Documentation Verification Report

Upcrossing

πŸ“ Source: Mathlib/Probability/Martingale/Upcrossing.lean

Statistics

MetricCount
DefinitionslowerCrossingTime, lowerCrossingTimeAux, upcrossingStrat, upcrossings, upcrossingsBefore, upperCrossingTime
6
Theoremsintegrable_upcrossingsBefore, isStoppingTime_crossing, isStoppingTime_lowerCrossingTime, isStoppingTime_upperCrossingTime, measurable_upcrossings, measurable_upcrossingsBefore, upcrossingStrat, mul_integral_upcrossingsBefore_le_integral_pos_part, mul_lintegral_upcrossings_le_lintegral_pos_part, sum_mul_upcrossingStrat_le, sum_sub_upcrossingStrat_mul, sum_upcrossingStrat_mul, crossing_eq_crossing_of_lowerCrossingTime_lt, crossing_eq_crossing_of_upperCrossingTime_lt, crossing_pos_eq, exists_upperCrossingTime_eq, integral_mul_upcrossingsBefore_le_integral, le_sub_of_le_upcrossingsBefore, lowerCrossingTime_le, lowerCrossingTime_le_upperCrossingTime_succ, lowerCrossingTime_lt_of_lt_upcrossingsBefore, lowerCrossingTime_lt_upperCrossingTime, lowerCrossingTime_mono, lowerCrossingTime_stabilize, lowerCrossingTime_stabilize', lowerCrossingTime_zero, mul_integral_upcrossingsBefore_le_integral_pos_part_aux, mul_upcrossingsBefore_le, stoppedValue_lowerCrossingTime, stoppedValue_upperCrossingTime, sub_eq_zero_of_upcrossingsBefore_lt, upcrossingStrat_le_one, upcrossingStrat_nonneg, upcrossingsBefore_bot, upcrossingsBefore_eq_sum, upcrossingsBefore_le, upcrossingsBefore_lt_of_exists_upcrossing, upcrossingsBefore_mono, upcrossingsBefore_pos_eq, upcrossingsBefore_zero, upcrossingsBefore_zero', upcrossings_lt_top_iff, upperCrossingTime_bound_eq, upperCrossingTime_eq_of_bound_le, upperCrossingTime_eq_of_upcrossingsBefore_lt, upperCrossingTime_eq_upperCrossingTime_of_lt, upperCrossingTime_le, upperCrossingTime_le_lowerCrossingTime, upperCrossingTime_lt_bddAbove, upperCrossingTime_lt_lowerCrossingTime, upperCrossingTime_lt_nonempty, upperCrossingTime_lt_of_le_upcrossingsBefore, upperCrossingTime_lt_succ, upperCrossingTime_mono, upperCrossingTime_stabilize, upperCrossingTime_stabilize', upperCrossingTime_succ, upperCrossingTime_succ_eq, upperCrossingTime_zero, upperCrossingTime_zero'
60
Total66

MeasureTheory

Definitions

NameCategoryTheorems
lowerCrossingTime πŸ“–CompOp
16 mathmath: upperCrossingTime_succ_eq, lowerCrossingTime_lt_upperCrossingTime, lowerCrossingTime_le, lowerCrossingTime_zero, lowerCrossingTime_le_upperCrossingTime_succ, crossing_pos_eq, stoppedValue_lowerCrossingTime, upperCrossingTime_le_lowerCrossingTime, upperCrossingTime_lt_lowerCrossingTime, lowerCrossingTime_lt_of_lt_upcrossingsBefore, StronglyAdapted.isStoppingTime_crossing, crossing_eq_crossing_of_upperCrossingTime_lt, le_sub_of_le_upcrossingsBefore, lowerCrossingTime_mono, StronglyAdapted.isStoppingTime_lowerCrossingTime, sub_eq_zero_of_upcrossingsBefore_lt
lowerCrossingTimeAux πŸ“–CompOp
1 mathmath: upperCrossingTime_succ
upcrossingStrat πŸ“–CompOp
7 mathmath: upcrossingStrat_nonneg, Submartingale.sum_sub_upcrossingStrat_mul, Submartingale.sum_upcrossingStrat_mul, upcrossingStrat_le_one, Submartingale.sum_mul_upcrossingStrat_le, StronglyAdapted.upcrossingStrat, mul_upcrossingsBefore_le
upcrossings πŸ“–CompOp
5 mathmath: StronglyAdapted.measurable_upcrossings, upcrossings_eq_top_of_frequently_lt, Submartingale.mul_lintegral_upcrossings_le_lintegral_pos_part, Submartingale.upcrossings_ae_lt_top', upcrossings_lt_top_iff
upcrossingsBefore πŸ“–CompOp
15 mathmath: Submartingale.mul_integral_upcrossingsBefore_le_integral_pos_part, upcrossingsBefore_zero', integral_mul_upcrossingsBefore_le_integral, mul_integral_upcrossingsBefore_le_integral_pos_part_aux, upcrossingsBefore_lt_of_exists_upcrossing, upcrossingsBefore_le, StronglyAdapted.measurable_upcrossingsBefore, upcrossingsBefore_eq_sum, upcrossingsBefore_zero, StronglyAdapted.integrable_upcrossingsBefore, upcrossingsBefore_mono, mul_upcrossingsBefore_le, upcrossings_lt_top_iff, upcrossingsBefore_bot, upcrossingsBefore_pos_eq
upperCrossingTime πŸ“–CompOp
26 mathmath: upperCrossingTime_succ_eq, crossing_eq_crossing_of_lowerCrossingTime_lt, StronglyAdapted.isStoppingTime_upperCrossingTime, lowerCrossingTime_lt_upperCrossingTime, upperCrossingTime_lt_of_le_upcrossingsBefore, upperCrossingTime_bound_eq, upperCrossingTime_mono, lowerCrossingTime_le_upperCrossingTime_succ, crossing_pos_eq, upperCrossingTime_le_lowerCrossingTime, upperCrossingTime_lt_lowerCrossingTime, StronglyAdapted.isStoppingTime_crossing, stoppedValue_upperCrossingTime, upperCrossingTime_lt_bddAbove, upperCrossingTime_lt_nonempty, upperCrossingTime_zero, le_sub_of_le_upcrossingsBefore, upcrossingsBefore_eq_sum, upperCrossingTime_eq_of_bound_le, upperCrossingTime_zero', upperCrossingTime_le, upperCrossingTime_succ, sub_eq_zero_of_upcrossingsBefore_lt, upperCrossingTime_lt_succ, upperCrossingTime_eq_of_upcrossingsBefore_lt, exists_upperCrossingTime_eq

Theorems

NameKindAssumesProvesValidatesDepends On
crossing_eq_crossing_of_lowerCrossingTime_lt πŸ“–mathematicallowerCrossingTime
Nat.instPreorder
Nat.instOrderBot
Nat.instInfSet
upperCrossingTimeβ€”lt_of_le_of_lt
upperCrossingTime_le_lowerCrossingTime
bot_eq_zero'
Nat.instCanonicallyOrderedAdd
hittingBtwn_eq_hittingBtwn_of_exists
hittingBtwn_lt_iff
instWellFoundedLTNat
le_rfl
lowerCrossingTime.eq_1
LT.lt.le
upperCrossingTime_succ_eq
lowerCrossingTime_mono
upperCrossingTime_mono
crossing_eq_crossing_of_upperCrossingTime_lt πŸ“–mathematicalupperCrossingTime
Nat.instPreorder
Nat.instOrderBot
Nat.instInfSet
lowerCrossingTimeβ€”crossing_eq_crossing_of_lowerCrossingTime_lt
lt_of_le_of_lt
lowerCrossingTime_le_upperCrossingTime_succ
upperCrossingTime_succ_eq
hittingBtwn_eq_hittingBtwn_of_exists
hittingBtwn_lt_iff
instWellFoundedLTNat
le_rfl
LT.lt.le
crossing_pos_eq πŸ“–mathematicalReal
Real.instLT
upperCrossingTime
Nat.instPreorder
Nat.instOrderBot
Nat.instInfSet
Real.instZero
Real.instSub
PosPart.posPart
instPosPart
Real.lattice
Real.instAddGroup
lowerCrossingTime
β€”sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
sub_le_sub_iff_right
posPart_eq_of_posPart_pos
lt_of_lt_of_le
posPart_eq_self
le_trans
LT.lt.le
posPart_nonpos
sub_nonpos
Nat.instCanonicallyOrderedAdd
upperCrossingTime_succ_eq
AddGroup.toOrderedSub
exists_upperCrossingTime_eq πŸ“–mathematicalReal
Real.instLT
upperCrossingTime
Nat.instPreorder
Nat.instOrderBot
Nat.instInfSet
β€”strictMono_nat_of_lt_succ
upperCrossingTime_lt_succ
lt_of_lt_of_le
StrictMono.id_le
instWellFoundedLTNat
not_le
upperCrossingTime_le
integral_mul_upcrossingsBefore_le_integral πŸ“–mathematicalSubmartingale
Real
Nat.instPreorder
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instCompleteSpace
Real.instLE
Pi.hasLe
Pi.instZero
Real.instZero
Real.instLT
Real.instMul
Real.instSub
integral
Real.instNatCast
upcrossingsBefore
Nat.instOrderBot
Nat.instInfSet
β€”Real.instCompleteSpace
integral_const_mul
integral_mono_of_nonneg
Real.instIsOrderedAddMonoid
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
Real.instIsStrictOrderedRing
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Filter.Eventually.of_forall
Measure.instOuterMeasureClass
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
LT.lt.le
Nat.cast_nonneg
Submartingale.integrable
Submartingale.sum_upcrossingStrat_mul
Filter.univ_mem'
Finset.sum_apply
Finset.sum_congr
mul_upcrossingsBefore_le
Submartingale.sum_mul_upcrossingStrat_le
sub_le_self_iff
integral_nonneg
le_sub_of_le_upcrossingsBefore πŸ“–mathematicalReal
Real.instLT
upcrossingsBefore
Nat.instPreorder
Nat.instOrderBot
Nat.instInfSet
Real.instLE
Real.instSub
stoppedValue
WithTop
AddMonoidWithOne.toNatCast
WithTop.addMonoidWithOne
Nat.instAddMonoidWithOne
upperCrossingTime
lowerCrossingTime
β€”sub_le_sub
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
stoppedValue_upperCrossingTime
LT.lt.ne
upperCrossingTime_lt_of_le_upcrossingsBefore
stoppedValue_lowerCrossingTime
lowerCrossingTime_lt_of_lt_upcrossingsBefore
lowerCrossingTime_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
lowerCrossingTime
ConditionallyCompleteLinearOrderBot.toOrderBot
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
β€”hittingBtwn_le
lowerCrossingTime_le_upperCrossingTime_succ πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
lowerCrossingTime
ConditionallyCompleteLinearOrderBot.toOrderBot
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
upperCrossingTime
β€”upperCrossingTime_succ
le_hittingBtwn
lowerCrossingTime_le
lowerCrossingTime_lt_of_lt_upcrossingsBefore πŸ“–mathematicalReal
Real.instLT
upcrossingsBefore
Nat.instPreorder
Nat.instOrderBot
Nat.instInfSet
lowerCrossingTimeβ€”lt_of_le_of_lt
lowerCrossingTime_le_upperCrossingTime_succ
upperCrossingTime_lt_of_le_upcrossingsBefore
lowerCrossingTime_lt_upperCrossingTime πŸ“–mathematicalReal
Real.instLT
lowerCrossingTime
Nat.instPreorder
Nat.instOrderBot
Nat.instInfSet
upperCrossingTime
β€”lt_of_le_of_ne
lowerCrossingTime_le_upperCrossingTime_succ
not_le
le_trans
stoppedValue_upperCrossingTime
stoppedValue_lowerCrossingTime
lowerCrossingTime_mono πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
lowerCrossingTime
ConditionallyCompleteLinearOrderBot.toOrderBot
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
β€”monotone_nat_of_le_succ
le_trans
lowerCrossingTime_le_upperCrossingTime_succ
upperCrossingTime_le_lowerCrossingTime
lowerCrossingTime_stabilize πŸ“–β€”lowerCrossingTime
Nat.instPreorder
Nat.instOrderBot
Nat.instInfSet
β€”β€”le_antisymm
lowerCrossingTime_le
le_trans
le_of_eq
lowerCrossingTime_mono
lowerCrossingTime_stabilize' πŸ“–β€”lowerCrossingTime
Nat.instPreorder
Nat.instOrderBot
Nat.instInfSet
β€”β€”lowerCrossingTime_stabilize
le_antisymm
lowerCrossingTime_le
lowerCrossingTime_zero πŸ“–mathematicalβ€”lowerCrossingTime
hittingBtwn
Real
Set.Iic
Real.instPreorder
Bot.bot
OrderBot.toBot
Preorder.toLE
β€”β€”
mul_integral_upcrossingsBefore_le_integral_pos_part_aux πŸ“–mathematicalSubmartingale
Real
Nat.instPreorder
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instCompleteSpace
Real.instLE
Real.instLT
Real.instMul
Real.instSub
integral
Real.instNatCast
upcrossingsBefore
Nat.instOrderBot
Nat.instInfSet
β€”Real.instCompleteSpace
le_trans
le_of_eq
sub_zero
upcrossingsBefore_pos_eq
integral_mul_upcrossingsBefore_le_integral
Submartingale.pos
TopologicalLattice.toContinuousSup
HasSolidNorm.toTopologicalLattice
instHasSolidNormReal
Real.instIsOrderedAddMonoid
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
Real.instIsStrictOrderedRing
Submartingale.sub_martingale
IsOrderedAddMonoid.toAddLeftMono
martingale_const
posPart_nonneg
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
mul_upcrossingsBefore_le πŸ“–mathematicalReal
Real.instLE
Real.instLT
Real.instMul
Real.instSub
Real.instNatCast
upcrossingsBefore
Nat.instPreorder
Nat.instOrderBot
Nat.instInfSet
Finset.sum
Real.instAddCommMonoid
Finset.range
upcrossingStrat
Pi.instSub
β€”upcrossingsBefore_zero'
CharP.cast_eq_zero
CharP.ofCharZero
RCLike.charZero_rclike
MulZeroClass.mul_zero
Finset.sum_congr
Finset.sum_mul
Set.indicator_mul_left
one_mul
Finset.sum_comm
Finset.sum_indicator_eq_sum_filter
Finset.ext
Finset.filter.congr_simp
lt_of_lt_of_le
upperCrossingTime_le
Finset.sum_Ico_eq_add_neg
lowerCrossingTime_le_upperCrossingTime_succ
Finset.sum_range_sub
neg_sub
sub_add_sub_cancel
Finset.sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
le_sub_of_le_upcrossingsBefore
zero_lt_iff
Finset.mem_range
Finset.sum_le_sum_of_subset_of_nonneg
Finset.range_subset_range
upcrossingsBefore_le
upperCrossingTime_eq_of_upcrossingsBefore_lt
sub_self
le_refl
sub_nonneg
covariant_swap_add_of_covariant_add
le_trans
stoppedValue_lowerCrossingTime
sub_eq_zero_of_upcrossingsBefore_lt
lt_of_le_of_ne
not_lt
Finset.sum_const
Finset.card_range
nsmul_eq_mul
mul_comm
stoppedValue_lowerCrossingTime πŸ“–mathematicalβ€”Real
Real.instLE
stoppedValue
WithTop
AddMonoidWithOne.toNatCast
WithTop.addMonoidWithOne
Nat.instAddMonoidWithOne
lowerCrossingTime
Nat.instPreorder
Nat.instOrderBot
Nat.instInfSet
β€”hittingBtwn_le_iff_of_lt
instWellFoundedLTNat
lt_of_le_of_ne
lowerCrossingTime_le
le_rfl
stoppedValue_hittingBtwn_mem
le_trans
stoppedValue_upperCrossingTime πŸ“–mathematicalβ€”Real
Real.instLE
stoppedValue
WithTop
AddMonoidWithOne.toNatCast
WithTop.addMonoidWithOne
Nat.instAddMonoidWithOne
upperCrossingTime
Nat.instPreorder
Nat.instOrderBot
Nat.instInfSet
β€”hittingBtwn_le_iff_of_lt
instWellFoundedLTNat
lt_of_le_of_ne
upperCrossingTime_le
le_rfl
stoppedValue_hittingBtwn_mem
le_trans
hittingBtwn_le
sub_eq_zero_of_upcrossingsBefore_lt πŸ“–mathematicalReal
Real.instLT
upcrossingsBefore
Nat.instPreorder
Nat.instOrderBot
Nat.instInfSet
Real.instSub
stoppedValue
WithTop
AddMonoidWithOne.toNatCast
WithTop.addMonoidWithOne
Nat.instAddMonoidWithOne
upperCrossingTime
lowerCrossingTime
Real.instZero
β€”not_lt
not_le
upcrossingsBefore.eq_1
le_csSup
upperCrossingTime_lt_bddAbove
WithTop.untopA.congr_simp
upperCrossingTime_stabilize'
lowerCrossingTime_stabilize'
le_rfl
le_trans
upperCrossingTime_le_lowerCrossingTime
sub_self
upcrossingStrat_le_one πŸ“–mathematicalβ€”Real
Real.instLE
upcrossingStrat
Real.instOne
β€”upcrossingStrat.eq_1
Finset.indicator_biUnion_apply
lt_or_gt_of_ne
min_eq_left
upperCrossingTime_mono
LT.lt.le
max_eq_right
lowerCrossingTime_mono
le_trans
upperCrossingTime_le_lowerCrossingTime
min_eq_right
max_eq_left
Set.indicator_le_self'
zero_le_one
Real.instZeroLEOneClass
upcrossingStrat_nonneg πŸ“–mathematicalβ€”Real
Real.instLE
Real.instZero
upcrossingStrat
β€”Finset.sum_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Set.indicator_nonneg
zero_le_one
Real.instZeroLEOneClass
upcrossingsBefore_bot πŸ“–mathematicalβ€”upcrossingsBefore
Bot.bot
OrderBot.toBot
Preorder.toLE
Nat.instOrderBot
β€”csSup_empty
upcrossingsBefore_eq_sum πŸ“–mathematicalReal
Real.instLT
upcrossingsBefore
Nat.instPreorder
Nat.instOrderBot
Nat.instInfSet
Finset.sum
Nat.instAddCommMonoid
Finset.Ico
Nat.instLocallyFiniteOrder
Set.indicator
MulZeroClass.toZero
Nat.instMulZeroClass
setOf
upperCrossingTime
Pi.instOne
Nat.instOne
β€”upcrossingsBefore_zero'
Finset.sum_congr
zero_add
Finset.Ico_eq_empty_of_le
Nat.instCanonicallyOrderedAdd
Set.indicator_of_notMem
Finset.sum_const_zero
Finset.sum_Ico_consecutive
zero_le'
upcrossingsBefore_le
Set.indicator_of_mem
upperCrossingTime_lt_of_le_upcrossingsBefore
zero_lt_iff
Finset.mem_Ico
Eq.le
upperCrossingTime_eq_of_upcrossingsBefore_lt
Finset.sum_const
smul_eq_mul
mul_one
MulZeroClass.mul_zero
Nat.card_Ico
add_zero
upcrossingsBefore_le πŸ“–mathematicalReal
Real.instLT
upcrossingsBefore
Nat.instPreorder
Nat.instOrderBot
Nat.instInfSet
β€”upcrossingsBefore_zero
le_refl
csSup_le
zero_lt_iff
LT.lt.ne
upperCrossingTime_eq_of_bound_le
LT.lt.le
not_le
upcrossingsBefore_lt_of_exists_upcrossing πŸ“–mathematicalReal
Real.instLT
upcrossingsBefore
Nat.instPreorder
Nat.instOrderBot
Nat.instInfSet
β€”lt_of_lt_of_le
le_csSup
upperCrossingTime_lt_bddAbove
Set.mem_setOf_eq
upperCrossingTime_succ_eq
hittingBtwn_lt_iff
instWellFoundedLTNat
le_rfl
lowerCrossingTime.eq_1
hittingBtwn_le_iff_of_lt
le_trans
Nat.sSup_mem
upperCrossingTime_lt_nonempty
upperCrossingTime_eq_upperCrossingTime_of_lt
LE.le.trans
LT.lt.le
upcrossingsBefore_zero
upperCrossingTime_zero
Pi.bot_apply
bot_eq_zero'
Nat.instCanonicallyOrderedAdd
le_refl
upcrossingsBefore_mono πŸ“–mathematicalReal
Real.instLT
Monotone
Nat.instPreorder
Pi.preorder
upcrossingsBefore
Nat.instOrderBot
Nat.instInfSet
β€”csSup_le_csSup'
upperCrossingTime_lt_bddAbove
Set.setOf_subset_setOf_of_imp
upperCrossingTime_eq_upperCrossingTime_of_lt
lt_of_lt_of_le
upcrossingsBefore_pos_eq πŸ“–mathematicalReal
Real.instLT
upcrossingsBefore
Nat.instPreorder
Nat.instOrderBot
Nat.instInfSet
Real.instZero
Real.instSub
PosPart.posPart
instPosPart
Real.lattice
Real.instAddGroup
β€”crossing_pos_eq
upcrossingsBefore_zero πŸ“–mathematicalβ€”upcrossingsBefore
Nat.instPreorder
Nat.instOrderBot
Nat.instInfSet
β€”Nat.instCanonicallyOrderedAdd
csSup_empty
upcrossingsBefore_zero' πŸ“–mathematicalβ€”upcrossingsBefore
Nat.instPreorder
Nat.instOrderBot
Nat.instInfSet
Pi.instZero
MulZeroClass.toZero
Nat.instMulZeroClass
β€”upcrossingsBefore_zero
upcrossings_lt_top_iff πŸ“–mathematicalβ€”ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
upcrossings
Nat.instPreorder
Nat.instOrderBot
Nat.instInfSet
Top.top
instTopENNReal
upcrossingsBefore
β€”CanLift.prf
ENNReal.canLift
LT.lt.ne
le_rfl
lt_of_le_of_lt
ENNReal.coe_lt_top
exists_nat_ge
NNReal.instIsOrderedRing
NNReal.instArchimedean
Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
ENNReal.instIsOrderedRing
ENNReal.instCharZero
LE.le.trans
ENNReal.coe_natCast
ENNReal.coe_le_coe
upperCrossingTime_bound_eq πŸ“–mathematicalReal
Real.instLT
upperCrossingTime
Nat.instPreorder
Nat.instOrderBot
Nat.instInfSet
β€”exists_upperCrossingTime_eq
le_antisymm
upperCrossingTime_le
strictMonoOn_Iic_of_lt_succ
Nat.instIsSuccArchimedean
upperCrossingTime_lt_succ
Nat.find_min
StrictMonoOn.Iic_id_le
upperCrossingTime_stabilize
not_lt
Nat.find_spec
upperCrossingTime_eq_of_bound_le πŸ“–mathematicalReal
Real.instLT
upperCrossingTime
Nat.instPreorder
Nat.instOrderBot
Nat.instInfSet
β€”le_antisymm
upperCrossingTime_le
le_trans
Eq.le
upperCrossingTime_bound_eq
upperCrossingTime_mono
upperCrossingTime_eq_of_upcrossingsBefore_lt πŸ“–mathematicalReal
Real.instLT
upcrossingsBefore
Nat.instPreorder
Nat.instOrderBot
Nat.instInfSet
upperCrossingTimeβ€”le_antisymm
upperCrossingTime_le
not_lt
notMem_of_csSup_lt
upperCrossingTime_lt_bddAbove
upperCrossingTime_eq_upperCrossingTime_of_lt πŸ“–β€”upperCrossingTime
Nat.instPreorder
Nat.instOrderBot
Nat.instInfSet
β€”β€”crossing_eq_crossing_of_upperCrossingTime_lt
upperCrossingTime_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
upperCrossingTime
ConditionallyCompleteLinearOrderBot.toOrderBot
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
β€”upperCrossingTime_succ
upperCrossingTime_le_lowerCrossingTime πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
upperCrossingTime
ConditionallyCompleteLinearOrderBot.toOrderBot
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
lowerCrossingTime
β€”le_hittingBtwn
upperCrossingTime_le
upperCrossingTime_lt_bddAbove πŸ“–mathematicalReal
Real.instLT
BddAbove
setOf
upperCrossingTime
Nat.instPreorder
Nat.instOrderBot
Nat.instInfSet
β€”exists_upperCrossingTime_eq
LT.lt.ne
upperCrossingTime_stabilize
LT.lt.le
not_le
upperCrossingTime_lt_lowerCrossingTime πŸ“–mathematicalReal
Real.instLT
upperCrossingTime
Nat.instPreorder
Nat.instOrderBot
Nat.instInfSet
lowerCrossingTime
β€”lt_of_le_of_ne
upperCrossingTime_le_lowerCrossingTime
not_le
le_trans
stoppedValue_upperCrossingTime
stoppedValue_lowerCrossingTime
upperCrossingTime_lt_nonempty πŸ“–mathematicalβ€”Set.Nonempty
setOf
upperCrossingTime
Nat.instPreorder
Nat.instOrderBot
Nat.instInfSet
β€”β€”
upperCrossingTime_lt_of_le_upcrossingsBefore πŸ“–mathematicalReal
Real.instLT
upcrossingsBefore
Nat.instPreorder
Nat.instOrderBot
Nat.instInfSet
upperCrossingTimeβ€”lt_of_le_of_lt
upperCrossingTime_mono
Set.Nonempty.csSup_mem
upperCrossingTime_lt_nonempty
BddBelow.finite_of_bddAbove
OrderBot.bddBelow
upperCrossingTime_lt_bddAbove
upperCrossingTime_lt_succ πŸ“–mathematicalReal
Real.instLT
upperCrossingTime
Nat.instPreorder
Nat.instOrderBot
Nat.instInfSet
β€”lt_of_le_of_lt
upperCrossingTime_le_lowerCrossingTime
lowerCrossingTime_lt_upperCrossingTime
upperCrossingTime_mono πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
upperCrossingTime
ConditionallyCompleteLinearOrderBot.toOrderBot
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
β€”monotone_nat_of_le_succ
le_trans
upperCrossingTime_le_lowerCrossingTime
lowerCrossingTime_le_upperCrossingTime_succ
upperCrossingTime_stabilize πŸ“–β€”upperCrossingTime
Nat.instPreorder
Nat.instOrderBot
Nat.instInfSet
β€”β€”le_antisymm
upperCrossingTime_le
le_trans
le_of_eq
upperCrossingTime_mono
upperCrossingTime_stabilize' πŸ“–β€”upperCrossingTime
Nat.instPreorder
Nat.instOrderBot
Nat.instInfSet
β€”β€”upperCrossingTime_stabilize
le_antisymm
upperCrossingTime_le
upperCrossingTime_succ πŸ“–mathematicalβ€”upperCrossingTime
hittingBtwn
Real
Set.Ici
Real.instPreorder
lowerCrossingTimeAux
β€”upperCrossingTime.eq_2
upperCrossingTime_succ_eq πŸ“–mathematicalβ€”upperCrossingTime
hittingBtwn
Real
Set.Ici
Real.instPreorder
lowerCrossingTime
β€”upperCrossingTime_succ
upperCrossingTime_zero πŸ“–mathematicalβ€”upperCrossingTime
Bot.bot
Pi.instBotForall
OrderBot.toBot
Preorder.toLE
β€”β€”
upperCrossingTime_zero' πŸ“–mathematicalβ€”upperCrossingTime
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
ConditionallyCompleteLinearOrderBot.toOrderBot
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
Bot.bot
OrderBot.toBot
Preorder.toLE
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
β€”eq_bot_iff
upperCrossingTime_le

MeasureTheory.StronglyAdapted

Theorems

NameKindAssumesProvesValidatesDepends On
integrable_upcrossingsBefore πŸ“–mathematicalMeasureTheory.StronglyAdapted
Nat.instPreorder
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instLT
MeasureTheory.Integrable
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
Real.instNatCast
MeasureTheory.upcrossingsBefore
Nat.instOrderBot
Nat.instInfSet
β€”Measurable.aestronglyMeasurable
PseudoEMetricSpace.pseudoMetrizableSpace
instSecondCountableTopologyReal
BorelSpace.opensMeasurable
Real.borelSpace
Measurable.comp
measurable_from_top
measurable_upcrossingsBefore
MeasureTheory.HasFiniteIntegral.of_bounded
Filter.univ_mem'
MeasureTheory.Measure.instOuterMeasureClass
Real.norm_eq_abs
Nat.abs_cast
Real.instIsOrderedRing
Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
MeasureTheory.upcrossingsBefore_le
isStoppingTime_crossing πŸ“–mathematicalMeasureTheory.StronglyAdapted
Nat.instPreorder
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
MeasureTheory.IsStoppingTime
WithTop
AddMonoidWithOne.toNatCast
WithTop.addMonoidWithOne
Nat.instAddMonoidWithOne
MeasureTheory.upperCrossingTime
Nat.instOrderBot
Nat.instInfSet
MeasureTheory.lowerCrossingTime
β€”MeasureTheory.isStoppingTime_const
MeasureTheory.Adapted.isStoppingTime_hittingBtwn
instWellFoundedLTNat
instCountableNat
adapted
Real.borelSpace
PseudoEMetricSpace.pseudoMetrizableSpace
measurableSet_Iic
BorelSpace.opensMeasurable
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
MeasureTheory.upperCrossingTime_succ_eq
MeasureTheory.Adapted.isStoppingTime_hittingBtwn_isStoppingTime
OrderTopology.of_linearLocallyFinite
instDiscreteTopologyNat
AlexandrovDiscrete.toFirstCountable
DiscreteTopology.toAlexandrovDiscrete
WithTop.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
WithTop.zeroLEOneClass
Nat.instZeroLEOneClass
WithTop.charZero
Nat.instCharZero
measurableSet_Ici
instClosedIciTopology
isStoppingTime_lowerCrossingTime πŸ“–mathematicalMeasureTheory.StronglyAdapted
Nat.instPreorder
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
MeasureTheory.IsStoppingTime
WithTop
AddMonoidWithOne.toNatCast
WithTop.addMonoidWithOne
Nat.instAddMonoidWithOne
MeasureTheory.lowerCrossingTime
Nat.instOrderBot
Nat.instInfSet
β€”isStoppingTime_crossing
isStoppingTime_upperCrossingTime πŸ“–mathematicalMeasureTheory.StronglyAdapted
Nat.instPreorder
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
MeasureTheory.IsStoppingTime
WithTop
AddMonoidWithOne.toNatCast
WithTop.addMonoidWithOne
Nat.instAddMonoidWithOne
MeasureTheory.upperCrossingTime
Nat.instOrderBot
Nat.instInfSet
β€”isStoppingTime_crossing
measurable_upcrossings πŸ“–mathematicalMeasureTheory.StronglyAdapted
Nat.instPreorder
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instLT
Measurable
ENNReal
ENNReal.measurableSpace
MeasureTheory.upcrossings
Nat.instOrderBot
Nat.instInfSet
β€”Measurable.iSup
ENNReal.borelSpace
ENNReal.instOrderTopology
ENNReal.instSecondCountableTopology
instCountableNat
Measurable.comp
measurable_from_top
measurable_upcrossingsBefore
measurable_upcrossingsBefore πŸ“–mathematicalMeasureTheory.StronglyAdapted
Nat.instPreorder
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instLT
Measurable
Nat.instMeasurableSpace
MeasureTheory.upcrossingsBefore
Nat.instOrderBot
Nat.instInfSet
β€”MeasureTheory.upcrossingsBefore_eq_sum
Finset.measurable_fun_sum
ContinuousAdd.measurableMulβ‚‚
Nat.borelSpace
TopologicalSpace.instSecondCountableTopologyOfLindelofSpaceOfPseudoMetrizableSpace
Countable.LindelofSpace
instCountableNat
PseudoEMetricSpace.pseudoMetrizableSpace
IsTopologicalSemiring.toContinuousAdd
DiscreteTopology.topologicalSemiring
instDiscreteTopologyNat
Measurable.indicator
measurable_const
MeasureTheory.Filtration.le
WithTop.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
WithTop.zeroLEOneClass
Nat.instZeroLEOneClass
WithTop.charZero
Nat.instCharZero
MeasureTheory.IsStoppingTime.measurableSet_lt_of_pred
isStoppingTime_upperCrossingTime
upcrossingStrat πŸ“–mathematicalMeasureTheory.StronglyAdapted
Nat.instPreorder
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
MeasureTheory.upcrossingStratβ€”Finset.stronglyMeasurable_fun_sum
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
MeasureTheory.StronglyMeasurable.indicator
MeasureTheory.stronglyMeasurable_const
isStoppingTime_lowerCrossingTime
isStoppingTime_upperCrossingTime
MeasurableSet.inter
WithTop.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
WithTop.zeroLEOneClass
Nat.instZeroLEOneClass
WithTop.charZero
Nat.instCharZero
MeasurableSet.compl

MeasureTheory.Submartingale

Theorems

NameKindAssumesProvesValidatesDepends On
mul_integral_upcrossingsBefore_le_integral_pos_part πŸ“–mathematicalMeasureTheory.Submartingale
Real
Nat.instPreorder
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instCompleteSpace
Real.instLE
Real.instMul
Real.instSub
MeasureTheory.integral
Real.instNatCast
MeasureTheory.upcrossingsBefore
Nat.instOrderBot
Nat.instInfSet
β€”Real.instCompleteSpace
MeasureTheory.mul_integral_upcrossingsBefore_le_integral_pos_part_aux
le_trans
mul_nonpos_of_nonpos_of_nonneg
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
sub_nonpos
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
MeasureTheory.integral_nonneg
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
Real.instIsStrictOrderedRing
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Nat.cast_nonneg'
Real.instZeroLEOneClass
posPart_nonneg
mul_lintegral_upcrossings_le_lintegral_pos_part πŸ“–mathematicalMeasureTheory.Submartingale
Real
Nat.instPreorder
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instCompleteSpace
Real.instLE
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofReal
Real.instSub
MeasureTheory.lintegral
MeasureTheory.upcrossings
Nat.instOrderBot
Nat.instInfSet
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
PosPart.posPart
instPosPart
Real.lattice
Real.instAddGroup
β€”Real.instCompleteSpace
MeasureTheory.ofReal_integral_eq_lintegral_ofReal
integrable
pos
TopologicalLattice.toContinuousSup
HasSolidNorm.toTopologicalLattice
instHasSolidNormReal
Real.instIsOrderedAddMonoid
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
Real.instIsStrictOrderedRing
sub_martingale
IsOrderedAddMonoid.toAddLeftMono
MeasureTheory.martingale_const
Filter.Eventually.of_forall
MeasureTheory.Measure.instOuterMeasureClass
posPart_nonneg
MeasureTheory.lintegral_iSup'
Measurable.comp_aemeasurable
measurable_from_top
Measurable.aemeasurable
MeasureTheory.StronglyAdapted.measurable_upcrossingsBefore
stronglyAdapted
Filter.univ_mem'
Nat.cast_le
ENNReal.instIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
ENNReal.instIsOrderedRing
ENNReal.instCharZero
MeasureTheory.upcrossingsBefore_mono
ENNReal.mul_iSup
MeasureTheory.lintegral_coe_eq_integral
NNReal.coe_natCast
MeasureTheory.StronglyAdapted.integrable_upcrossingsBefore
ENNReal.ofReal_mul
LT.lt.le
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
LE.le.trans
ENNReal.ofReal_le_ofReal
mul_integral_upcrossingsBefore_le_integral_pos_part
le_iSup
ENNReal.ofReal_of_nonpos
sub_nonpos
MulZeroClass.zero_mul
zero_le
ENNReal.instCanonicallyOrderedAdd
sum_mul_upcrossingStrat_le πŸ“–mathematicalMeasureTheory.Submartingale
Real
Nat.instPreorder
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instCompleteSpace
Real.instLE
MeasureTheory.integral
Finset.sum
Pi.addCommMonoid
Real.instAddCommMonoid
Finset.range
Pi.instMul
Real.instMul
MeasureTheory.upcrossingStrat
Pi.instSub
Real.instSub
β€”Real.instCompleteSpace
setIntegral_le
Real.instIsOrderedAddMonoid
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
Real.instIsStrictOrderedRing
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
MeasureTheory.IsFiniteMeasure.sigmaFiniteFiltration
sum_sub_upcrossingStrat_mul
zero_le
Nat.instCanonicallyOrderedAdd
MeasurableSet.univ
le_trans
MeasureTheory.integral_zero'
MeasureTheory.setIntegral_univ
Finset.sum_congr
sub_mul
one_mul
Finset.sum_apply
Finset.sum_sub_distrib
MeasureTheory.integral_sub
MeasureTheory.Integrable.sub
MeasureTheory.integrable_finset_sum
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
integrable
sum_upcrossingStrat_mul
sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Finset.sum_range_sub
MeasureTheory.integral_sub'
sum_sub_upcrossingStrat_mul πŸ“–mathematicalMeasureTheory.Submartingale
Real
Nat.instPreorder
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instCompleteSpace
Real.instLE
Finset.sum
Pi.addCommMonoid
Real.instAddCommMonoid
Finset.range
Pi.instMul
Real.instMul
Pi.instSub
Real.instSub
Pi.instOne
Real.instOne
MeasureTheory.upcrossingStrat
β€”Real.instCompleteSpace
sum_mul_sub
MeasureTheory.StronglyMeasurable.sub
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
MeasureTheory.stronglyAdapted_const
MeasureTheory.StronglyAdapted.upcrossingStrat
stronglyAdapted
sub_le_self
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
MeasureTheory.upcrossingStrat_nonneg
covariant_swap_add_of_covariant_add
sum_upcrossingStrat_mul πŸ“–mathematicalMeasureTheory.Submartingale
Real
Nat.instPreorder
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instCompleteSpace
Real.instLE
Finset.sum
Pi.addCommMonoid
Real.instAddCommMonoid
Finset.range
Pi.instMul
Real.instMul
MeasureTheory.upcrossingStrat
Pi.instSub
Real.instSub
β€”Real.instCompleteSpace
sum_mul_sub
MeasureTheory.StronglyAdapted.upcrossingStrat
stronglyAdapted
MeasureTheory.upcrossingStrat_le_one
MeasureTheory.upcrossingStrat_nonneg

---

← Back to Index