📁 Source: Mathlib/Probability/Process/HittingTime.lean
hitting
hittingAfter
hittingBtwn
isStoppingTime_hittingAfter
isStoppingTime_hittingBtwn
isStoppingTime_hittingBtwn_isStoppingTime
hittingAfter_anti
hittingAfter_apply_anti
hittingAfter_apply_mono
hittingAfter_bot_le_iff
hittingAfter_def
hittingAfter_empty
hittingAfter_eq_sInf
hittingAfter_eq_top_iff
hittingAfter_isStoppingTime
hittingAfter_le_iff
hittingAfter_le_of_mem
hittingAfter_lt_iff
hittingAfter_mem_set
hittingAfter_mem_set_of_ne_top
hittingAfter_mono
hittingAfter_univ
hittingBtwn_anti
hittingBtwn_apply_anti
hittingBtwn_apply_mono_left
hittingBtwn_apply_mono_right
hittingBtwn_bot_le_iff
hittingBtwn_def
hittingBtwn_empty
hittingBtwn_eq_end_iff
hittingBtwn_eq_hittingBtwn_of_exists
hittingBtwn_eq_sInf
hittingBtwn_isStoppingTime
hittingBtwn_le
hittingBtwn_le_iff_of_exists
hittingBtwn_le_iff_of_lt
hittingBtwn_le_of_mem
hittingBtwn_lt_iff
hittingBtwn_mem_Icc
hittingBtwn_mem_set
hittingBtwn_mem_set_of_hittingBtwn_lt
hittingBtwn_mono
hittingBtwn_mono_left
hittingBtwn_mono_right
hittingBtwn_of_le
hittingBtwn_of_lt
hittingBtwn_univ
hitting_bot_le_iff
hitting_def
hitting_eq_end_iff
hitting_eq_hitting_of_exists
hitting_eq_sInf
hitting_isStoppingTime
hitting_le
hitting_le_iff_of_exists
hitting_le_iff_of_lt
hitting_le_of_mem
hitting_lt_iff
hitting_mem_Icc
hitting_mem_set
hitting_mem_set_of_hitting_lt
hitting_mono
hitting_of_le
hitting_of_lt
isStoppingTime_hitting_isStoppingTime
le_hitting
le_hittingAfter
le_hittingBtwn
le_hittingBtwn_of_exists
le_hitting_of_exists
notMem_of_lt_hitting
notMem_of_lt_hittingAfter
notMem_of_lt_hittingBtwn
stoppedValue_hittingBtwn_mem
stoppedValue_hitting_mem
Adapted.isStoppingTime_hittingAfter
upperCrossingTime_succ_eq
smul_le_stoppedValue_hittingBtwn
Adapted.isStoppingTime_hittingBtwn
lowerCrossingTime_zero
smul_le_stoppedValue_hitting
upperCrossingTime_succ
Adapted.isStoppingTime_hittingBtwn_isStoppingTime
Antitone
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Pi.preorder
WithTop
WithTop.instPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
csInf_le_csInf
Set.setOf_subset_setOf_of_imp
Mathlib.Tactic.GCongr.and_right_mono
Set.mem_of_subset_of_mem
Monotone
Preorder.toLE
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Bot.bot
OrderBot.toBot
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrderBot.toOrderBot
WithTop.some
Set.instMembership
Set.Icc_bot
InfSet.sInf
setOf
Top.top
WithTop.top
Set.instEmptyCollection
infSet_to_nonempty
CompleteLattice.toConditionallyCompleteLattice
CompleteLattice.toLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Adapted
MeasurableSet
IsStoppingTime
Set.Icc
supSet_to_nonempty
CanLift.prf
WithTop.canLift
WithTop.untopA.congr_simp
le_trans
hittingAfter.eq_1
csInf_le
BddBelow.inter_of_left
bddBelow_Ici
Set.mem_inter
Preorder.toLT
Set.Ico
lt_of_le_of_lt
WithTop.untopA
ConditionallyCompletePartialOrderSup.toSupSet
csInf_mem
le_imp_le_of_le_of_le
le_refl
LE.le.trans
Set.univ
le_rfl
csInf_Ici
Set.inter_subset_inter
subset_refl
Set.instReflSubset
csInf_le_of_le
lt_or_ge
Set.instInter
hittingBtwn.eq_1
le_antisymm
le_csInf
Set.Icc_subset_Icc_right
bddBelow_Icc
le_of_not_ge
Set.Icc_subset_Icc
OrderTop.toTop
BoundedOrder.toOrderTop
Set.Iic_top
Set.univ_inter
sInf_eq_top
le_min
min_le_min
min_rec'
min_le_left
min_le_right
not_le
Mathlib.Tactic.Push.not_and_eq
LT.lt.le
Set.mem_inter_iff
LT.lt.ne
Eq.le
Mathlib.Tactic.Push.not_forall_eq
le_iff_eq_or_lt
Set.mem_Icc
Set.Icc_self
Set.inter_eq_left
Set.singleton_subset_iff
csInf_singleton
SemilatticeInf.toMin
Lattice.toSemilatticeInf
Set.inter_univ
csInf_Icc
inf_of_le_left
Set.Icc_eq_empty
Set.Icc_eq_empty_of_lt
stoppedValue
Set.nonempty_of_mem
MeasureTheory.Adapted
MeasureTheory.IsStoppingTime
MeasureTheory.hittingAfter
Set.ext
Set.iUnion_congr_Prop
MeasurableSet.iUnion
Prop.countable
MeasureTheory.Filtration.mono
MeasureTheory.hittingBtwn
le_or_gt
MeasureTheory.hittingBtwn_le
MeasureTheory.hittingBtwn_le_iff_of_lt
LT.lt.trans_le
MeasureTheory.le_hittingBtwn
Set.union_empty
MeasurableSet.inter
MeasureTheory.IsStoppingTime.measurableSet_eq
---
← Back to Index