Documentation Verification Report

SubGaussian

πŸ“ Source: Mathlib/Probability/Moments/SubGaussian.lean

Statistics

MetricCount
DefinitionsHasCondSubgaussianMGF, HasSubgaussianMGF, HasSubgaussianMGF
3
Theoremsae_condExp_le, ae_trim_condExp_le, cgf_le, fun_zero, integrable_exp_mul, memLp_exp_mul, mgf_le, zero, add, add_of_hasCondSubgaussianMGF, add_of_indepFun, ae_eq_zero_of_hasSubgaussianMGF_zero, aemeasurable, aestronglyMeasurable, cgf_le, congr_identDistrib, const_mul, fun_zero, id_map_iff, integrable, integrableExpSet_eq_univ, integrable_exp_mul, measureReal_le_le_exp, measure_ge_le, measure_sum_ge_le_of_iIndepFun, measure_sum_range_ge_le_of_iIndepFun, memLp, memLp_exp_mul, mgf_le, neg, of_map, sub_of_indepFun, sum_of_hasCondSubgaussianMGF, sum_of_iIndepFun, trim, zero, HasSubgaussianMGF_add_of_HasCondSubgaussianMGF, HasSubgaussianMGF_iff_kernel, HasSubgaussianMGF_sum_of_HasCondSubgaussianMGF, add, add_comp, add_compProd, ae_aestronglyMeasurable, ae_eq_zero_of_hasSubgaussianMGF_zero, ae_eq_zero_of_hasSubgaussianMGF_zero', ae_eq_zero_of_hasSubgaussianMGF_zero_of_measurable, ae_forall_integrable_exp_mul, ae_forall_memLp_exp_mul, ae_integrable_exp_mul, aestronglyMeasurable, cgf_le, const_mul, fun_zero, id_map_iff, integrable_exp_add_compProd, integrable_exp_mul, isFiniteMeasure, measure_ge_le, measure_ge_le_exp_add, measure_pos_eq_zero_of_hasSubGaussianMGF_zero, measure_univ_le_one, memLp_exp_mul, mgf_le, neg, of_map, of_rat, prodMkLeft_compProd, zero, zero_kernel, zero_measure, HasSubgaussianMGF_congr, hasSubgaussianMGF_of_mem_Icc, hasSubgaussianMGF_of_mem_Icc_of_integral_eq_zero, measure_sum_ge_le_of_HasCondSubgaussianMGF, measure_sum_ge_le_of_hasCondSubgaussianMGF, mgf_le_of_mem_Icc_of_integral_eq_zero
76
Total79

ProbabilityTheory

Definitions

NameCategoryTheorems
HasCondSubgaussianMGF πŸ“–MathDef
2 mathmath: HasCondSubgaussianMGF.zero, HasCondSubgaussianMGF.fun_zero
HasSubgaussianMGF πŸ“–CompData
6 mathmath: HasSubgaussianMGF_iff_kernel, HasSubgaussianMGF.fun_zero, hasSubgaussianMGF_of_mem_Icc_of_integral_eq_zero, HasSubgaussianMGF.id_map_iff, HasSubgaussianMGF.zero, hasSubgaussianMGF_of_mem_Icc

Theorems

NameKindAssumesProvesValidatesDepends On
HasSubgaussianMGF_add_of_HasCondSubgaussianMGF πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
HasSubgaussianMGF
MeasureTheory.Measure.trim
HasCondSubgaussianMGF
Pi.instAdd
Real
Real.instAdd
NNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”HasSubgaussianMGF.add_of_hasCondSubgaussianMGF
HasSubgaussianMGF_iff_kernel πŸ“–mathematicalβ€”HasSubgaussianMGF
Kernel.HasSubgaussianMGF
PUnit.instMeasurableSpace
Kernel.const
MeasureTheory.Measure.dirac
β€”Nat.instAtLeastTwoHAddOfNat
IsScalarTower.right
MeasureTheory.Measure.const_comp
MeasureTheory.IsProbabilityMeasure.measure_univ
MeasureTheory.Measure.dirac.isProbabilityMeasure
one_smul
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.ae_dirac_eq
instMeasurableSingletonClassOfMeasurableEq
instMeasurableEqOfSecondCountableTopologyOfT2Space
BorelSpace.opensMeasurable
Unit.borelSpace
PolishSpace.toSecondCountableTopology
instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace
TopologicalSpace.Countable.to_separableSpace
instCountablePUnit
TopologicalSpace.IsCompletelyMetrizableSpace.of_completeSpace_metrizable
DiscreteUniformity.instCompleteSpace
DiscreteUniformity.inst
EMetric.instIsCountablyGeneratedUniformity
T6Space.toT0Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
TopologicalSpace.t2Space_of_metrizableSpace
HasSubgaussianMGF_sum_of_HasCondSubgaussianMGF πŸ“–mathematicalMeasureTheory.StronglyAdapted
Nat.instPreorder
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
HasSubgaussianMGF
HasCondSubgaussianMGF
MeasureTheory.Filtration.seq
MeasureTheory.Filtration.le
MeasureTheory.IsZeroOrProbabilityMeasure.toIsFiniteMeasure
Finset.sum
Real.instAddCommMonoid
Finset.range
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”HasSubgaussianMGF.sum_of_hasCondSubgaussianMGF
hasSubgaussianMGF_of_mem_Icc πŸ“–mathematicalAEMeasurable
Real
Real.measurableSpace
Filter.Eventually
Set
Set.instMembership
Set.Icc
Real.instPreorder
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
HasSubgaussianMGF
Real.instSub
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
NNReal
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiringNNReal
NNReal.instDiv
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
Nat.instAtLeastTwoHAddOfNat
β€”MeasureTheory.Measure.instOuterMeasureClass
Nat.instAtLeastTwoHAddOfNat
sub_sub_sub_cancel_right
hasSubgaussianMGF_of_mem_Icc_of_integral_eq_zero
AEMeasurable.sub_const
ContinuousSub.measurableSub
Real.borelSpace
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
Filter.mp_mem
Filter.univ_mem'
AddGroup.toOrderedSub
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
sub_add_cancel
MeasureTheory.integral_sub
MeasureTheory.Integrable.of_mem_Icc
MeasureTheory.IsZeroOrProbabilityMeasure.toIsFiniteMeasure
MeasureTheory.instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
MeasureTheory.integrable_const
MeasureTheory.integral_const
Real.instCompleteSpace
MeasureTheory.probReal_univ
one_mul
sub_self
hasSubgaussianMGF_of_mem_Icc_of_integral_eq_zero πŸ“–mathematicalAEMeasurable
Real
Real.measurableSpace
Filter.Eventually
Set
Set.instMembership
Set.Icc
Real.instPreorder
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instZero
HasSubgaussianMGF
NNReal
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiringNNReal
NNReal.instDiv
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
Real.instSub
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
Nat.instAtLeastTwoHAddOfNat
β€”MeasureTheory.Measure.instOuterMeasureClass
Nat.instAtLeastTwoHAddOfNat
integrable_exp_mul_of_mem_Icc
MeasureTheory.IsZeroOrProbabilityMeasure.toIsFiniteMeasure
MeasureTheory.instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
lt_trichotomy
mgf_le_of_mem_Icc_of_integral_eq_zero
mgf_zero'
MeasureTheory.probReal_univ
zero_pow
Nat.instCharZero
MulZeroClass.mul_zero
zero_div
Real.exp_zero
mul_neg
neg_mul
neg_neg
AEMeasurable.neg
ContinuousNeg.measurableNeg
Real.borelSpace
IsTopologicalRing.toContinuousNeg
instIsTopologicalRingReal
Filter.mp_mem
Filter.univ_mem'
neg_le_neg_iff
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
MeasureTheory.integral_neg
neg_zero
Left.neg_pos_iff
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.mul_neg
mul_one
add_zero
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Meta.NormNum.isNNRat_pow
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Meta.NormNum.one_natPow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_one
Mathlib.Meta.NormNum.isInt_pow
Mathlib.Meta.NormNum.intPow_negOfNat_bit0
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Tactic.RingNF.nnrat_rawCast
Mathlib.Tactic.RingNF.mul_assoc_rev
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.one_pow
measure_sum_ge_le_of_HasCondSubgaussianMGF πŸ“–mathematicalMeasureTheory.StronglyAdapted
Nat.instPreorder
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
HasSubgaussianMGF
HasCondSubgaussianMGF
MeasureTheory.Filtration.seq
MeasureTheory.Filtration.le
MeasureTheory.IsZeroOrProbabilityMeasure.toIsFiniteMeasure
Real.instLE
Real.instZero
MeasureTheory.Measure.real
setOf
Finset.sum
Real.instAddCommMonoid
Finset.range
Real.exp
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNeg
Monoid.toNatPow
Real.instMonoid
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
NNReal.toReal
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”measure_sum_ge_le_of_hasCondSubgaussianMGF
measure_sum_ge_le_of_hasCondSubgaussianMGF πŸ“–mathematicalMeasureTheory.StronglyAdapted
Nat.instPreorder
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
HasSubgaussianMGF
HasCondSubgaussianMGF
MeasureTheory.Filtration.seq
MeasureTheory.Filtration.le
MeasureTheory.IsZeroOrProbabilityMeasure.toIsFiniteMeasure
Real.instLE
Real.instZero
MeasureTheory.Measure.real
setOf
Finset.sum
Real.instAddCommMonoid
Finset.range
Real.exp
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNeg
Monoid.toNatPow
Real.instMonoid
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
NNReal.toReal
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”MeasureTheory.Filtration.le
MeasureTheory.IsZeroOrProbabilityMeasure.toIsFiniteMeasure
HasSubgaussianMGF.measure_ge_le
HasSubgaussianMGF.sum_of_hasCondSubgaussianMGF
mgf_le_of_mem_Icc_of_integral_eq_zero πŸ“–mathematicalAEMeasurable
Real
Real.measurableSpace
Filter.Eventually
Set
Set.instMembership
Set.Icc
Real.instPreorder
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instZero
Real.instLT
Real.instLE
mgf
Real.exp
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instMul
Monoid.toNatPow
Real.instMonoid
NNReal.toReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
Real.instSub
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”MeasureTheory.Measure.instOuterMeasureClass
integrable_exp_mul_of_mem_Icc
MeasureTheory.IsZeroOrProbabilityMeasure.toIsFiniteMeasure
MeasureTheory.instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
interior_univ
Nat.instAtLeastTwoHAddOfNat
exists_cgf_eq_iteratedDeriv_two_cgf_mul
exp_cgf
MeasureTheory.IsProbabilityMeasure.neZero
Real.exp_le_exp
div_le_div_of_nonneg_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
variance_tilted_mul
Set.mem_Icc_of_Ioo
variance_le_sq_of_bounded
MeasureTheory.isProbabilityMeasure_tilted
MeasureTheory.tilted_absolutelyContinuous
AEMeasurable.mono_ac
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.pow_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.zpow'_ofNat
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
Mathlib.Meta.NormNum.isNat_eq_false
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
sq_abs
le_of_lt
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toZeroLEOneClass
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial

ProbabilityTheory.HasCondSubgaussianMGF

Theorems

NameKindAssumesProvesValidatesDepends On
ae_condExp_le πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
ProbabilityTheory.HasCondSubgaussianMGF
Filter.Eventually
Real
Real.instLE
MeasureTheory.condExp
Real.normedAddCommGroup
Real.instCompleteSpace
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.exp
Real.instMul
DivInvMonoid.toDiv
Real.instDivInvMonoid
NNReal.toReal
Monoid.toNatPow
Real.instMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
β€”MeasureTheory.ae_of_ae_trim
Real.instCompleteSpace
Nat.instAtLeastTwoHAddOfNat
ae_trim_condExp_le
ae_trim_condExp_le πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
ProbabilityTheory.HasCondSubgaussianMGF
Filter.Eventually
Real
Real.instLE
MeasureTheory.condExp
Real.normedAddCommGroup
Real.instCompleteSpace
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.exp
Real.instMul
DivInvMonoid.toDiv
Real.instDivInvMonoid
NNReal.toReal
Monoid.toNatPow
Real.instMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.trim
β€”MeasureTheory.Measure.instOuterMeasureClass
Real.instCompleteSpace
MeasureTheory.Measure.instIsFiniteMeasureBindCoeKernelOfIsFiniteKernel
MeasureTheory.isFiniteMeasure_trim
ProbabilityTheory.IsZeroOrMarkovKernel.isFiniteKernel
ProbabilityTheory.IsMarkovKernel.IsZeroOrMarkovKernel
ProbabilityTheory.instIsMarkovKernelCondExpKernel
ProbabilityTheory.condExp_ae_eq_trim_integral_condExpKernel
ProbabilityTheory.Kernel.HasSubgaussianMGF.integrable_exp_mul
Filter.mp_mem
ProbabilityTheory.condExpKernel_comp_trim
Nat.instAtLeastTwoHAddOfNat
MeasureTheory.ae.congr_simp
MeasureTheory.Measure.trim.congr_simp
ProbabilityTheory.condExpKernel.congr_simp
mgf_le
Filter.univ_mem'
cgf_le πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
ProbabilityTheory.HasCondSubgaussianMGF
Filter.Eventually
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.trim
β€”ProbabilityTheory.Kernel.HasSubgaussianMGF.cgf_le
fun_zero πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
ProbabilityTheory.HasCondSubgaussianMGF
Real
Real.instZero
NNReal
instZeroNNReal
β€”ProbabilityTheory.Kernel.HasSubgaussianMGF.fun_zero
MeasureTheory.isFiniteMeasure_trim
ProbabilityTheory.IsMarkovKernel.IsZeroOrMarkovKernel
ProbabilityTheory.instIsMarkovKernelCondExpKernel
integrable_exp_mul πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
ProbabilityTheory.HasCondSubgaussianMGF
MeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
Real.exp
Real.instMul
β€”ProbabilityTheory.Kernel.HasSubgaussianMGF.integrable_exp_mul
ProbabilityTheory.condExpKernel_comp_trim
memLp_exp_mul πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
ProbabilityTheory.HasCondSubgaussianMGF
MeasureTheory.MemLp
Real
ContinuousENorm.toENorm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
SeminormedAddGroup.toContinuousENorm
Real.pseudoMetricSpace
Real.exp
Real.instMul
ENNReal.ofNNReal
β€”ProbabilityTheory.Kernel.HasSubgaussianMGF.memLp_exp_mul
ProbabilityTheory.condExpKernel_comp_trim
mgf_le πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
ProbabilityTheory.HasCondSubgaussianMGF
Filter.Eventually
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.trim
β€”ProbabilityTheory.Kernel.HasSubgaussianMGF.mgf_le
zero πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
ProbabilityTheory.HasCondSubgaussianMGF
Pi.instZero
Real
Real.instZero
NNReal
instZeroNNReal
β€”ProbabilityTheory.Kernel.HasSubgaussianMGF.zero
MeasureTheory.isFiniteMeasure_trim
ProbabilityTheory.IsMarkovKernel.IsZeroOrMarkovKernel
ProbabilityTheory.instIsMarkovKernelCondExpKernel

ProbabilityTheory.HasSubgaussianMGF

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalProbabilityTheory.HasSubgaussianMGFReal
Real.instAdd
NNReal
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiringNNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
OrderIso
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
instFunLikeOrderIso
NNReal.sqrt
β€”ProbabilityTheory.Kernel.HasSubgaussianMGF.add
ProbabilityTheory.HasSubgaussianMGF_iff_kernel
add_of_hasCondSubgaussianMGF πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
ProbabilityTheory.HasSubgaussianMGF
MeasureTheory.Measure.trim
ProbabilityTheory.HasCondSubgaussianMGF
Pi.instAdd
Real
Real.instAdd
NNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”ProbabilityTheory.HasSubgaussianMGF_iff_kernel
IsScalarTower.right
MeasureTheory.Measure.const_comp
MeasureTheory.IsProbabilityMeasure.measure_univ
MeasureTheory.Measure.dirac.isProbabilityMeasure
one_smul
ProbabilityTheory.Kernel.ext
ProbabilityTheory.Kernel.const_apply
MeasureTheory.Measure.compProd.eq_1
ProbabilityTheory.compProd_trim_condExpKernel
ProbabilityTheory.Kernel.HasSubgaussianMGF.add_comp
MeasureTheory.instSFiniteOfCountable
instCountablePUnit
ProbabilityTheory.IsMarkovKernel.IsZeroOrMarkovKernel
ProbabilityTheory.instIsMarkovKernelCondExpKernel
of_map
Measurable.aemeasurable
Measurable.prodMk
measurable_id''
measurable_id
add_of_indepFun πŸ“–mathematicalProbabilityTheory.HasSubgaussianMGF
ProbabilityTheory.IndepFun
Real
Real.measurableSpace
Real.instAdd
NNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”mul_add
Distrib.leftDistribClass
Real.exp_add
MeasureTheory.MemLp.integrable_mul
Nat.instAtLeastTwoHAddOfNat
memLp_exp_mul
Nat.cast_one
ENNReal.HolderConjugate.instTwoTwo
ProbabilityTheory.IndepFun.mgf_add
integrable_exp_mul
mul_le_mul
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsOrderedRing.toMulPosMono
mgf_le
ProbabilityTheory.mgf_nonneg
le_of_lt
Real.exp_pos
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
ae_eq_zero_of_hasSubgaussianMGF_zero πŸ“–mathematicalProbabilityTheory.HasSubgaussianMGF
NNReal
instZeroNNReal
Filter.EventuallyEq
Real
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
Pi.instZero
Real.instZero
β€”MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.ae_dirac_eq
instMeasurableSingletonClassOfMeasurableEq
instMeasurableEqOfSecondCountableTopologyOfT2Space
BorelSpace.opensMeasurable
Unit.borelSpace
PolishSpace.toSecondCountableTopology
instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace
TopologicalSpace.Countable.to_separableSpace
instCountablePUnit
TopologicalSpace.IsCompletelyMetrizableSpace.of_completeSpace_metrizable
DiscreteUniformity.instCompleteSpace
DiscreteUniformity.inst
EMetric.instIsCountablyGeneratedUniformity
T6Space.toT0Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
TopologicalSpace.t2Space_of_metrizableSpace
ProbabilityTheory.Kernel.HasSubgaussianMGF.ae_eq_zero_of_hasSubgaussianMGF_zero
ProbabilityTheory.HasSubgaussianMGF_iff_kernel
aemeasurable πŸ“–mathematicalProbabilityTheory.HasSubgaussianMGFAEMeasurable
Real
Real.measurableSpace
β€”MeasureTheory.AEStronglyMeasurable.aemeasurable
PseudoEMetricSpace.pseudoMetrizableSpace
Real.borelSpace
aestronglyMeasurable
aestronglyMeasurable πŸ“–mathematicalProbabilityTheory.HasSubgaussianMGFMeasureTheory.AEStronglyMeasurable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
β€”integrable_exp_mul
one_mul
AEMeasurable.aestronglyMeasurable
PseudoEMetricSpace.pseudoMetrizableSpace
BorelSpace.opensMeasurable
Real.borelSpace
instSecondCountableTopologyReal
Real.aemeasurable_of_aemeasurable_exp
MeasureTheory.AEStronglyMeasurable.aemeasurable
cgf_le πŸ“–mathematicalProbabilityTheory.HasSubgaussianMGFReal
Real.instLE
ProbabilityTheory.cgf
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instMul
NNReal.toReal
Monoid.toNatPow
Real.instMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.ae_dirac_eq
instMeasurableSingletonClassOfMeasurableEq
instMeasurableEqOfSecondCountableTopologyOfT2Space
BorelSpace.opensMeasurable
Unit.borelSpace
PolishSpace.toSecondCountableTopology
instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace
TopologicalSpace.Countable.to_separableSpace
instCountablePUnit
TopologicalSpace.IsCompletelyMetrizableSpace.of_completeSpace_metrizable
DiscreteUniformity.instCompleteSpace
DiscreteUniformity.inst
EMetric.instIsCountablyGeneratedUniformity
T6Space.toT0Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
TopologicalSpace.t2Space_of_metrizableSpace
MeasureTheory.all_ae_of
ProbabilityTheory.Kernel.HasSubgaussianMGF.cgf_le
ProbabilityTheory.HasSubgaussianMGF_iff_kernel
congr_identDistrib πŸ“–β€”ProbabilityTheory.HasSubgaussianMGF
ProbabilityTheory.IdentDistrib
Real
Real.measurableSpace
β€”β€”id_map_iff
ProbabilityTheory.IdentDistrib.aemeasurable_snd
ProbabilityTheory.IdentDistrib.map_eq
ProbabilityTheory.IdentDistrib.aemeasurable_fst
const_mul πŸ“–mathematicalProbabilityTheory.HasSubgaussianMGFReal
Real.instMul
NNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Real.instLE
Real.instZero
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Real.semiring
sq_nonneg
Real.linearOrder
AddGroup.existsAddOfLE
Real.instAddGroup
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsOrderedRing.toPosMulMono
Real.partialOrder
Real.instIsOrderedRing
IsOrderedAddMonoid.toAddLeftMono
Real.instAddCommMonoid
Real.instIsOrderedAddMonoid
β€”sq_nonneg
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
ProbabilityTheory.HasSubgaussianMGF_iff_kernel
ProbabilityTheory.Kernel.HasSubgaussianMGF.const_mul
fun_zero πŸ“–mathematicalβ€”ProbabilityTheory.HasSubgaussianMGF
Real
Real.instZero
NNReal
instZeroNNReal
β€”MeasureTheory.Measure.dirac.instIsFiniteMeasure
ProbabilityTheory.Kernel.const.instIsZeroOrMarkovKernel
id_map_iff πŸ“–mathematicalAEMeasurable
Real
Real.measurableSpace
ProbabilityTheory.HasSubgaussianMGF
MeasureTheory.Measure.map
β€”of_map
MeasureTheory.integrable_map_measure
Continuous.comp_aestronglyMeasurable
Continuous.rexp
continuous_id'
MeasureTheory.AEStronglyMeasurable.const_mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
aestronglyMeasurable_id
PseudoEMetricSpace.pseudoMetrizableSpace
BorelSpace.opensMeasurable
Real.borelSpace
instSecondCountableTopologyReal
integrable_exp_mul
Nat.instAtLeastTwoHAddOfNat
ProbabilityTheory.mgf_id_map
mgf_le
integrable πŸ“–mathematicalProbabilityTheory.HasSubgaussianMGFMeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
β€”ProbabilityTheory.integrable_of_mem_interior_integrableExpSet
integrableExpSet_eq_univ
interior_univ
integrableExpSet_eq_univ πŸ“–mathematicalProbabilityTheory.HasSubgaussianMGFProbabilityTheory.integrableExpSet
Set.univ
Real
β€”Set.ext
integrable_exp_mul
integrable_exp_mul πŸ“–mathematicalProbabilityTheory.HasSubgaussianMGFMeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
Real.exp
Real.instMul
β€”β€”
measureReal_le_le_exp πŸ“–mathematicalProbabilityTheory.HasSubgaussianMGF
Real
Real.instSub
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
ProbabilityTheory.IndepFun
Real.measurableSpace
Real.instLE
MeasureTheory.Measure.real
setOf
Real.exp
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNeg
Monoid.toNatPow
Real.instMonoid
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instAdd
NNReal.toReal
β€”Nat.instAtLeastTwoHAddOfNat
LE.le.trans_eq
measure_ge_le
add_comm
sub_of_indepFun
ProbabilityTheory.IndepFun.comp
ProbabilityTheory.IndepFun.symm
Measurable.sub_const
ContinuousSub.measurableSub
Real.borelSpace
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
measurable_id'
measure_ge_le πŸ“–mathematicalProbabilityTheory.HasSubgaussianMGF
Real
Real.instLE
Real.instZero
MeasureTheory.Measure.real
setOf
Real.exp
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNeg
Monoid.toNatPow
Real.instMonoid
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
NNReal.toReal
β€”Nat.instAtLeastTwoHAddOfNat
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.ae_dirac_eq
instMeasurableSingletonClassOfMeasurableEq
instMeasurableEqOfSecondCountableTopologyOfT2Space
BorelSpace.opensMeasurable
Unit.borelSpace
PolishSpace.toSecondCountableTopology
instPolishSpaceOfSeparableSpaceOfIsCompletelyMetrizableSpace
TopologicalSpace.Countable.to_separableSpace
instCountablePUnit
TopologicalSpace.IsCompletelyMetrizableSpace.of_completeSpace_metrizable
DiscreteUniformity.instCompleteSpace
DiscreteUniformity.inst
EMetric.instIsCountablyGeneratedUniformity
T6Space.toT0Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
TopologicalSpace.t2Space_of_metrizableSpace
ProbabilityTheory.Kernel.HasSubgaussianMGF.measure_ge_le
ProbabilityTheory.HasSubgaussianMGF_iff_kernel
measure_sum_ge_le_of_iIndepFun πŸ“–mathematicalProbabilityTheory.iIndepFun
Real
Real.measurableSpace
ProbabilityTheory.HasSubgaussianMGF
Real.instLE
Real.instZero
MeasureTheory.Measure.real
setOf
Finset.sum
Real.instAddCommMonoid
Real.exp
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNeg
Monoid.toNatPow
Real.instMonoid
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
NNReal.toReal
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”measure_ge_le
sum_of_iIndepFun
measure_sum_range_ge_le_of_iIndepFun πŸ“–mathematicalProbabilityTheory.iIndepFun
Real
Real.measurableSpace
ProbabilityTheory.HasSubgaussianMGF
Real.instLE
Real.instZero
MeasureTheory.Measure.real
setOf
Finset.sum
Real.instAddCommMonoid
Finset.range
Real.exp
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNeg
Monoid.toNatPow
Real.instMonoid
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
NNReal.toReal
β€”Nat.instAtLeastTwoHAddOfNat
measure_ge_le
sum_of_iIndepFun
Finset.sum_const
Finset.card_range
nsmul_eq_mul
NNReal.coe_natCast
memLp πŸ“–mathematicalProbabilityTheory.HasSubgaussianMGFMeasureTheory.MemLp
Real
ContinuousENorm.toENorm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
SeminormedAddGroup.toContinuousENorm
Real.pseudoMetricSpace
ENNReal.ofNNReal
β€”ProbabilityTheory.memLp_of_mem_interior_integrableExpSet
integrableExpSet_eq_univ
interior_univ
memLp_exp_mul πŸ“–mathematicalProbabilityTheory.HasSubgaussianMGFMeasureTheory.MemLp
Real
ContinuousENorm.toENorm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
SeminormedAddGroup.toContinuousENorm
Real.pseudoMetricSpace
Real.exp
Real.instMul
ENNReal.ofNNReal
β€”IsScalarTower.right
MeasureTheory.Measure.const_comp
MeasureTheory.IsProbabilityMeasure.measure_univ
MeasureTheory.Measure.dirac.isProbabilityMeasure
one_smul
ProbabilityTheory.Kernel.HasSubgaussianMGF.memLp_exp_mul
ProbabilityTheory.HasSubgaussianMGF_iff_kernel
mgf_le πŸ“–mathematicalProbabilityTheory.HasSubgaussianMGFReal
Real.instLE
ProbabilityTheory.mgf
Real.exp
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instMul
NNReal.toReal
Monoid.toNatPow
Real.instMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”β€”
neg πŸ“–mathematicalProbabilityTheory.HasSubgaussianMGFPi.instNeg
Real
Real.instNeg
β€”ProbabilityTheory.Kernel.HasSubgaussianMGF.neg
ProbabilityTheory.HasSubgaussianMGF_iff_kernel
of_map πŸ“–mathematicalAEMeasurable
ProbabilityTheory.HasSubgaussianMGF
MeasureTheory.Measure.map
Realβ€”integrable_exp_mul
MeasureTheory.integrable_map_measure
MeasureTheory.Integrable.aestronglyMeasurable
Nat.instAtLeastTwoHAddOfNat
ProbabilityTheory.mgf_map
mgf_le
sub_of_indepFun πŸ“–mathematicalProbabilityTheory.HasSubgaussianMGF
ProbabilityTheory.IndepFun
Real
Real.measurableSpace
Real.instSub
NNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”sub_eq_add_neg
add_of_indepFun
neg
ProbabilityTheory.IndepFun.neg_right
ContinuousNeg.measurableNeg
Real.borelSpace
IsTopologicalRing.toContinuousNeg
instIsTopologicalRingReal
sum_of_hasCondSubgaussianMGF πŸ“–mathematicalMeasureTheory.StronglyAdapted
Nat.instPreorder
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ProbabilityTheory.HasSubgaussianMGF
ProbabilityTheory.HasCondSubgaussianMGF
MeasureTheory.Filtration.seq
MeasureTheory.Filtration.le
MeasureTheory.IsZeroOrProbabilityMeasure.toIsFiniteMeasure
Finset.sum
Real.instAddCommMonoid
Finset.range
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”MeasureTheory.Filtration.le
MeasureTheory.IsZeroOrProbabilityMeasure.toIsFiniteMeasure
Finset.sum_congr
zero_add
Finset.sum_singleton
Finset.sum_range_succ
add_of_hasCondSubgaussianMGF
trim
Finset.measurable_fun_sum
ContinuousAdd.measurableMulβ‚‚
Real.borelSpace
instSecondCountableTopologyReal
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
MeasureTheory.StronglyMeasurable.measurable
PseudoEMetricSpace.pseudoMetrizableSpace
MeasureTheory.StronglyMeasurable.mono
MeasureTheory.Filtration.mono
sum_of_iIndepFun πŸ“–mathematicalProbabilityTheory.iIndepFun
Real
Real.measurableSpace
ProbabilityTheory.HasSubgaussianMGF
Finset.sum
Real.instAddCommMonoid
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”ProbabilityTheory.iIndepFun.precomp
Subtype.val_injective
aemeasurable
congr
Finset.sum_coe_sort
MeasureTheory.ae_of_all
MeasureTheory.Measure.instOuterMeasureClass
Finset.sum_attach
trim πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
Measurable
Real
Real.measurableSpace
ProbabilityTheory.HasSubgaussianMGF
MeasureTheory.Measure.trimβ€”MeasureTheory.Integrable.trim
integrable_exp_mul
Measurable.stronglyMeasurable
PseudoEMetricSpace.pseudoMetrizableSpace
instSecondCountableTopologyReal
BorelSpace.opensMeasurable
Real.borelSpace
Measurable.exp
Measurable.const_mul
ContinuousMul.measurableMul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Nat.instAtLeastTwoHAddOfNat
ProbabilityTheory.mgf.eq_1
MeasureTheory.integral_trim
mgf_le
zero πŸ“–mathematicalβ€”ProbabilityTheory.HasSubgaussianMGF
Pi.instZero
Real
Real.instZero
NNReal
instZeroNNReal
β€”fun_zero

ProbabilityTheory.Kernel

Definitions

NameCategoryTheorems
HasSubgaussianMGF πŸ“–CompData
8 mathmath: ProbabilityTheory.HasSubgaussianMGF_iff_kernel, HasSubgaussianMGF_congr, HasSubgaussianMGF.of_rat, HasSubgaussianMGF.id_map_iff, HasSubgaussianMGF.zero, HasSubgaussianMGF.zero_kernel, HasSubgaussianMGF.zero_measure, HasSubgaussianMGF.fun_zero

Theorems

NameKindAssumesProvesValidatesDepends On
HasSubgaussianMGF_congr πŸ“–mathematicalFilter.EventuallyEq
Real
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.bind
DFunLike.coe
ProbabilityTheory.Kernel
instFunLike
HasSubgaussianMGFβ€”MeasureTheory.Measure.instOuterMeasureClass
HasSubgaussianMGF.congr
MeasureTheory.ae_eq_symm

ProbabilityTheory.Kernel.HasSubgaussianMGF

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalProbabilityTheory.Kernel.HasSubgaussianMGFReal
Real.instAdd
NNReal
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiringNNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
OrderIso
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
instFunLikeOrderIso
NNReal.sqrt
β€”NNReal.sqrt_zero
zero_add
NNReal.sq_sqrt
congr
Filter.mp_mem
MeasureTheory.Measure.instOuterMeasureClass
ae_eq_zero_of_hasSubgaussianMGF_zero'
Filter.univ_mem'
add_zero
mul_add
Distrib.leftDistribClass
Real.exp_add
MeasureTheory.MemLp.integrable_mul
Nat.instAtLeastTwoHAddOfNat
memLp_exp_mul
Nat.cast_one
ENNReal.HolderConjugate.instTwoTwo
ae_forall_memLp_exp_mul
mgf_le
MeasureTheory.integral_mul_le_Lp_mul_Lq_of_nonneg
Real.coe_sqrt
inv_div
inv_one
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
ne_of_gt
add_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.sqrt_pos_of_pos
Mathlib.Meta.Positivity.nnreal_coe_pos
lt_of_le_of_ne'
zero_le
NNReal.instCanonicallyOrderedAdd
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
NNReal.addLeftMono
NNReal.sqrt_pos_of_pos
MeasureTheory.ae_of_all
Real.exp_nonneg
ENNReal.ofReal_coe_nnreal
Real.exp_mul
mul_right_comm
mul_le_mul
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsOrderedRing.toMulPosMono
Real.rpow_le_rpow
MeasureTheory.integral_nonneg
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
Real.instIsStrictOrderedRing
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
le_of_lt
Real.exp_pos
IsStrictOrderedRing.toPosMulStrictMono
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Real.rpow_nonneg
Real.rpow_pos_of_pos
one_div
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.pow_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Mathlib.Tactic.FieldSimp.zpow'_ofNat
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
Mathlib.Meta.NormNum.isNat_eq_false
RCLike.charZero_rclike
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_zero
Mathlib.Tactic.LinearCombination.eq_of_eq
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.mul_const_eq
Mathlib.Tactic.LinearCombination.add_eq_eq
Real.sq_sqrt
NNReal.coe_nonneg
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.cast_zero
add_comp πŸ“–mathematicalProbabilityTheory.Kernel.HasSubgaussianMGF
MeasureTheory.Measure.bind
DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
ProbabilityTheory.Kernel.instFunLike
Prod.instMeasurableSpace
Real
Real.instAdd
NNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
ProbabilityTheory.Kernel.compProd
ProbabilityTheory.Kernel.prodMkLeft
β€”add_compProd
ProbabilityTheory.Kernel.IsZeroOrMarkovKernel.prodMkLeft
prodMkLeft_compProd
add_compProd πŸ“–mathematicalProbabilityTheory.Kernel.HasSubgaussianMGF
Prod.instMeasurableSpace
MeasureTheory.Measure.compProd
Real
Real.instAdd
NNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
ProbabilityTheory.Kernel.compProd
β€”of_rat
integrable_exp_add_compProd
Filter.mp_mem
MeasureTheory.Measure.instOuterMeasureClass
Nat.instAtLeastTwoHAddOfNat
MeasureTheory.Measure.ae_integrable_of_integrable_comp
MeasureTheory.Measure.ae_ae_of_ae_compProd
mgf_le
ae_integrable_exp_mul
Filter.univ_mem'
mul_add
Distrib.leftDistribClass
Real.exp_add
ProbabilityTheory.integral_compProd
ProbabilityTheory.Kernel.IsFiniteKernel.isSFiniteKernel
ProbabilityTheory.IsZeroOrMarkovKernel.isFiniteKernel
MeasureTheory.integral_const_mul
MeasureTheory.integral_mono_of_nonneg
Real.instIsOrderedAddMonoid
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
Real.instIsStrictOrderedRing
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
MeasureTheory.ae_of_all
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
le_of_lt
Real.exp_pos
MeasureTheory.integral_nonneg
MeasureTheory.Integrable.mul_const
MeasureTheory.all_ae_of
mul_le_mul_of_nonneg_left
MeasureTheory.integral_mul_const
NNReal.coe_add
add_mul
Distrib.rightDistribClass
add_div
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
ProbabilityTheory.Kernel.compProd_of_not_isSFiniteKernel_left
ae_aestronglyMeasurable πŸ“–mathematicalProbabilityTheory.Kernel.HasSubgaussianMGFFilter.Eventually
MeasureTheory.AEStronglyMeasurable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
ProbabilityTheory.Kernel.instFunLike
MeasureTheory.ae
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
β€”MeasureTheory.Measure.instOuterMeasureClass
ae_integrable_exp_mul
Filter.mp_mem
Filter.univ_mem'
one_mul
AEMeasurable.aestronglyMeasurable
PseudoEMetricSpace.pseudoMetrizableSpace
BorelSpace.opensMeasurable
Real.borelSpace
instSecondCountableTopologyReal
Real.aemeasurable_of_aemeasurable_exp
MeasureTheory.AEStronglyMeasurable.aemeasurable
ae_eq_zero_of_hasSubgaussianMGF_zero πŸ“–mathematicalProbabilityTheory.Kernel.HasSubgaussianMGF
NNReal
instZeroNNReal
Filter.Eventually
Filter.EventuallyEq
Real
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
DFunLike.coe
ProbabilityTheory.Kernel
ProbabilityTheory.Kernel.instFunLike
Pi.instZero
Real.instZero
β€”Filter.mp_mem
MeasureTheory.Measure.instOuterMeasureClass
measure_pos_eq_zero_of_hasSubGaussianMGF_zero
neg
Filter.univ_mem'
nonpos_iff_eq_zero
ENNReal.instCanonicallyOrderedAdd
MeasureTheory.measure_union_le
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
add_zero
ae_eq_zero_of_hasSubgaussianMGF_zero' πŸ“–mathematicalProbabilityTheory.Kernel.HasSubgaussianMGF
NNReal
instZeroNNReal
Filter.EventuallyEq
Real
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.bind
DFunLike.coe
ProbabilityTheory.Kernel
ProbabilityTheory.Kernel.instFunLike
Pi.instZero
Real.instZero
β€”aestronglyMeasurable
congr
Filter.EventuallyEq.trans
MeasureTheory.Measure.instOuterMeasureClass
ae_eq_zero_of_hasSubgaussianMGF_zero_of_measurable
PseudoEMetricSpace.pseudoMetrizableSpace
Real.borelSpace
ae_eq_zero_of_hasSubgaussianMGF_zero_of_measurable πŸ“–mathematicalMeasurable
Real
Real.measurableSpace
ProbabilityTheory.Kernel.HasSubgaussianMGF
NNReal
instZeroNNReal
Filter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.bind
DFunLike.coe
ProbabilityTheory.Kernel
ProbabilityTheory.Kernel.instFunLike
Pi.instZero
Real.instZero
β€”MeasureTheory.Measure.instOuterMeasureClass
Filter.EventuallyEq.eq_1
MeasureTheory.Measure.ae_comp_iff
measurableSet_eq_fun
instMeasurableEqOfSecondCountableTopologyOfT2Space
BorelSpace.opensMeasurable
Real.borelSpace
instSecondCountableTopologyReal
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
measurable_zero
ae_eq_zero_of_hasSubgaussianMGF_zero
ae_forall_integrable_exp_mul πŸ“–mathematicalProbabilityTheory.Kernel.HasSubgaussianMGFFilter.Eventually
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
β€”MeasureTheory.Measure.instOuterMeasureClass
ae_integrable_exp_mul
Filter.mp_mem
MeasureTheory.ae_all_iff
instCountableInt
Filter.univ_mem'
ProbabilityTheory.integrable_exp_mul_of_le_of_le
Int.floor_le
Int.le_ceil
ae_forall_memLp_exp_mul πŸ“–mathematicalProbabilityTheory.Kernel.HasSubgaussianMGFFilter.Eventually
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
β€”Filter.mp_mem
MeasureTheory.Measure.instOuterMeasureClass
ae_forall_integrable_exp_mul
Filter.univ_mem'
MeasureTheory.eLpNorm_exponent_zero
MeasureTheory.eLpNorm_lt_top_iff_lintegral_rpow_enorm_lt_top
Nat.cast_zero
ENNReal.coe_toReal
MeasureTheory.Integrable.lintegral_lt_top
Real.enorm_eq_ofReal
le_of_lt
Real.exp_pos
ENNReal.ofReal_rpow_of_nonneg
Mathlib.Meta.Positivity.nnreal_coe_pos
lt_of_le_of_ne'
zero_le
NNReal.instCanonicallyOrderedAdd
Real.exp_mul
mul_comm
mul_assoc
ae_integrable_exp_mul πŸ“–mathematicalProbabilityTheory.Kernel.HasSubgaussianMGFFilter.Eventually
MeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
Real.exp
Real.instMul
DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
ProbabilityTheory.Kernel.instFunLike
MeasureTheory.ae
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
β€”MeasureTheory.Measure.ae_integrable_of_integrable_comp
integrable_exp_mul
aestronglyMeasurable πŸ“–mathematicalProbabilityTheory.Kernel.HasSubgaussianMGFMeasureTheory.AEStronglyMeasurable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
MeasureTheory.Measure.bind
DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
ProbabilityTheory.Kernel.instFunLike
β€”integrable_exp_mul
one_mul
AEMeasurable.aestronglyMeasurable
PseudoEMetricSpace.pseudoMetrizableSpace
BorelSpace.opensMeasurable
Real.borelSpace
instSecondCountableTopologyReal
Real.aemeasurable_of_aemeasurable_exp
MeasureTheory.AEStronglyMeasurable.aemeasurable
cgf_le πŸ“–mathematicalProbabilityTheory.Kernel.HasSubgaussianMGFFilter.Eventually
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
β€”Filter.mp_mem
MeasureTheory.Measure.instOuterMeasureClass
Nat.instAtLeastTwoHAddOfNat
ae_forall_integrable_exp_mul
mgf_le
Filter.univ_mem'
ProbabilityTheory.mgf_zero_measure
Real.log_zero
Real.log_exp
Mathlib.Meta.Positivity.div_nonneg_of_nonneg_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
NNReal.coe_nonneg
Even.pow_nonneg
IsStrictOrderedRing.toIsOrderedRing
AddGroup.existsAddOfLE
even_two_mul
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Real.log_le_log
ProbabilityTheory.mgf_pos'
le_refl
const_mul πŸ“–mathematicalProbabilityTheory.Kernel.HasSubgaussianMGFReal
Real.instMul
NNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Real.instLE
Real.instZero
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Real.semiring
sq_nonneg
Real.linearOrder
AddGroup.existsAddOfLE
Real.instAddGroup
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsOrderedRing.toPosMulMono
Real.partialOrder
Real.instIsOrderedRing
IsOrderedAddMonoid.toAddLeftMono
Real.instAddCommMonoid
Real.instIsOrderedAddMonoid
β€”sq_nonneg
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
integrable_exp_mul
Filter.mp_mem
MeasureTheory.Measure.instOuterMeasureClass
Nat.instAtLeastTwoHAddOfNat
mgf_le
Filter.univ_mem'
ProbabilityTheory.mgf_const_mul
mul_comm
LE.le.trans_eq
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
fun_zero πŸ“–mathematicalβ€”ProbabilityTheory.Kernel.HasSubgaussianMGF
Real
Real.instZero
NNReal
instZeroNNReal
β€”MulZeroClass.mul_zero
Real.exp_zero
MeasureTheory.Measure.instIsFiniteMeasureBindCoeKernelOfIsFiniteKernel
ProbabilityTheory.IsZeroOrMarkovKernel.isFiniteKernel
enorm_one
NormedDivisionRing.to_normOneClass
Nat.instAtLeastTwoHAddOfNat
MeasureTheory.Measure.instOuterMeasureClass
ProbabilityTheory.mgf_const'
mul_one
MulZeroClass.zero_mul
zero_div
MeasureTheory.ae_of_all
MeasureTheory.measureReal_le_one
ProbabilityTheory.IsZeroOrMarkovKernel.isZeroOrProbabilityMeasure
id_map_iff πŸ“–mathematicalMeasurable
Real
Real.measurableSpace
ProbabilityTheory.Kernel.HasSubgaussianMGF
ProbabilityTheory.Kernel.map
β€”of_map
ProbabilityTheory.Kernel.deterministic_comp_eq_map
MeasureTheory.Measure.comp_assoc
MeasureTheory.Measure.deterministic_comp_eq_map
MeasureTheory.integrable_map_measure
Continuous.comp_aestronglyMeasurable
Continuous.rexp
continuous_id'
MeasureTheory.AEStronglyMeasurable.const_mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
aestronglyMeasurable_id
PseudoEMetricSpace.pseudoMetrizableSpace
BorelSpace.opensMeasurable
Real.borelSpace
instSecondCountableTopologyReal
Measurable.aemeasurable
integrable_exp_mul
Nat.instAtLeastTwoHAddOfNat
MeasureTheory.Measure.instOuterMeasureClass
ProbabilityTheory.Kernel.map_apply
ProbabilityTheory.mgf_id_map
mgf_le
integrable_exp_add_compProd πŸ“–mathematicalProbabilityTheory.Kernel.HasSubgaussianMGF
Prod.instMeasurableSpace
MeasureTheory.Measure.compProd
MeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
Real.exp
Real.instMul
Real.instAdd
MeasureTheory.Measure.bind
DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
ProbabilityTheory.Kernel.instFunLike
ProbabilityTheory.Kernel.compProd
β€”ProbabilityTheory.eq_zero_or_isMarkovKernel
ProbabilityTheory.Kernel.compProd_zero_right
MeasureTheory.Measure.bind_zero_right
mul_add
Distrib.leftDistribClass
Real.exp_add
MeasureTheory.MemLp.integrable_mul
Nat.instAtLeastTwoHAddOfNat
memLp_exp_mul
MeasureTheory.Measure.map_comp
measurable_fst
ProbabilityTheory.Kernel.fst_eq
ProbabilityTheory.Kernel.fst_compProd
MeasureTheory.memLp_map_measure_iff
Measurable.aemeasurable
MeasureTheory.Measure.snd.eq_1
MeasureTheory.Measure.comp_compProd_comm
ProbabilityTheory.Kernel.IsFiniteKernel.isSFiniteKernel
ProbabilityTheory.IsZeroOrMarkovKernel.isFiniteKernel
ENNReal.coe_ofNat
measurable_snd
ENNReal.HolderConjugate.instTwoTwo
ProbabilityTheory.Kernel.compProd_of_not_isSFiniteKernel_left
integrable_exp_mul πŸ“–mathematicalProbabilityTheory.Kernel.HasSubgaussianMGFMeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
Real.exp
Real.instMul
MeasureTheory.Measure.bind
DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
ProbabilityTheory.Kernel.instFunLike
β€”β€”
isFiniteMeasure πŸ“–mathematicalProbabilityTheory.Kernel.HasSubgaussianMGFFilter.Eventually
MeasureTheory.IsFiniteMeasure
DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
ProbabilityTheory.Kernel.instFunLike
MeasureTheory.ae
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
β€”Filter.mp_mem
MeasureTheory.Measure.instOuterMeasureClass
Nat.instAtLeastTwoHAddOfNat
mgf_le
ae_integrable_exp_mul
Filter.univ_mem'
MulZeroClass.zero_mul
Real.exp_zero
NeZero.charZero_one
RCLike.charZero_rclike
measure_ge_le πŸ“–mathematicalProbabilityTheory.Kernel.HasSubgaussianMGF
Real
Real.instLE
Real.instZero
Filter.Eventually
MeasureTheory.Measure.real
DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
ProbabilityTheory.Kernel.instFunLike
setOf
Real.exp
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNeg
Monoid.toNatPow
Real.instMonoid
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
NNReal.toReal
MeasureTheory.ae
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
β€”Nat.instAtLeastTwoHAddOfNat
MeasureTheory.Measure.instOuterMeasureClass
Filter.mp_mem
measure_univ_le_one
Filter.univ_mem'
MulZeroClass.mul_zero
div_zero
Real.exp_zero
ENNReal.toReal_le_of_le_ofReal
zero_le_one
Real.instZeroLEOneClass
ENNReal.ofReal_one
LE.le.trans
MeasureTheory.measure_mono
Set.subset_univ
measure_ge_le_exp_add
Mathlib.Meta.Positivity.div_nonneg_of_nonneg_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Mathlib.Meta.Positivity.nnreal_coe_pos
lt_of_le_of_ne'
zero_le
NNReal.instCanonicallyOrderedAdd
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.subst_add
neg_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
div_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
one_mul
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Mathlib.Meta.NormNum.isNat_eq_false
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
mul_neg
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.pow_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.zpow'_ofNat
neg_div
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
ne_of_gt
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_mul
measure_ge_le_exp_add πŸ“–mathematicalProbabilityTheory.Kernel.HasSubgaussianMGFFilter.Eventually
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
β€”Filter.mp_mem
MeasureTheory.Measure.instOuterMeasureClass
Nat.instAtLeastTwoHAddOfNat
isFiniteMeasure
ae_forall_integrable_exp_mul
mgf_le
Filter.univ_mem'
ProbabilityTheory.measure_ge_le_exp_mul_mgf
Real.exp_add
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
le_of_lt
Real.exp_pos
measure_pos_eq_zero_of_hasSubGaussianMGF_zero πŸ“–mathematicalProbabilityTheory.Kernel.HasSubgaussianMGF
NNReal
instZeroNNReal
Filter.Eventually
ENNReal
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
ProbabilityTheory.Kernel.instFunLike
setOf
Real
Real.instLT
Real.instZero
instZeroENNReal
MeasureTheory.ae
MeasureTheory.Measure.instOuterMeasureClass
β€”Set.ext
exists_rat_btwn
Real.instIsStrictOrderedRing
Real.instArchimedean
Rat.cast_pos
LT.lt.le
lt_of_lt_of_le
MeasureTheory.Measure.instOuterMeasureClass
Filter.mp_mem
isFiniteMeasure
Nat.instAtLeastTwoHAddOfNat
measure_ge_le_exp_add
Filter.univ_mem'
Filter.Tendsto.comp
Real.tendsto_exp_neg_atTop_nhds_zero
Filter.Tendsto.atTop_mul_const
le_antisymm
ge_of_tendsto
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
Filter.atTop_neBot
instIsDirectedOrder
Real.instIsOrderedRing
Filter.eventually_atTop
neg_mul
MulZeroClass.zero_mul
zero_div
add_zero
MeasureTheory.measureReal_nonneg
MeasureTheory.ae_all_iff
Encodable.countable
Subtype.countable
measure_univ_le_one πŸ“–mathematicalProbabilityTheory.Kernel.HasSubgaussianMGFFilter.Eventually
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
ProbabilityTheory.Kernel
ProbabilityTheory.Kernel.instFunLike
Set.univ
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
MeasureTheory.ae
MeasureTheory.Measure.instOuterMeasureClass
β€”Filter.mp_mem
MeasureTheory.Measure.instOuterMeasureClass
Nat.instAtLeastTwoHAddOfNat
mgf_le
isFiniteMeasure
Filter.univ_mem'
MulZeroClass.zero_mul
Real.exp_zero
MeasureTheory.integral_const
Real.instCompleteSpace
mul_one
zero_pow
Nat.instCharZero
MulZeroClass.mul_zero
zero_div
ENNReal.ofReal_one
ENNReal.le_ofReal_iff_toReal_le
MeasureTheory.measure_ne_top
zero_le_one
Real.instZeroLEOneClass
memLp_exp_mul πŸ“–mathematicalProbabilityTheory.Kernel.HasSubgaussianMGFMeasureTheory.MemLp
Real
ContinuousENorm.toENorm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
SeminormedAddGroup.toContinuousENorm
Real.pseudoMetricSpace
Real.exp
Real.instMul
ENNReal.ofNNReal
MeasureTheory.Measure.bind
DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
ProbabilityTheory.Kernel.instFunLike
β€”integrable_exp_mul
MeasureTheory.eLpNorm_lt_top_iff_lintegral_rpow_enorm_lt_top
Nat.cast_zero
Real.enorm_eq_ofReal
le_of_lt
Real.exp_pos
ENNReal.ofReal_rpow_of_nonneg
Mathlib.Meta.Positivity.nnreal_coe_pos
lt_of_le_of_ne'
zero_le
NNReal.instCanonicallyOrderedAdd
Real.exp_mul
mul_comm
mul_assoc
MeasureTheory.hasFiniteIntegral_def
mgf_le πŸ“–mathematicalProbabilityTheory.Kernel.HasSubgaussianMGFFilter.Eventually
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
β€”β€”
neg πŸ“–mathematicalProbabilityTheory.Kernel.HasSubgaussianMGFPi.instNeg
Real
Real.instNeg
β€”mul_neg
neg_mul
integrable_exp_mul
Filter.mp_mem
MeasureTheory.Measure.instOuterMeasureClass
Nat.instAtLeastTwoHAddOfNat
mgf_le
Filter.univ_mem'
Even.neg_pow
of_map πŸ“–mathematicalMeasurable
ProbabilityTheory.Kernel.HasSubgaussianMGF
ProbabilityTheory.Kernel.map
Realβ€”integrable_exp_mul
MeasureTheory.integrable_map_measure
MeasureTheory.Integrable.aestronglyMeasurable
MeasureTheory.Measure.map_comp
Measurable.aemeasurable
Filter.mp_mem
MeasureTheory.Measure.instOuterMeasureClass
Nat.instAtLeastTwoHAddOfNat
mgf_le
ae_forall_integrable_exp_mul
Filter.univ_mem'
ProbabilityTheory.Kernel.map_apply
ProbabilityTheory.mgf_map
of_rat πŸ“–mathematicalMeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
Real.exp
Real.instMul
MeasureTheory.Measure.bind
DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
ProbabilityTheory.Kernel.instFunLike
Filter.Eventually
Real.instLE
ProbabilityTheory.mgf
Real.instRatCast
DivInvMonoid.toDiv
Real.instDivInvMonoid
NNReal.toReal
Monoid.toNatPow
Real.instMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
MeasureTheory.ae
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
ProbabilityTheory.Kernel.HasSubgaussianMGFβ€”Nat.instAtLeastTwoHAddOfNat
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.Measure.ae_integrable_of_integrable_comp
Filter.mp_mem
MeasureTheory.ae_all_iff
instCountableInt
Filter.univ_mem'
ProbabilityTheory.integrable_exp_mul_of_le_of_le
Int.floor_le
Int.le_ceil
Encodable.countable
DenseRange.induction_on
Rat.denseRange_cast
Real.instIsStrictOrderedRing
instOrderTopologyReal
Real.instArchimedean
isClosed_le
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
ProbabilityTheory.continuous_mgf
Continuous.rexp
Continuous.comp'
Continuous.div_const
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
continuous_id'
Continuous.fun_mul
continuous_const
Continuous.pow
prodMkLeft_compProd πŸ“–mathematicalProbabilityTheory.Kernel.HasSubgaussianMGF
MeasureTheory.Measure.bind
DFunLike.coe
ProbabilityTheory.Kernel
MeasureTheory.Measure
ProbabilityTheory.Kernel.instFunLike
Prod.instMeasurableSpace
ProbabilityTheory.Kernel.prodMkLeft
MeasureTheory.Measure.compProd
β€”MeasureTheory.Measure.prodMkLeft_comp_compProd
integrable_exp_mul
Nat.instAtLeastTwoHAddOfNat
MeasureTheory.Measure.instOuterMeasureClass
mgf_le
MeasureTheory.ae_of_ae_map
AEMeasurable.snd
aemeasurable_id
MeasureTheory.Measure.snd.eq_1
MeasureTheory.Measure.snd_compProd
MeasureTheory.Measure.compProd_of_not_isSFiniteKernel
MeasureTheory.Measure.compProd_of_not_sfinite
zero πŸ“–mathematicalβ€”ProbabilityTheory.Kernel.HasSubgaussianMGF
Pi.instZero
Real
Real.instZero
NNReal
instZeroNNReal
β€”fun_zero
zero_kernel πŸ“–mathematicalβ€”ProbabilityTheory.Kernel.HasSubgaussianMGF
ProbabilityTheory.Kernel
ProbabilityTheory.Kernel.instZero
β€”MeasureTheory.Measure.bind_zero_right
Nat.instAtLeastTwoHAddOfNat
MeasureTheory.Measure.instOuterMeasureClass
ProbabilityTheory.mgf_zero_measure
zero_measure πŸ“–mathematicalβ€”ProbabilityTheory.Kernel.HasSubgaussianMGF
MeasureTheory.Measure
MeasureTheory.Measure.instZero
β€”MeasureTheory.Measure.bind_zero_left
Nat.instAtLeastTwoHAddOfNat
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.ae_zero

---

← Back to Index