Documentation Verification Report

StrongLaw

πŸ“ Source: Mathlib/Probability/StrongLaw.lean

Statistics

MetricCount
Definitionstruncation
1
Theoremsintegrable_truncation, memLp_truncation, truncation, truncation, abs_truncation_le_abs_self, abs_truncation_le_bound, integral_truncation_eq_intervalIntegral, integral_truncation_eq_intervalIntegral_of_nonneg, integral_truncation_le_integral_of_nonneg, moment_truncation_eq_intervalIntegral, moment_truncation_eq_intervalIntegral_of_nonneg, strong_law_Lp, strong_law_ae, strong_law_ae_of_measurable, strong_law_ae_real, strong_law_ae_simpleFunc_comp, strong_law_aux1, strong_law_aux2, strong_law_aux3, strong_law_aux4, strong_law_aux5, strong_law_aux6, strong_law_aux7, sum_prob_mem_Ioc_le, sum_variance_truncation_le, tendsto_integral_truncation, truncation_eq_of_nonneg, truncation_eq_self, truncation_nonneg, truncation_zero, tsum_prob_mem_Ioi_lt_top
31
Total32

MeasureTheory.AEStronglyMeasurable

Theorems

NameKindAssumesProvesValidatesDepends On
integrable_truncation πŸ“–mathematicalMeasureTheory.AEStronglyMeasurable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
MeasureTheory.Integrable
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
ProbabilityTheory.truncation
β€”MeasureTheory.memLp_one_iff_integrable
memLp_truncation
memLp_truncation πŸ“–mathematicalMeasureTheory.AEStronglyMeasurable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
MeasureTheory.MemLp
ContinuousENorm.toENorm
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
SeminormedAddGroup.toContinuousENorm
ProbabilityTheory.truncation
β€”MeasureTheory.MemLp.of_bound
truncation
Filter.Eventually.of_forall
MeasureTheory.Measure.instOuterMeasureClass
ProbabilityTheory.abs_truncation_le_bound
truncation πŸ“–mathematicalMeasureTheory.AEStronglyMeasurable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ProbabilityTheory.truncationβ€”comp_aemeasurable
MeasureTheory.StronglyMeasurable.aestronglyMeasurable
MeasureTheory.StronglyMeasurable.indicator
stronglyMeasurable_id
PseudoEMetricSpace.pseudoMetrizableSpace
BorelSpace.opensMeasurable
Real.borelSpace
instSecondCountableTopologyReal
measurableSet_Ioc
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
aemeasurable

ProbabilityTheory

Definitions

NameCategoryTheorems
truncation πŸ“–CompOp
22 mathmath: MeasureTheory.AEStronglyMeasurable.memLp_truncation, tendsto_integral_truncation, abs_truncation_le_bound, integral_truncation_eq_intervalIntegral, integral_truncation_eq_intervalIntegral_of_nonneg, sum_variance_truncation_le, moment_truncation_eq_intervalIntegral_of_nonneg, truncation_eq_self, MeasureTheory.AEStronglyMeasurable.truncation, moment_truncation_eq_intervalIntegral, IdentDistrib.truncation, integral_truncation_le_integral_of_nonneg, truncation_eq_of_nonneg, MeasureTheory.AEStronglyMeasurable.integrable_truncation, strong_law_aux4, abs_truncation_le_abs_self, strong_law_aux1, strong_law_aux2, strong_law_aux3, strong_law_aux5, truncation_nonneg, truncation_zero

Theorems

NameKindAssumesProvesValidatesDepends On
abs_truncation_le_abs_self πŸ“–mathematicalβ€”Real
Real.instLE
abs
Real.lattice
Real.instAddGroup
truncation
β€”le_rfl
abs_zero
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
abs_truncation_le_bound πŸ“–mathematicalβ€”Real
Real.instLE
abs
Real.lattice
Real.instAddGroup
truncation
β€”abs_le_abs
neg_le
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
LT.lt.le
abs_zero
integral_truncation_eq_intervalIntegral πŸ“–mathematicalMeasureTheory.AEStronglyMeasurable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instLE
Real.instZero
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
truncation
intervalIntegral
Real.instNeg
MeasureTheory.Measure.map
Real.measurableSpace
β€”pow_one
moment_truncation_eq_intervalIntegral
one_ne_zero
integral_truncation_eq_intervalIntegral_of_nonneg πŸ“–mathematicalMeasureTheory.AEStronglyMeasurable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Pi.hasLe
Real.instLE
Pi.instZero
Real.instZero
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
truncation
intervalIntegral
MeasureTheory.Measure.map
Real.measurableSpace
β€”pow_one
moment_truncation_eq_intervalIntegral_of_nonneg
one_ne_zero
integral_truncation_le_integral_of_nonneg πŸ“–mathematicalMeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
Pi.hasLe
Real.instLE
Pi.instZero
Real.instZero
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
truncation
β€”MeasureTheory.integral_mono_of_nonneg
Real.instIsOrderedAddMonoid
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
Real.instIsStrictOrderedRing
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Filter.Eventually.of_forall
MeasureTheory.Measure.instOuterMeasureClass
truncation_nonneg
le_abs_self
abs_truncation_le_abs_self
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
moment_truncation_eq_intervalIntegral πŸ“–mathematicalMeasureTheory.AEStronglyMeasurable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instLE
Real.instZero
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Monoid.toNatPow
Real.instMonoid
truncation
intervalIntegral
Real.instNeg
MeasureTheory.Measure.map
Real.measurableSpace
β€”measurableSet_Ioc
BorelSpace.opensMeasurable
Real.borelSpace
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
MeasureTheory.integral_map
MeasureTheory.AEStronglyMeasurable.aemeasurable
PseudoEMetricSpace.pseudoMetrizableSpace
Measurable.aestronglyMeasurable
instSecondCountableTopologyReal
Measurable.pow_const
Monoid.measurablePow
ContinuousMul.measurableMulβ‚‚
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Measurable.indicator
measurable_id
intervalIntegral.integral_of_le
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.neg_congr
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.mul_nonpos
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Meta.NormNum.isNat_lt_true
RCLike.charZero_rclike
Mathlib.Tactic.Linarith.sub_neg_of_lt
MeasureTheory.integral_indicator
ite_pow
zero_pow
moment_truncation_eq_intervalIntegral_of_nonneg πŸ“–mathematicalMeasureTheory.AEStronglyMeasurable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Pi.hasLe
Real.instLE
Pi.instZero
Real.instZero
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Monoid.toNatPow
Real.instMonoid
truncation
intervalIntegral
MeasureTheory.Measure.map
Real.measurableSpace
β€”measurableSet_Ioc
BorelSpace.opensMeasurable
Real.borelSpace
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
truncation_eq_of_nonneg
le_or_gt
MeasureTheory.integral_map
MeasureTheory.AEStronglyMeasurable.aemeasurable
PseudoEMetricSpace.pseudoMetrizableSpace
Measurable.aestronglyMeasurable
instSecondCountableTopologyReal
Measurable.pow_const
Monoid.measurablePow
ContinuousMul.measurableMulβ‚‚
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Measurable.indicator
measurable_id
intervalIntegral.integral_of_le
MeasureTheory.integral_indicator
ite_pow
zero_pow
intervalIntegral.integral_of_ge
LT.lt.le
Set.Ioc_eq_empty_of_le
Set.indicator_empty
MeasureTheory.integral_zero
MeasureTheory.integral_eq_zero_of_ae
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.ae_map_iff
measurableSet_Ici
instClosedIciTopology
Filter.Eventually.of_forall
Filter.mp_mem
Filter.univ_mem'
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
strong_law_Lp πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
MeasureTheory.MemLp
ContinuousENorm.toENorm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toPseudoMetricSpace
Pairwise
Function.onFun
IndepFun
IdentDistrib
Filter.Tendsto
MeasureTheory.eLpNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
Real.instInv
Real.instNatCast
Finset.sum
Finset.range
MeasureTheory.integral
Filter.atTop
Nat.instPreorder
nhds
ENNReal.instTopologicalSpace
instZeroENNReal
β€”MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.ae_all_iff
instCountableNat
IdentDistrib.ae_snd
IdentDistrib.symm
measurableSet_eq
OpensMeasurableSpace.toMeasurableSingletonClass
BorelSpace.opensMeasurable
T5Space.toT1Space
T6Space.toT5Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
MeasureTheory.integral_eq_zero_of_ae
sub_zero
MeasureTheory.eLpNorm_eq_zero_of_ae_zero
Filter.mp_mem
Filter.univ_mem'
Finset.sum_congr
Finset.sum_const_zero
smul_zero
ENNReal.instT5Space
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
MeasureTheory.MemLp.isProbabilityMeasure_of_indepFun
LT.lt.ne'
LT.lt.trans_le
zero_lt_one
IsOrderedRing.toZeroLEOneClass
ENNReal.instIsOrderedRing
NeZero.charZero_one
ENNReal.instCharZero
zero_ne_one
IdentDistrib.aestronglyMeasurable_iff
PseudoEMetricSpace.pseudoMetrizableSpace
MeasureTheory.MemLp.integrable
MeasureTheory.IsZeroOrProbabilityMeasure.toIsFiniteMeasure
MeasureTheory.instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
MeasureTheory.AEStronglyMeasurable.const_smul
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
Finset.aestronglyMeasurable_fun_sum
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
MeasureTheory.tendsto_Lp_finite_of_tendstoInMeasure
MeasureTheory.memLp_const
Finset.sum_apply
MeasureTheory.UniformIntegrable.unifIntegrable
MeasureTheory.uniformIntegrable_average
MemLp.uniformIntegrable_of_identDistrib
MeasureTheory.tendstoInMeasure_of_tendsto_ae
strong_law_ae
strong_law_ae πŸ“–mathematicalMeasureTheory.Integrable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
Pairwise
Function.onFun
IndepFun
IdentDistrib
Filter.Eventually
Filter.Tendsto
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
Real.instInv
Real.instNatCast
Finset.sum
Finset.range
Filter.atTop
Nat.instPreorder
nhds
MeasureTheory.integral
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
β€”MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.ae_all_iff
instCountableNat
IdentDistrib.ae_snd
IdentDistrib.symm
measurableSet_eq
OpensMeasurableSpace.toMeasurableSingletonClass
BorelSpace.opensMeasurable
T5Space.toT1Space
T6Space.toT5Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
Filter.mp_mem
Filter.univ_mem'
Finset.sum_congr
Finset.sum_const_zero
smul_zero
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
MeasureTheory.integral_eq_zero_of_ae
MeasureTheory.Integrable.isProbabilityMeasure_of_indepFun
zero_ne_one
IdentDistrib.integrable_iff
MeasureTheory.Integrable.congr
strong_law_ae_of_measurable
IndepFun.congr
IdentDistrib.trans
PseudoEMetricSpace.pseudoMetrizableSpace
MeasureTheory.integral_congr_ae
Filter.Tendsto.congr
strong_law_ae_of_measurable πŸ“–mathematicalMeasureTheory.Integrable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
MeasureTheory.StronglyMeasurable
Pairwise
Function.onFun
IndepFun
IdentDistrib
Filter.Eventually
Filter.Tendsto
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
Real.instInv
Real.instNatCast
Finset.sum
Finset.range
Filter.atTop
Nat.instPreorder
nhds
MeasureTheory.integral
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
β€”Set.union_singleton
MeasureTheory.StronglyMeasurable.separableSpace_range_union_singleton
PseudoEMetricSpace.pseudoMetrizableSpace
BorelSpace.opensMeasurable
MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.ae_all_iff
instCountableNat
strong_law_ae_simpleFunc_comp
MeasureTheory.StronglyMeasurable.measurable
Measurable.norm
Measurable.sub_stronglyMeasurable
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsTopologicalAddGroup.toContinuousNeg
measurable_id
MeasureTheory.SimpleFunc.stronglyMeasurable
strong_law_ae_real
MeasureTheory.Integrable.norm
MeasureTheory.Integrable.sub
MeasureTheory.SimpleFunc.integrable_of_isFiniteMeasure
MeasureTheory.IsZeroOrProbabilityMeasure.toIsFiniteMeasure
MeasureTheory.instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
IndepFun.comp
IdentDistrib.comp
Filter.mp_mem
Filter.univ_mem'
tendsto_iff_norm_sub_tendsto_zero
tendsto_order
instOrderTopologyReal
Filter.Eventually.of_forall
LT.lt.trans_le
norm_nonneg
Nat.instAtLeastTwoHAddOfNat
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Nat.cast_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.sub_neg_of_lt
CancelDenoms.sub_subst
CancelDenoms.add_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Meta.NormNum.isNat_lt_true
norm_sub_rev
Filter.Eventually.exists
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
MeasureTheory.tendsto_integral_norm_approxOn_sub
MeasureTheory.integral_sub
LE.le.trans_lt
MeasureTheory.norm_integral_le_integral_norm
Finset.sum_sub_distrib
smul_sub
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Tactic.Abel.zero_termg
Mathlib.Tactic.Abel.const_add_termg
add_zero
norm_add₃_le
add_le_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
norm_smul
NormedSpace.toNormSMulClass
norm_inv
RCLike.norm_natCast
div_eq_inv_mul
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
norm_sum_le
inv_nonneg_of_nonneg
Nat.cast_nonneg'
Real.instZeroLEOneClass
le_of_lt
add_le_add_left
LT.lt.le
strong_law_ae_real πŸ“–mathematicalMeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
Pairwise
Function.onFun
IndepFun
Real.measurableSpace
IdentDistrib
Filter.Eventually
Filter.Tendsto
DivInvMonoid.toDiv
Real.instDivInvMonoid
Finset.sum
Real.instAddCommMonoid
Finset.range
Real.instNatCast
Filter.atTop
Nat.instPreorder
nhds
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
β€”MeasureTheory.Measure.instOuterMeasureClass
MeasureTheory.ae_all_iff
instCountableNat
IdentDistrib.ae_snd
IdentDistrib.symm
measurableSet_eq
instMeasurableSingletonClassOfMeasurableEq
instMeasurableEqOfSecondCountableTopologyOfT2Space
BorelSpace.opensMeasurable
Real.borelSpace
instSecondCountableTopologyReal
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Filter.mp_mem
Filter.univ_mem'
Finset.sum_congr
Finset.sum_const_zero
zero_div
T5Space.toT1Space
T6Space.toT5Space
instT6SpaceOfMetrizableSpace
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
MeasureTheory.integral_eq_zero_of_ae
MeasureTheory.Integrable.isProbabilityMeasure_of_indepFun
zero_ne_one
Measurable.max
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
measurable_id'
measurable_const
Measurable.neg
ContinuousNeg.measurableNeg
IsTopologicalRing.toContinuousNeg
instIsTopologicalRingReal
strong_law_aux7
MeasureTheory.Integrable.pos_part
IndepFun.comp
IdentDistrib.comp
le_max_right
MeasureTheory.Integrable.neg_part
max_zero_sub_max_neg_zero_eq_self
IsOrderedAddMonoid.toAddLeftMono
MeasureTheory.integral_sub
Filter.Tendsto.sub
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
strong_law_ae_simpleFunc_comp πŸ“–mathematicalMeasurable
Pairwise
Function.onFun
IndepFun
IdentDistrib
Filter.Eventually
Filter.Tendsto
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
Real.instInv
Real.instNatCast
Finset.sum
Finset.range
DFunLike.coe
MeasureTheory.SimpleFunc
MeasureTheory.SimpleFunc.instFunLike
Filter.atTop
Nat.instPreorder
nhds
MeasureTheory.integral
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
β€”MeasureTheory.SimpleFunc.induction
MeasureTheory.Measure.instOuterMeasureClass
Finset.sum_congr
Set.piecewise_eq_indicator
measurable_indicator_const_iff
instMeasurableSingletonClassOfMeasurableEq
instMeasurableEqOfSecondCountableTopologyOfT2Space
BorelSpace.opensMeasurable
Real.borelSpace
instSecondCountableTopologyReal
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
NeZero.charZero_one
RCLike.charZero_rclike
strong_law_ae_real
MeasureTheory.SimpleFunc.integrable_of_isFiniteMeasure
MeasureTheory.IsZeroOrProbabilityMeasure.toIsFiniteMeasure
MeasureTheory.instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
IndepFun.comp
IdentDistrib.comp
Filter.mp_mem
Filter.univ_mem'
Set.indicator_smul_const_apply
one_smul
integral_smul_const
smul_smul
Filter.Tendsto.smul_const
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
Finset.sum_add_distrib
smul_add
MeasureTheory.integral_add
Filter.Tendsto.add
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
strong_law_aux1 πŸ“–mathematicalMeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.MeasureSpace.volume
Pairwise
Function.onFun
IndepFun
Real.measurableSpace
IdentDistrib
Real.instLE
Real.instZero
Real.instLT
Real.instOne
Filter.Eventually
abs
Real.lattice
Real.instAddGroup
Real.instSub
Finset.sum
Real.instAddCommMonoid
Finset.range
Nat.floor
Real.semiring
Real.partialOrder
FloorRing.toFloorSemiring
Real.instRing
Real.linearOrder
Real.instIsStrictOrderedRing
Real.instFloorRing
Monoid.toNatPow
Real.instMonoid
truncation
Real.instNatCast
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Pi.addCommMonoid
Real.instMul
Filter.atTop
Nat.instPreorder
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
β€”LT.lt.trans
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IdentDistrib.aestronglyMeasurable_snd
PseudoEMetricSpace.pseudoMetrizableSpace
Real.borelSpace
IdentDistrib.symm
MeasureTheory.StronglyMeasurable.indicator
stronglyMeasurable_id
BorelSpace.opensMeasurable
instSecondCountableTopologyReal
measurableSet_Ioc
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
Real.instIsStrictOrderedRing
MeasureTheory.Measure.instOuterMeasureClass
Nat.floor_mono
pow_right_monoβ‚€
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
LT.lt.le
Nat.instAtLeastTwoHAddOfNat
Finset.sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
mul_le_mul_of_nonneg_left
IdentDistrib.variance_eq
IdentDistrib.truncation
variance_le_expectation_sq
MeasureTheory.AEStronglyMeasurable.truncation
inv_nonneg_of_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Even.pow_nonneg
IsStrictOrderedRing.toIsOrderedRing
AddGroup.existsAddOfLE
even_two_mul
sum_variance_truncation_le
IndepFun.variance_sum
MeasureTheory.AEStronglyMeasurable.memLp_truncation
MeasureTheory.IsZeroOrProbabilityMeasure.toIsFiniteMeasure
MeasureTheory.instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
IdentDistrib.aestronglyMeasurable_fst
IndepFun.comp
MeasureTheory.StronglyMeasurable.measurable
Finset.sum_congr
Finset.mul_sum
Finset.sum_mul
Finset.sum_sigma'
Finset.sum_nbij'
LT.lt.trans_le
Sigma.eta
eq_zero_or_pos
Nat.instCanonicallyOrderedAdd
Nat.cast_zero
truncation_zero
variance_zero
MulZeroClass.mul_zero
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Finset.filter.congr_simp
one_div
sum_div_nat_floor_pow_sq_le_div_sq
Nat.cast_pos
Real.instNontrivial
variance_nonneg
div_eq_mul_inv
mul_assoc
mul_nonneg
pow_nonneg
inv_nonneg
sub_nonneg
covariant_swap_add_of_covariant_add
ENNReal.instIsOrderedAddMonoid
meas_ge_le_variance_div_sq
MeasureTheory.memLp_finset_sum'
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
mul_pos
Nat.instZeroLEOneClass
Nat.le_floor
Nat.cast_one
one_le_powβ‚€
ENNReal.ofReal_sum_of_nonneg
div_nonneg
sq_nonneg
ENNReal.ofReal_le_ofReal
div_eq_inv_mul
mul_inv
mul_comm
mul_pow
inv_pow
le_of_lt
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
inv_pos_of_pos
LE.le.trans_lt
le_of_tendsto_of_tendsto'
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
Filter.atTop_neBot
instIsDirectedOrder
Nat.instIsStrictOrderedRing
instArchimedeanNat
ENNReal.tendsto_nat_tsum
tendsto_const_nhds
ENNReal.ofReal_lt_top
Filter.mp_mem
MeasureTheory.ae_eventually_notMem
LT.lt.ne
Filter.univ_mem'
Finset.sum_apply
strong_law_aux2 πŸ“–mathematicalMeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.MeasureSpace.volume
Pairwise
Function.onFun
IndepFun
Real.measurableSpace
IdentDistrib
Real.instLE
Real.instZero
Real.instLT
Real.instOne
Filter.Eventually
Asymptotics.IsLittleO
Real.norm
Filter.atTop
Nat.instPreorder
Real.instSub
Finset.sum
Real.instAddCommMonoid
Finset.range
Nat.floor
Real.semiring
Real.partialOrder
FloorRing.toFloorSemiring
Real.instRing
Real.linearOrder
Real.instIsStrictOrderedRing
Real.instFloorRing
Monoid.toNatPow
Real.instMonoid
truncation
Real.instNatCast
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Pi.addCommMonoid
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
β€”Real.instIsStrictOrderedRing
MeasureTheory.Measure.instOuterMeasureClass
exists_seq_strictAnti_tendsto
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
TopologicalSpace.PseudoMetrizableSpace.firstCountableTopology
PseudoEMetricSpace.pseudoMetrizableSpace
strong_law_aux1
Filter.mp_mem
MeasureTheory.ae_all_iff
instCountableNat
Filter.univ_mem'
Asymptotics.isLittleO_iff
Filter.Eventually.exists
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
tendsto_order
Nat.abs_cast
LE.le.trans
LT.lt.le
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Nat.cast_nonneg
strong_law_aux3 πŸ“–mathematicalMeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.MeasureSpace.volume
IdentDistrib
Real.measurableSpace
Asymptotics.IsLittleO
Real.norm
Filter.atTop
Nat.instPreorder
Real.instSub
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Finset.sum
Pi.addCommMonoid
Real.instAddCommMonoid
Finset.range
truncation
Real.instNatCast
Real.instMul
β€”IdentDistrib.integral_eq
Real.borelSpace
IdentDistrib.truncation
Filter.Tendsto.comp
tendsto_integral_truncation
tendsto_natCast_atTop_atTop
Real.instIsOrderedRing
Real.instArchimedean
Finset.sum_apply
Finset.sum_sub_distrib
Finset.sum_const
Finset.card_range
nsmul_eq_mul
MeasureTheory.integral_finset_sum
MeasureTheory.AEStronglyMeasurable.integrable_truncation
MeasureTheory.IsZeroOrProbabilityMeasure.toIsFiniteMeasure
MeasureTheory.instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
IdentDistrib.integrable_snd
IdentDistrib.symm
Asymptotics.isLittleO_sum_range_of_tendsto_zero
tendsto_sub_nhds_zero_iff
instIsTopologicalAddGroupReal
strong_law_aux4 πŸ“–mathematicalMeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.MeasureSpace.volume
Pairwise
Function.onFun
IndepFun
Real.measurableSpace
IdentDistrib
Real.instLE
Real.instZero
Real.instLT
Real.instOne
Filter.Eventually
Asymptotics.IsLittleO
Real.norm
Filter.atTop
Nat.instPreorder
Real.instSub
Finset.sum
Real.instAddCommMonoid
Finset.range
Nat.floor
Real.semiring
Real.partialOrder
FloorRing.toFloorSemiring
Real.instRing
Real.linearOrder
Real.instIsStrictOrderedRing
Real.instFloorRing
Monoid.toNatPow
Real.instMonoid
truncation
Real.instNatCast
Real.instMul
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
β€”Filter.mp_mem
MeasureTheory.Measure.instOuterMeasureClass
Real.instIsStrictOrderedRing
strong_law_aux2
Filter.univ_mem'
Filter.Tendsto.comp
tendsto_nat_floor_atTop
tendsto_pow_atTop_atTop_of_one_lt
AddGroup.existsAddOfLE
Real.instArchimedean
Finset.sum_apply
sub_add_sub_cancel
Asymptotics.IsLittleO.add
Asymptotics.IsLittleO.comp_tendsto
strong_law_aux3
strong_law_aux5 πŸ“–mathematicalMeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.MeasureSpace.volume
IdentDistrib
Real.measurableSpace
Real.instLE
Real.instZero
Filter.Eventually
Asymptotics.IsLittleO
Real.norm
Filter.atTop
Nat.instPreorder
Real.instSub
Finset.sum
Real.instAddCommMonoid
Finset.range
truncation
Real.instNatCast
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
β€”IdentDistrib.measure_mem_eq
measurableSet_Ioi
BorelSpace.opensMeasurable
Real.borelSpace
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
tsum_prob_mem_Ioi_lt_top
MeasureTheory.Measure.instOuterMeasureClass
Filter.mp_mem
MeasureTheory.ae_eventually_notMem
LT.lt.ne
Filter.univ_mem'
Filter.Tendsto.congr'
Filter.Ioi_mem_atTop
instNoTopOrderOfNoMaxOrder
Nat.instNoMaxOrder
sub_self
lt_of_lt_of_le
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedRing
Real.instNontrivial
tendsto_const_nhds
Finset.sum_sub_distrib
Asymptotics.isLittleO_sum_range_of_tendsto_zero
strong_law_aux6 πŸ“–mathematicalMeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.MeasureSpace.volume
Pairwise
Function.onFun
IndepFun
Real.measurableSpace
IdentDistrib
Real.instLE
Real.instZero
Real.instLT
Real.instOne
Filter.Eventually
Filter.Tendsto
DivInvMonoid.toDiv
Real.instDivInvMonoid
Finset.sum
Real.instAddCommMonoid
Finset.range
Nat.floor
Real.semiring
Real.partialOrder
FloorRing.toFloorSemiring
Real.instRing
Real.linearOrder
Real.instIsStrictOrderedRing
Real.instFloorRing
Monoid.toNatPow
Real.instMonoid
Real.instNatCast
Filter.atTop
Nat.instPreorder
nhds
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
β€”Real.instIsStrictOrderedRing
LT.lt.trans_le
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
one_le_powβ‚€
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
LT.lt.le
Filter.mp_mem
MeasureTheory.Measure.instOuterMeasureClass
strong_law_aux5
strong_law_aux4
Filter.univ_mem'
tendsto_sub_nhds_zero_iff
instIsTopologicalAddGroupReal
Asymptotics.isLittleO_one_iff
NormedDivisionRing.to_normOneClass
Filter.Tendsto.comp
tendsto_nat_floor_atTop
tendsto_pow_atTop_atTop_of_one_lt
AddGroup.existsAddOfLE
Real.instArchimedean
sub_sub_sub_cancel_left
Asymptotics.IsLittleO.sub
Asymptotics.IsLittleO.comp_tendsto
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
LT.lt.ne'
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Asymptotics.IsLittleO.mul_isBigO
NormedDivisionRing.toNormMulClass
Asymptotics.isBigO_refl
strong_law_aux7 πŸ“–mathematicalMeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.MeasureSpace.volume
Pairwise
Function.onFun
IndepFun
Real.measurableSpace
IdentDistrib
Real.instLE
Real.instZero
Filter.Eventually
Filter.Tendsto
DivInvMonoid.toDiv
Real.instDivInvMonoid
Finset.sum
Real.instAddCommMonoid
Finset.range
Real.instNatCast
Filter.atTop
Nat.instPreorder
nhds
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
MeasureTheory.ae
MeasureTheory.Measure
MeasureTheory.Measure.instFunLike
MeasureTheory.Measure.instOuterMeasureClass
β€”MeasureTheory.Measure.instOuterMeasureClass
exists_seq_strictAnti_tendsto
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
TopologicalSpace.PseudoMetrizableSpace.firstCountableTopology
PseudoEMetricSpace.pseudoMetrizableSpace
strong_law_aux6
Filter.mp_mem
MeasureTheory.ae_all_iff
instCountableNat
Filter.univ_mem'
tendsto_div_of_monotone_of_tendsto_div_floor_pow
Finset.sum_le_sum_of_subset_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Finset.range_mono
sum_prob_mem_Ioc_le πŸ“–mathematicalMeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.MeasureSpace.volume
Pi.hasLe
Real.instLE
Pi.instZero
Real.instZero
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Finset.sum
ENNReal.instAddCommMonoid
Finset.range
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
setOf
Set.instMembership
Set.Ioc
Real.instPreorder
Real.instNatCast
ENNReal.ofReal
Real.instAdd
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instOne
β€”Finset.sum_congr
intervalIntegral.sum_integral_adjacent_intervals_Ico
LE.le.trans
LT.lt.le
Finset.mem_range
Continuous.intervalIntegrable
MeasureTheory.isLocallyFiniteMeasure_of_isFiniteMeasureOnCompacts
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
locallyCompact_of_proper
instProperSpaceReal
MeasureTheory.Measure.Regular.toIsFiniteMeasureOnCompacts
MeasureTheory.Measure.InnerRegularCompactLTTop.instRegularOfBorelSpaceOfR1SpaceOfIsFiniteMeasure
Real.borelSpace
instR1Space
TopologicalSpace.PseudoMetrizableSpace.regularSpace
PseudoEMetricSpace.pseudoMetrizableSpace
MeasureTheory.Measure.InnerRegular.instInnerRegularCompactLTTop
MeasureTheory.Measure.instInnerRegularOfPseudoMetrizableSpaceOfSigmaCompactSpaceOfBorelSpaceOfSigmaFinite
SeparableWeaklyLocallyCompactAddGroup.sigmaCompactSpace
instIsTopologicalAddGroupReal
TopologicalSpace.SecondCountableTopology.to_separableSpace
instSecondCountableTopologyReal
MeasureTheory.IsFiniteMeasure.toSigmaFinite
MeasureTheory.Measure.isFiniteMeasure_map
MeasureTheory.IsZeroOrProbabilityMeasure.toIsFiniteMeasure
MeasureTheory.instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
continuous_const
Finset.sum_sigma'
Finset.sum_nbij'
Nat.instNoMaxOrder
Sigma.eta
Nat.cast_add
Nat.cast_one
Finset.sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Finset.sum_const
Finset.card_range
nsmul_eq_mul
Nat.cast_min
Real.instIsStrictOrderedRing
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
min_le_left
intervalIntegral.integral_nonneg
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Real.instZeroLEOneClass
intervalIntegral.integral_of_le
MeasureTheory.setIntegral_mono_on
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Continuous.integrableOn_Ioc
BorelSpace.opensMeasurable
MeasureTheory.Measure.Regular.of_sigmaCompactSpace_of_isLocallyFiniteMeasure
MeasureTheory.IsFiniteMeasure.toIsLocallyFiniteMeasure
ConditionallyCompleteLinearOrder.toCompactIccSpace
instOrderTopologyReal
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Continuous.add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
continuous_id
measurableSet_Ioc
instClosedIicTopology
mul_one
covariant_swap_add_of_covariant_add
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
intervalIntegral.sum_integral_adjacent_intervals
Nat.cast_zero
intervalIntegral.integral_add
integral_truncation_eq_intervalIntegral_of_nonneg
le_imp_le_of_le_of_le
add_le_add_left
integral_truncation_le_integral_of_nonneg
le_refl
add_le_add_right
Nat.cast_nonneg
MeasureTheory.integral_const
Real.instCompleteSpace
MeasureTheory.measureReal_restrict_apply'
Set.univ_inter
ENNReal.toReal_one
ENNReal.toReal_mono
ENNReal.one_ne_top
MeasureTheory.prob_le_one
MeasureTheory.instIsZeroOrProbabilityMeasureMap
MeasureTheory.ofReal_setIntegral_one
MeasureTheory.Measure.map_apply_of_aemeasurable
MeasureTheory.Integrable.aemeasurable
MeasureTheory.measureReal_restrict_apply
MeasureTheory.ofReal_measureReal
ENNReal.ofReal_sum_of_nonneg
Nat.cast_le
RCLike.charZero_rclike
ENNReal.ofReal_le_ofReal
sum_variance_truncation_le πŸ“–mathematicalMeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.MeasureSpace.volume
Pi.hasLe
Real.instLE
Pi.instZero
Real.instZero
Finset.sum
Real.instAddCommMonoid
Finset.range
Real.instMul
Real.instInv
Monoid.toNatPow
Real.instMonoid
Real.instNatCast
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Pi.monoid
truncation
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
β€”moment_truncation_eq_intervalIntegral_of_nonneg
two_ne_zero
Nat.instAtLeastTwoHAddOfNat
Finset.sum_congr
intervalIntegral.sum_integral_adjacent_intervals
Continuous.intervalIntegrable
MeasureTheory.isLocallyFiniteMeasure_of_isFiniteMeasureOnCompacts
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
locallyCompact_of_proper
instProperSpaceReal
MeasureTheory.Measure.Regular.toIsFiniteMeasureOnCompacts
MeasureTheory.Measure.InnerRegularCompactLTTop.instRegularOfBorelSpaceOfR1SpaceOfIsFiniteMeasure
Real.borelSpace
instR1Space
TopologicalSpace.PseudoMetrizableSpace.regularSpace
PseudoEMetricSpace.pseudoMetrizableSpace
MeasureTheory.Measure.InnerRegular.instInnerRegularCompactLTTop
MeasureTheory.Measure.instInnerRegularOfPseudoMetrizableSpaceOfSigmaCompactSpaceOfBorelSpaceOfSigmaFinite
SeparableWeaklyLocallyCompactAddGroup.sigmaCompactSpace
instIsTopologicalAddGroupReal
TopologicalSpace.SecondCountableTopology.to_separableSpace
instSecondCountableTopologyReal
MeasureTheory.IsFiniteMeasure.toSigmaFinite
MeasureTheory.Measure.isFiniteMeasure_map
MeasureTheory.IsZeroOrProbabilityMeasure.toIsFiniteMeasure
MeasureTheory.instIsZeroOrProbabilityMeasureOfIsProbabilityMeasure
Continuous.pow
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
continuous_id
Nat.cast_zero
Finset.mul_sum
Finset.sum_mul
Finset.sum_sigma'
Finset.sum_nbij'
lt_trans
Sigma.eta
Nat.cast_add
Nat.cast_one
Finset.sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
sum_Ioo_inv_sq_le
Real.instIsStrictOrderedRing
intervalIntegral.integral_nonneg_of_forall
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Real.instZeroLEOneClass
sq_nonneg
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
intervalIntegral.integral_const_mul
intervalIntegral.integral_of_le
MeasureTheory.setIntegral_mono_on
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Continuous.integrableOn_Ioc
BorelSpace.opensMeasurable
MeasureTheory.Measure.Regular.of_sigmaCompactSpace_of_isLocallyFiniteMeasure
MeasureTheory.IsFiniteMeasure.toIsLocallyFiniteMeasure
ConditionallyCompleteLinearOrder.toCompactIccSpace
instOrderTopologyReal
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Continuous.comp'
Continuous.fun_mul
continuous_const
continuous_id'
measurableSet_Ioc
instClosedIicTopology
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
LE.le.trans_lt
Nat.cast_nonneg
div_le_one
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
Nat.cast_nonneg'
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
le_of_lt
mul_pos
one_mul
Continuous.mul
mul_le_mul_of_nonneg_left
integral_truncation_eq_intervalIntegral_of_nonneg
integral_truncation_le_integral_of_nonneg
zero_le_two
tendsto_integral_truncation πŸ“–mathematicalMeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
Filter.Tendsto
MeasureTheory.integral
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
truncation
Filter.atTop
Real.instPreorder
nhds
β€”MeasureTheory.tendsto_integral_filter_of_dominated_convergence
instIsCountablyGenerated_atTop
instOrderTopologyReal
TopologicalSpace.SecondCountableTopology.to_separableSpace
instSecondCountableTopologyReal
Filter.Eventually.of_forall
MeasureTheory.AEStronglyMeasurable.truncation
MeasureTheory.Integrable.aestronglyMeasurable
Filter.univ_mem'
MeasureTheory.Measure.instOuterMeasureClass
Real.norm_eq_abs
abs_truncation_le_abs_self
MeasureTheory.Integrable.abs
instHasSolidNormReal
Real.instIsOrderedAddMonoid
Filter.Tendsto.congr'
Filter.mp_mem
Filter.Ioi_mem_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
truncation_eq_self
tendsto_const_nhds
truncation_eq_of_nonneg πŸ“–mathematicalReal
Real.instLE
Real.instZero
truncation
Set.indicator
Set.Ioc
Real.instPreorder
β€”LE.le.lt_or_eq
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.neg_congr
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Meta.NormNum.isNat_lt_true
RCLike.charZero_rclike
Mathlib.Tactic.Linarith.sub_nonpos_of_le
truncation_eq_self πŸ“–mathematicalReal
Real.instLT
abs
Real.lattice
Real.instAddGroup
truncationβ€”abs_lt
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
LT.lt.le
truncation_nonneg πŸ“–mathematicalReal
Real.instLE
Real.instZero
truncationβ€”Set.indicator_apply_nonneg
truncation_zero πŸ“–mathematicalβ€”truncation
Real
Real.instZero
Pi.instZero
β€”neg_zero
Set.Ioc_eq_empty
Set.indicator_empty
tsum_prob_mem_Ioi_lt_top πŸ“–mathematicalMeasureTheory.Integrable
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
MeasureTheory.MeasureSpace.toMeasurableSpace
MeasureTheory.MeasureSpace.volume
Pi.hasLe
Real.instLE
Pi.instZero
Real.instZero
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
tsum
ENNReal.instAddCommMonoid
ENNReal.instTopologicalSpace
DFunLike.coe
MeasureTheory.Measure
Set
MeasureTheory.Measure.instFunLike
setOf
Set.instMembership
Set.Ioi
Real.instPreorder
Real.instNatCast
SummationFilter.unconditional
Top.top
instTopENNReal
β€”tendsto_finset_sum
ENNReal.instContinuousAdd
Set.Subset.antisymm
exists_nat_ge
Real.instIsOrderedRing
Real.instArchimedean
Set.mem_iUnion
MeasureTheory.tendsto_measure_iUnion_atTop
instIsCountablyGenerated_atTop
OrderTopology.of_linearLocallyFinite
instDiscreteTopologyNat
TopologicalSpace.SecondCountableTopology.to_separableSpace
TopologicalSpace.instSecondCountableTopologyOfLindelofSpaceOfPseudoMetrizableSpace
Countable.LindelofSpace
instCountableNat
PseudoEMetricSpace.pseudoMetrizableSpace
LE.le.trans
Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
le_of_tendsto_of_tendsto
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
tendsto_const_nhds
Filter.mp_mem
Filter.Ici_mem_atTop
Filter.univ_mem'
sum_prob_mem_Ioc_le
LE.le.trans_lt
ENNReal.tendsto_nat_tsum
Filter.Eventually.of_forall
ENNReal.ofReal_lt_top

ProbabilityTheory.IdentDistrib

Theorems

NameKindAssumesProvesValidatesDepends On
truncation πŸ“–mathematicalProbabilityTheory.IdentDistrib
Real
Real.measurableSpace
ProbabilityTheory.truncationβ€”comp
Measurable.indicator
measurable_id
measurableSet_Ioc
BorelSpace.opensMeasurable
Real.borelSpace
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid

---

← Back to Index