Documentation Verification Report

Basic

📁 Source: Mathlib/RepresentationTheory/AlgebraRepresentation/Basic.lean

Statistics

MetricCount
Definitions0
TheoremsalgebraMap_end_bijective_of_isAlgClosed, finrank_eq_one_of_isMulCommutative
2
Total2

IsSimpleModule

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_end_bijective_of_isAlgClosed 📖mathematicalFunction.Bijective
Module.End
Ring.toSemiring
AddCommGroup.toAddCommMonoid
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
Module.End.instSemiring
RingHom.instFunLike
algebraMap
Module.End.instAlgebra
IsScalarTower.to_smulCommClass'
Algebra.toSMul
IsScalarTower.to_smulCommClass'
Module.Finite.of_injective
smulCommClass_self
isNoetherian_linearMap
isNoetherian_of_isNoetherianRing_of_finite
instIsNoetherian
instIsSimpleModule
LinearMap.IsScalarTower.compatibleSMul
LinearMap.restrictScalars_injective
IsAlgClosed.algebraMap_bijective_of_isIntegral
DivisionRing.isDomain
Algebra.IsAlgebraic.isIntegral
Algebra.IsAlgebraic.of_finite
IsLocalRing.toNontrivial
Field.instIsLocalRing
finrank_eq_one_of_isMulCommutative 📖mathematicalModule.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
nontrivial
exists_ne
IsScalarTower.to_smulCommClass'
smulCommClass_self
algebraMap_end_bijective_of_isAlgClosed
Submodule.smul_mem
IsSimpleOrder.eq_bot_or_eq_top
toIsSimpleOrder
Eq.le
Submodule.mem_span_singleton_self
finrank_eq_one_iff_of_nonzero
top_le_iff

---

← Back to Index