Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Probability/Kernel/Disintegration/Basic.lean

Statistics

MetricCount
DefinitionsIsCondKernel, IsCondKernel, condKernelCountable
3
Theoremsapply_of_ne_zero, disintegrate, isMarkovKernel, isProbabilityMeasure, isSFiniteKernel, disintegrate, disintegrate, isProbabilityMeasure_ae, instIsCondKernel, instIsMarkovKernel, condKernelCountable_apply, disintegrate, instIsCondKernel_zero
13
Total16

MeasureTheory.Measure

Definitions

NameCategoryTheorems
IsCondKernel πŸ“–CompData
1 mathmath: condKernel.instIsCondKernel

Theorems

NameKindAssumesProvesValidatesDepends On
disintegrate πŸ“–mathematicalβ€”compProd
fst
β€”IsCondKernel.disintegrate

MeasureTheory.Measure.IsCondKernel

Theorems

NameKindAssumesProvesValidatesDepends On
apply_of_ne_zero πŸ“–mathematicalβ€”DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
ProbabilityTheory.Kernel.instFunLike
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.instInv
MeasureTheory.Measure.fst
Set.instSingletonSet
Prod.instMeasurableSpace
SProd.sprod
Set.instSProd
β€”IsScalarTower.right
MeasureTheory.Measure.ext
Set.singleton_prod
MeasurableEmbedding.comap_apply
measurableEmbedding_prodMk_left
disintegrate πŸ“–mathematicalβ€”MeasureTheory.Measure.compProd
MeasureTheory.Measure.fst
β€”β€”
isMarkovKernel πŸ“–mathematicalβ€”ProbabilityTheory.IsMarkovKernelβ€”isProbabilityMeasure
isProbabilityMeasure πŸ“–mathematicalβ€”MeasureTheory.IsProbabilityMeasure
DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
ProbabilityTheory.Kernel.instFunLike
β€”apply_of_ne_zero
Set.prod_univ
MeasureTheory.Measure.fst_apply
MeasurableSingletonClass.measurableSet_singleton
ENNReal.inv_mul_cancel
MeasureTheory.measure_ne_top
MeasureTheory.Measure.fst.instIsFiniteMeasure
isSFiniteKernel πŸ“–mathematicalβ€”ProbabilityTheory.IsSFiniteKernelβ€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
MeasureTheory.Measure.disintegrate
MeasureTheory.Measure.compProd_of_not_isSFiniteKernel

ProbabilityTheory.Kernel

Definitions

NameCategoryTheorems
IsCondKernel πŸ“–CompData
6 mathmath: condKernelUnitBorel.instIsCondKernel, condKernelBorel.instIsCondKernel, condKernel.instIsCondKernel, instIsCondKernel_zero, condKernelCountable.instIsCondKernel, condKernelUnitReal.instIsCondKernel
condKernelCountable πŸ“–CompOp
4 mathmath: condKernelCountable.instIsCondKernel, condKernelCountable_apply, condKernel_def, condKernelCountable.instIsMarkovKernel

Theorems

NameKindAssumesProvesValidatesDepends On
condKernelCountable_apply πŸ“–mathematicalβ€”DFunLike.coe
ProbabilityTheory.Kernel
Prod.instMeasurableSpace
MeasureTheory.Measure
instFunLike
condKernelCountable
β€”β€”
disintegrate πŸ“–mathematicalβ€”compProd
fst
β€”IsCondKernel.disintegrate
instIsCondKernel_zero πŸ“–mathematicalβ€”IsCondKernel
ProbabilityTheory.Kernel
Prod.instMeasurableSpace
instZero
β€”fst_zero
compProd_zero_left

ProbabilityTheory.Kernel.IsCondKernel

Theorems

NameKindAssumesProvesValidatesDepends On
disintegrate πŸ“–mathematicalβ€”ProbabilityTheory.Kernel.compProd
ProbabilityTheory.Kernel.fst
β€”β€”
isProbabilityMeasure_ae πŸ“–mathematicalβ€”Filter.Eventually
MeasureTheory.IsProbabilityMeasure
DFunLike.coe
ProbabilityTheory.Kernel
Prod.instMeasurableSpace
MeasureTheory.Measure
ProbabilityTheory.Kernel.instFunLike
MeasureTheory.ae
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
ProbabilityTheory.Kernel.fst
β€”ProbabilityTheory.Kernel.disintegrate
MeasureTheory.Measure.instOuterMeasureClass
ProbabilityTheory.Kernel.fst_compProd_apply
ProbabilityTheory.Kernel.IsSFiniteKernel.fst
ProbabilityTheory.Kernel.IsFiniteKernel.isSFiniteKernel
ProbabilityTheory.Kernel.isFiniteKernel_of_isFiniteKernel_fst
Measurable.comp
ProbabilityTheory.Kernel.measurable_coe
MeasurableSet.univ
measurable_prodMk_left
MeasureTheory.ae_le_const_iff_forall_gt_measure_zero
ENNReal.instOrderTopology
TopologicalSpace.PseudoMetrizableSpace.firstCountableTopology
TopologicalSpace.MetrizableSpace.toPseudoMetrizableSpace
ENNReal.instMetrizableSpace
measurableSet_Ici
BorelSpace.opensMeasurable
ENNReal.borelSpace
instClosedIciTopology
OrderTopology.to_orderClosedTopology
Set.indicator_of_mem
Set.indicator_of_notMem
LE.le.trans_eq
MeasureTheory.lintegral_mono
Mathlib.Tactic.Contrapose.contrapose₁
one_mul
ENNReal.mul_lt_mul_left
ne_of_gt
lt_of_le_of_ne'
zero_le
ENNReal.instCanonicallyOrderedAdd
MeasureTheory.measure_ne_top
ProbabilityTheory.IsFiniteKernel.isFiniteMeasure
MeasureTheory.lintegral_indicator_const
MeasureTheory.ae_const_le_iff_forall_lt_measure_zero
measurableSet_Iic
instClosedIicTopology
Eq.trans_le
Filter.mp_mem
Filter.univ_mem'
le_antisymm
MeasureTheory.IsProbabilityMeasure.measure_univ
MeasureTheory.ae.congr_simp
ProbabilityTheory.Kernel.compProd_of_not_isSFiniteKernel_right
ProbabilityTheory.Kernel.fst_zero
MeasureTheory.ae_zero

ProbabilityTheory.Kernel.condKernelCountable

Theorems

NameKindAssumesProvesValidatesDepends On
instIsCondKernel πŸ“–mathematicalProbabilityTheory.IsMarkovKernel
MeasureTheory.Measure.IsCondKernel
DFunLike.coe
ProbabilityTheory.Kernel
Prod.instMeasurableSpace
MeasureTheory.Measure
ProbabilityTheory.Kernel.instFunLike
ProbabilityTheory.Kernel.IsCondKernel
ProbabilityTheory.Kernel.condKernelCountable
β€”ProbabilityTheory.Kernel.ext
MeasureTheory.Measure.ext
MeasureTheory.Measure.disintegrate
ProbabilityTheory.Kernel.compProd_apply
ProbabilityTheory.Kernel.IsSFiniteKernel.fst
ProbabilityTheory.Kernel.IsFiniteKernel.isSFiniteKernel
ProbabilityTheory.IsZeroOrMarkovKernel.isFiniteKernel
ProbabilityTheory.IsMarkovKernel.IsZeroOrMarkovKernel
instIsMarkovKernel
MeasureTheory.Measure.compProd_apply
MeasureTheory.Measure.instSFiniteFstOfProd
ProbabilityTheory.IsSFiniteKernel.sFinite
instIsMarkovKernel πŸ“–mathematicalProbabilityTheory.IsMarkovKernelProd.instMeasurableSpace
ProbabilityTheory.Kernel.condKernelCountable
β€”ProbabilityTheory.IsMarkovKernel.isProbabilityMeasure

---

← Back to Index