prod_prod
ProbabilityTheory.IsSFiniteKernel.sFinite
prod_const πŸ“–mathematicalβ€”prod
const
Prod.instMeasurableSpace
MeasureTheory.Measure.prod
β€”ext
MeasureTheory.Measure.ext
const_apply
prod_apply
const.instIsSFiniteKernel
prod_const_comp πŸ“–mathematicalβ€”comp
Prod.instMeasurableSpace
prod
const
β€”ext
MeasureTheory.Measure.ext
comp_apply'
prod_apply'
const.instIsSFiniteKernel
IsSFiniteKernel.comp
lintegral_comp
measurable_measure_prodMk_left
prod_of_not_isSFiniteKernel_left πŸ“–mathematicalProbabilityTheory.IsSFiniteKernelprod
ProbabilityTheory.Kernel
Prod.instMeasurableSpace
instZero
β€”parallelComp_of_not_isSFiniteKernel_left
zero_comp
prod_of_not_isSFiniteKernel_right πŸ“–mathematicalProbabilityTheory.IsSFiniteKernelprod
ProbabilityTheory.Kernel
Prod.instMeasurableSpace
instZero
β€”parallelComp_of_not_isSFiniteKernel_right
zero_comp
prod_zero πŸ“–mathematicalβ€”prod
ProbabilityTheory.Kernel
instZero
Prod.instMeasurableSpace
β€”parallelComp_zero_right
zero_comp
snd_prod πŸ“–mathematicalβ€”snd
prod
β€”ext
MeasureTheory.Measure.ext
IsScalarTower.right
prod_apply
IsFiniteKernel.isSFiniteKernel
ProbabilityTheory.IsZeroOrMarkovKernel.isFiniteKernel
ProbabilityTheory.IsMarkovKernel.IsZeroOrMarkovKernel
MeasureTheory.Measure.map_snd_prod
ProbabilityTheory.IsSFiniteKernel.sFinite
MeasureTheory.IsProbabilityMeasure.measure_univ
ProbabilityTheory.IsMarkovKernel.is_probability_measure'
one_smul
swap_prod πŸ“–mathematicalβ€”comp
Prod.instMeasurableSpace
swap
prod
β€”swap_comp_eq_map
map_prod_swap
zero_prod πŸ“–mathematicalβ€”prod
ProbabilityTheory.Kernel
instZero
Prod.instMeasurableSpace
β€”parallelComp_zero_left
zero_comp

ProbabilityTheory.Kernel.IsFiniteKernel

Theorems

NameKindAssumesProvesValidatesDepends On
prod πŸ“–mathematicalβ€”ProbabilityTheory.IsFiniteKernel
Prod.instMeasurableSpace
ProbabilityTheory.Kernel.prod
β€”ProbabilityTheory.Kernel.prod.eq_1
comp
ProbabilityTheory.Kernel.instIsFiniteKernelProdParallelComp
ProbabilityTheory.Kernel.isFiniteKernel_of_isFiniteKernel_snd
ProbabilityTheory.IsZeroOrMarkovKernel.isFiniteKernel
ProbabilityTheory.Kernel.IsZeroOrMarkovKernel.snd
ProbabilityTheory.IsMarkovKernel.IsZeroOrMarkovKernel
ProbabilityTheory.Kernel.instIsMarkovKernelProdCopy

ProbabilityTheory.Kernel.IsMarkovKernel

Theorems

NameKindAssumesProvesValidatesDepends On
prod πŸ“–mathematicalβ€”ProbabilityTheory.IsMarkovKernel
Prod.instMeasurableSpace
ProbabilityTheory.Kernel.prod
β€”ProbabilityTheory.Kernel.prod.eq_1
comp
ProbabilityTheory.Kernel.instIsMarkovKernelProdParallelComp
ProbabilityTheory.Kernel.instIsMarkovKernelProdCopy

ProbabilityTheory.Kernel.IsSFiniteKernel

Theorems

NameKindAssumesProvesValidatesDepends On
prod πŸ“–mathematicalβ€”ProbabilityTheory.IsSFiniteKernel
Prod.instMeasurableSpace
ProbabilityTheory.Kernel.prod
β€”ProbabilityTheory.Kernel.prod.eq_1
comp
ProbabilityTheory.Kernel.instIsSFiniteKernelProdParallelComp
ProbabilityTheory.Kernel.IsFiniteKernel.isSFiniteKernel
ProbabilityTheory.Kernel.isFiniteKernel_of_isFiniteKernel_snd
ProbabilityTheory.IsZeroOrMarkovKernel.isFiniteKernel
ProbabilityTheory.Kernel.IsZeroOrMarkovKernel.snd
ProbabilityTheory.IsMarkovKernel.IsZeroOrMarkovKernel
ProbabilityTheory.Kernel.instIsMarkovKernelProdCopy

ProbabilityTheory.Kernel.IsZeroOrMarkovKernel

Theorems

NameKindAssumesProvesValidatesDepends On
prod πŸ“–mathematicalβ€”ProbabilityTheory.IsZeroOrMarkovKernel
Prod.instMeasurableSpace
ProbabilityTheory.Kernel.prod
β€”ProbabilityTheory.eq_zero_or_isMarkovKernel
comp
ProbabilityTheory.IsMarkovKernel.IsZeroOrMarkovKernel
ProbabilityTheory.Kernel.instIsMarkovKernelProdCopy
ProbabilityTheory.Kernel.instIsZeroOrMarkovKernelProdParallelComp
ProbabilityTheory.Kernel.IsMarkovKernel.prod

---

← Back to Index