Documentation Verification Report

Filtration

πŸ“ Source: Mathlib/Probability/Process/Filtration.lean

Statistics

MetricCount
DefinitionsIsRightContinuous, const, cylinderEventsCompl, instBot, instCompleteLattice, instInfSet, instInhabited, instLE, instMax, instMin, instSupSet, instTop, limitProcess, natural, piFinset, piLE, rightCont, seq, Β«term_β‚ŠΒ», SigmaFiniteFiltration, filtrationOfSet, instCoeFunFiltrationForallMeasurableSpace
22
TheoremsRC, eq, measurableSet, coeFn_inf, coeFn_sup, condExp_condExp, const_apply, ext, ext_iff, filtrationOfSet_eq_natural, instIsRightContinuousRightCont, le, le', le_rightCont, memLp_limitProcess_of_eLpNorm_bdd, mono, mono', piFinset_eq_comap_restrict, piLE_eq_comap_frestrictLe, rightCont_apply, rightCont_def, rightCont_eq, rightCont_eq_of_exists_gt, rightCont_eq_of_isMax, rightCont_eq_of_neBot_nhdsGT, rightCont_eq_of_nhdsGT_eq_bot, rightCont_eq_of_not_isMax, rightCont_eq_self, rightCont_self, sInf_def, sSup_def, stronglyMeasurable_limitProcess, stronglyMeasurable_limit_process', uniformIntegrable_condExp_filtration, sigmaFiniteFiltration, SigmaFinite, measurableSet_filtrationOfSet, measurableSet_filtrationOfSet', measurableSet_of_filtration, sigmaFinite_of_sigmaFiniteFiltration
40
Total62

MeasureTheory

Definitions

NameCategoryTheorems
SigmaFiniteFiltration πŸ“–CompData
1 mathmath: IsFiniteMeasure.sigmaFiniteFiltration
filtrationOfSet πŸ“–CompOp
4 mathmath: ProbabilityTheory.iIndepSet.condExp_indicator_filtrationOfSet_ae_eq, Filtration.filtrationOfSet_eq_natural, measurableSet_filtrationOfSet, measurableSet_filtrationOfSet'
instCoeFunFiltrationForallMeasurableSpace πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
measurableSet_filtrationOfSet πŸ“–mathematicalMeasurableSet
Preorder.toLE
Filtration.seq
filtrationOfSet
β€”MeasurableSpace.measurableSet_generateFrom
measurableSet_filtrationOfSet' πŸ“–mathematicalMeasurableSetFiltration.seq
filtrationOfSet
β€”measurableSet_filtrationOfSet
le_rfl
measurableSet_of_filtration πŸ“–β€”MeasurableSet
Filtration.seq
β€”β€”Filtration.le
sigmaFinite_of_sigmaFiniteFiltration πŸ“–mathematicalβ€”SigmaFinite
Filtration.seq
Measure.trim
Filtration.le
β€”SigmaFiniteFiltration.SigmaFinite

MeasureTheory.Filtration

Definitions

NameCategoryTheorems
IsRightContinuous πŸ“–CompData
1 mathmath: instIsRightContinuousRightCont
const πŸ“–CompOp
1 mathmath: const_apply
cylinderEventsCompl πŸ“–CompOpβ€”
instBot πŸ“–CompOpβ€”
instCompleteLattice πŸ“–CompOpβ€”
instInfSet πŸ“–CompOp
1 mathmath: sInf_def
instInhabited πŸ“–CompOpβ€”
instLE πŸ“–CompOp
2 mathmath: le_rightCont, IsRightContinuous.RC
instMax πŸ“–CompOp
1 mathmath: coeFn_sup
instMin πŸ“–CompOp
1 mathmath: coeFn_inf
instSupSet πŸ“–CompOp
1 mathmath: sSup_def
instTop πŸ“–CompOpβ€”
limitProcess πŸ“–CompOp
13 mathmath: ProbabilityTheory.Kernel.memL1_limitProcess_densityProcess, MeasureTheory.Submartingale.ae_tendsto_limitProcess_of_uniformIntegrable, ProbabilityTheory.Kernel.density_ae_eq_limitProcess, ProbabilityTheory.Kernel.tendsto_eLpNorm_one_densityProcess_limitProcess, stronglyMeasurable_limit_process', memLp_limitProcess_of_eLpNorm_bdd, MeasureTheory.Submartingale.tendsto_eLpNorm_one_limitProcess, ProbabilityTheory.Kernel.tendsto_densityProcess_limitProcess, MeasureTheory.Submartingale.ae_tendsto_limitProcess, MeasureTheory.Martingale.ae_eq_condExp_limitProcess, ProbabilityTheory.Kernel.tendsto_eLpNorm_one_restrict_densityProcess_limitProcess, MeasureTheory.Submartingale.memLp_limitProcess, stronglyMeasurable_limitProcess
natural πŸ“–CompOp
4 mathmath: ProbabilityTheory.iIndepFun.indep_comap_natural_of_lt, stronglyAdapted_natural, filtrationOfSet_eq_natural, ProbabilityTheory.iIndepFun.condExp_natural_ae_eq_of_lt
piFinset πŸ“–CompOp
1 mathmath: piFinset_eq_comap_restrict
piLE πŸ“–CompOp
3 mathmath: ProbabilityTheory.Kernel.condExp_traj', ProbabilityTheory.Kernel.condExp_traj, piLE_eq_comap_frestrictLe
rightCont πŸ“–CompOp
14 mathmath: rightCont_eq_of_nhdsGT_eq_bot, rightCont_eq_self, rightCont_eq_of_isMax, rightCont_apply, rightCont_def, rightCont_self, rightCont_eq_of_not_isMax, IsRightContinuous.eq, rightCont_eq, le_rightCont, IsRightContinuous.RC, rightCont_eq_of_neBot_nhdsGT, instIsRightContinuousRightCont, rightCont_eq_of_exists_gt
seq πŸ“–CompOp
97 mathmath: MeasureTheory.IsPredictable.measurable_add_one, MeasureTheory.IsStoppingTime.measurableSet_eq_of_countable_range, ProbabilityTheory.Kernel.condExp_traj', MeasureTheory.IsStoppingTime.measurableSet, MeasureTheory.IsStoppingTime.measurableSet_gt, MeasureTheory.martingale_condExp, rightCont_eq_of_nhdsGT_eq_bot, ext_iff, MeasureTheory.BorelCantelli.martingalePart_process_ae_eq, ProbabilityTheory.Kernel.measurable_densityProcess_countableFiltration_aux, MeasureTheory.IsStoppingTime.measurableSet_ge_of_countable, MeasureTheory.IsStoppingTime.measurableSet_lt_of_isLUB, MeasureTheory.condExp_stopping_time_ae_eq_restrict_eq, condExp_condExp, MeasureTheory.sigmaFinite_of_sigmaFiniteFiltration, MeasureTheory.IsStoppingTime.measurableSpace_le_of_le_const, MeasureTheory.BorelCantelli.predictablePart_process_ae_eq, ProbabilityTheory.iIndepSet.condExp_indicator_filtrationOfSet_ae_eq, rightCont_eq_of_isMax, ProbabilityTheory.iIndepFun.indep_comap_natural_of_lt, MeasureTheory.IsStoppingTime.measurableSet_lt, ProbabilityTheory.measurableSet_partitionFiltration_of_mem, MeasureTheory.IsStoppingTime.measurableSet_lt_of_pred, MeasureTheory.IsStoppingTime.measurableSet_eq_le, MeasureTheory.IsStoppingTime.measurableSet_eq_of_countable, MeasureTheory.IsStoppingTime.measurableSet_le, ProbabilityTheory.measurable_countablePartitionSet_subtype, const_apply, rightCont_apply, ProbabilityTheory.Kernel.measurable_countableFiltration_densityProcess, MeasureTheory.IsStoppingTime.measurableSet_ge, MeasureTheory.Submartingale.stronglyMeasurable, ProbabilityTheory.Kernel.condExp_traj, rightCont_def, MeasureTheory.IsStoppingTime.measurableSet_lt_of_countable, MeasureTheory.IsStoppingTime.measurableSet_eq, MeasureTheory.measurableSet_preimage_stoppedValue_inter, MeasureTheory.measurableSet_filtrationOfSet, MeasureTheory.Adapted.measurable_le, le', rightCont_eq_of_not_isMax, MeasureTheory.tendsto_ae_condExp, ProbabilityTheory.measurableSet_partitionFiltration_memPartitionSet, ProbabilityTheory.iSup_partitionFiltration_eq_generateFrom_range, MeasureTheory.SigmaFiniteFiltration.SigmaFinite, ProbabilityTheory.measurableSet_countableFiltration_countablePartitionSet, MeasureTheory.IsStoppingTime.measurableSet_lt_le, MeasureTheory.condExp_stopping_time_ae_eq_restrict_eq_of_countable, MeasureTheory.Supermartingale.stronglyMeasurable, MeasureTheory.condExp_stopping_time_ae_eq_restrict_eq_of_countable_range, MeasureTheory.Supermartingale.condExp_ae_le, MeasureTheory.IsStoppingTime.measurableSpace_min_const, piFinset_eq_comap_restrict, MeasureTheory.tendsto_eLpNorm_condExp, ProbabilityTheory.iSup_countableFiltration, ProbabilityTheory.Kernel.stronglyMeasurable_countableFiltration_densityProcess, rightCont_eq, MeasureTheory.IsStoppingTime.measurableSet_lt_of_countable_range, ProbabilityTheory.Kernel.condExp_densityProcess, coeFn_sup, MeasureTheory.Martingale.condExp_ae_eq, MeasureTheory.StronglyAdapted.stronglyMeasurable_le, MeasureTheory.measurableSet_filtrationOfSet', MeasureTheory.martingalePart_eq_sum, MeasureTheory.IsPredictable.measurableSet_prodMk_add_one_of_predictable, mono, MeasureTheory.isPredictable_iff_measurable_add_one, sSup_def, ProbabilityTheory.iIndepFun.condExp_natural_ae_eq_of_lt, le, piLE_eq_comap_frestrictLe, ProbabilityTheory.measurableSet_countableFiltration_of_mem, MeasureTheory.submartingale_iff_condExp_sub_nonneg, MeasureTheory.Integrable.uniformIntegrable_condExp_filtration, ProbabilityTheory.measurable_memPartitionSet_subtype, ProbabilityTheory.iSup_partitionFiltration, MeasureTheory.Martingale.ae_eq_condExp_limitProcess, MeasureTheory.IsStoppingTime.measurableSet_ge_of_countable_range, MeasureTheory.Martingale.eq_condExp_of_tendsto_eLpNorm, MeasureTheory.IsStoppingTime.measurableSet_min_const_iff, ProbabilityTheory.measurable_partitionFiltration_memPartitionSet, MeasureTheory.Submartingale.exists_ae_trim_tendsto_of_bdd, rightCont_eq_of_neBot_nhdsGT, MeasureTheory.IsStoppingTime.measurableSpace_const, coeFn_inf, MeasureTheory.IsStoppingTime.measurable_of_le, MeasureTheory.Martingale.stronglyMeasurable, mono', MeasureTheory.IsStoppingTime.le_measurableSpace_of_const_le, ProbabilityTheory.measurable_countableFiltration_countablePartitionSet, MeasureTheory.Submartingale.ae_le_condExp, MeasureTheory.stronglyMeasurable_stoppedValue_of_le, MeasureTheory.Submartingale.condExp_sub_nonneg, rightCont_eq_of_exists_gt, MeasureTheory.IsStoppingTime.measurableSet_inter_eq_iff, stronglyMeasurable_limitProcess, sInf_def
Β«term_β‚ŠΒ» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
coeFn_inf πŸ“–mathematicalβ€”seq
MeasureTheory.Filtration
instMin
Pi.instMinForall_mathlib
MeasurableSpace
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
MeasurableSpace.instCompleteLattice
β€”β€”
coeFn_sup πŸ“–mathematicalβ€”seq
MeasureTheory.Filtration
instMax
Pi.instMaxForall_mathlib
MeasurableSpace
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
MeasurableSpace.instCompleteLattice
β€”β€”
condExp_condExp πŸ“–mathematicalPreorder.toLEFilter.EventuallyEq
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.condExp
seq
β€”le
MeasureTheory.condExp_condExp_of_le
mono
const_apply πŸ“–mathematicalMeasurableSpace
MeasurableSpace.instLE
seq
const
β€”β€”
ext πŸ“–β€”seqβ€”β€”β€”
ext_iff πŸ“–mathematicalβ€”seqβ€”ext
filtrationOfSet_eq_natural πŸ“–mathematicalTopologicalSpace.MetrizableSpace
BorelSpace
Nontrivial
MeasurableSet
MeasureTheory.filtrationOfSet
natural
Set.indicator
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MulOne.toOne
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
MeasureTheory.StronglyMeasurable.indicator
Pi.instOne
MeasureTheory.stronglyMeasurable_one
β€”MeasureTheory.StronglyMeasurable.indicator
MeasureTheory.stronglyMeasurable_one
iSup_congr_Prop
MeasurableSpace.measurableSpace_iSup_eq
le_antisymm
MeasurableSpace.generateFrom_le
MeasurableSpace.measurableSet_generateFrom
MeasurableSpace.comap_eq_generateFrom
MeasurableSingletonClass.measurableSet_singleton
OpensMeasurableSpace.toMeasurableSingletonClass
BorelSpace.opensMeasurable
T5Space.toT1Space
T6Space.toT5Space
instT6SpaceOfMetrizableSpace
Set.ext
NeZero.one
Set.indicator_const_preimage
MeasurableSet.univ
MeasurableSet.compl
Set.mem_singleton_iff
MeasurableSpace.measurableSet_empty
instIsRightContinuousRightCont πŸ“–mathematicalβ€”IsRightContinuous
rightCont
β€”Eq.le
rightCont_self
le πŸ“–mathematicalβ€”MeasurableSpace
MeasurableSpace.instLE
seq
β€”le'
le' πŸ“–mathematicalβ€”MeasurableSpace
MeasurableSpace.instLE
seq
β€”β€”
le_rightCont πŸ“–mathematicalβ€”MeasureTheory.Filtration
PartialOrder.toPreorder
instLE
rightCont
β€”rightCont_eq_of_neBot_nhdsGT
le_iInfβ‚‚
mono
LT.lt.le
rightCont_apply
le_refl
memLp_limitProcess_of_eLpNorm_bdd πŸ“–mathematicalMeasureTheory.AEStronglyMeasurable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
MeasureTheory.eLpNorm
ContinuousENorm.toENorm
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
SeminormedAddGroup.toContinuousENorm
ENNReal.ofNNReal
MeasureTheory.MemLp
limitProcess
Nat.instPreorder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”MeasureTheory.Measure.instOuterMeasureClass
limitProcess.eq_1
MeasureTheory.StronglyMeasurable.aestronglyMeasurable
MeasureTheory.StronglyMeasurable.mono
sSup_le
le
lt_of_le_of_lt
MeasureTheory.Lp.eLpNorm_lim_le_liminf_eLpNorm
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
LE.le.trans
le_rfl
ENNReal.coe_lt_top
MeasureTheory.MemLp.zero
mono πŸ“–mathematicalPreorder.toLEMeasurableSpace
MeasurableSpace.instLE
seq
β€”mono'
mono' πŸ“–mathematicalβ€”Monotone
MeasurableSpace
PartialOrder.toPreorder
MeasurableSpace.instPartialOrder
seq
β€”β€”
piFinset_eq_comap_restrict πŸ“–mathematicalβ€”seq
Finset
PartialOrder.toPreorder
Finset.partialOrder
MeasurableSpace.pi
piFinset
MeasurableSpace.comap
Set.restrict
SetLike.coe
Finset.instSetLike
Set.Elem
Set
Set.instMembership
β€”β€”
piLE_eq_comap_frestrictLe πŸ“–mathematicalβ€”seq
MeasurableSpace.pi
piLE
MeasurableSpace.comap
Preorder.frestrictLe
Finset
SetLike.instMembership
Finset.instSetLike
Finset.Iic
β€”le_antisymm
MeasurableSpace.comap_mono
Measurable.comap_le
MeasurableEquiv.measurable
Preorder.piCongrLeft_comp_restrictLe
MeasurableEquiv.coe_piCongrLeft
MeasurableSpace.comap_comp
rightCont_apply πŸ“–mathematicalβ€”seq
PartialOrder.toPreorder
rightCont
MeasurableSpace
Filter.NeBot
nhdsWithin
Set.Ioi
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
MeasurableSpace.instCompleteLattice
Preorder.toLT
β€”rightCont_def
OrderTopology.topology_eq_generate_intervals
rightCont_def πŸ“–mathematicalβ€”rightCont
PartialOrder.toPreorder
MeasurableSpace
Filter.NeBot
nhdsWithin
Preorder.topology
Set.Ioi
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
MeasurableSpace.instCompleteLattice
Preorder.toLT
seq
β€”β€”
rightCont_eq πŸ“–mathematicalβ€”seq
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
rightCont
iInf
MeasurableSpace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
MeasurableSpace.instCompleteLattice
Preorder.toLT
β€”rightCont_eq_of_not_isMax
not_isMax
rightCont_eq_of_exists_gt πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Ioo
Set
Set.instEmptyCollection
seq
rightCont
β€”covBy_iff_Ioo_eq
rightCont_eq_of_nhdsGT_eq_bot
CovBy.nhdsGT
instClosedIciTopology
OrderTopology.to_orderClosedTopology
rightCont_eq_of_isMax πŸ“–mathematicalIsMax
Preorder.toLE
PartialOrder.toPreorder
seq
rightCont
β€”rightCont_eq_of_nhdsGT_eq_bot
nhdsWithin_empty
IsMax.Ioi_eq
rightCont_eq_of_neBot_nhdsGT πŸ“–mathematicalβ€”seq
PartialOrder.toPreorder
rightCont
iInf
MeasurableSpace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
MeasurableSpace.instCompleteLattice
Preorder.toLT
β€”rightCont_apply
rightCont_eq_of_nhdsGT_eq_bot πŸ“–mathematicalnhdsWithin
Set.Ioi
PartialOrder.toPreorder
Bot.bot
Filter
Filter.instBot
seq
rightCont
β€”rightCont_apply
Filter.neBot_iff
rightCont_eq_of_not_isMax πŸ“–mathematicalIsMax
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
seq
rightCont
iInf
MeasurableSpace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
MeasurableSpace.instCompleteLattice
Preorder.toLT
β€”nhdsGT_neBot_of_exists_gt
not_isMax_iff
rightCont_eq_of_neBot_nhdsGT
rightCont_eq_self πŸ“–mathematicalβ€”rightCont
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”ext
MeasurableSpace.ext
rightCont_eq_of_nhdsGT_eq_bot
SuccOrder.nhdsGT
instClosedIciTopology
OrderTopology.to_orderClosedTopology
rightCont_self πŸ“–mathematicalβ€”rightContβ€”le_antisymm
le_iInfβ‚‚
mem_nhdsWithin_iff_exists_mem_nhds_inter
IsOpen.mem_nhds
isOpen_Iio'
Filter.NeBot.nonempty_of_mem
iInfβ‚‚_le_of_le
le_rfl
rightCont_eq_of_neBot_nhdsGT
iInf_congr_Prop
rightCont_apply
mono
LT.lt.le
LE.le.trans
le_refl
le_rightCont
sInf_def πŸ“–mathematicalβ€”seq
InfSet.sInf
MeasureTheory.Filtration
instInfSet
MeasurableSpace
Set.Nonempty
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
MeasurableSpace.instCompleteLattice
Set.image
β€”β€”
sSup_def πŸ“–mathematicalβ€”seq
SupSet.sSup
MeasureTheory.Filtration
instSupSet
MeasurableSpace
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
MeasurableSpace.instCompleteLattice
Set.image
β€”β€”
stronglyMeasurable_limitProcess πŸ“–mathematicalβ€”MeasureTheory.StronglyMeasurable
iSup
MeasurableSpace
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
MeasurableSpace.instCompleteLattice
seq
limitProcess
β€”MeasureTheory.Measure.instOuterMeasureClass
limitProcess.eq_1
MeasureTheory.stronglyMeasurable_zero
stronglyMeasurable_limit_process' πŸ“–mathematicalβ€”MeasureTheory.StronglyMeasurable
limitProcess
β€”MeasureTheory.StronglyMeasurable.mono
stronglyMeasurable_limitProcess
sSup_le
le

MeasureTheory.Filtration.IsRightContinuous

Theorems

NameKindAssumesProvesValidatesDepends On
RC πŸ“–mathematicalβ€”MeasureTheory.Filtration
PartialOrder.toPreorder
MeasureTheory.Filtration.instLE
MeasureTheory.Filtration.rightCont
β€”β€”
eq πŸ“–mathematicalβ€”MeasureTheory.Filtration.rightContβ€”le_antisymm
MeasureTheory.Filtration.le_rightCont
RC
measurableSet πŸ“–β€”MeasurableSet
MeasureTheory.Filtration.seq
PartialOrder.toPreorder
MeasureTheory.Filtration.rightCont
β€”β€”eq

MeasureTheory.Integrable

Theorems

NameKindAssumesProvesValidatesDepends On
uniformIntegrable_condExp_filtration πŸ“–mathematicalMeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
MeasureTheory.UniformIntegrable
Real.normedAddCommGroup
MeasureTheory.condExp
MeasureTheory.Filtration.seq
Real.instCompleteSpace
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
ENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”uniformIntegrable_condExp
MeasureTheory.Filtration.le

MeasureTheory.IsFiniteMeasure

Theorems

NameKindAssumesProvesValidatesDepends On
sigmaFiniteFiltration πŸ“–mathematicalβ€”MeasureTheory.SigmaFiniteFiltrationβ€”MeasureTheory.Filtration.le
toSigmaFinite
MeasureTheory.isFiniteMeasure_trim

MeasureTheory.SigmaFiniteFiltration

Theorems

NameKindAssumesProvesValidatesDepends On
SigmaFinite πŸ“–mathematicalβ€”MeasureTheory.SigmaFinite
MeasureTheory.Filtration.seq
MeasureTheory.Measure.trim
MeasureTheory.Filtration.le
β€”β€”

---

← Back to Index