| Name | Category | Theorems |
IsTrivial 📖 | CompData | 4 mathmath: instIsTrivialSubtypeMemSubgroupSubmoduleInvariantsCompLinearMapIdSubtypeToInvariants, Rep.instIsTrivialCarrierVModuleCatOfCompLinearMapIdρ, instIsTrivialTrivial, instIsTrivialSubtypeMemSubgroupCoinvariantsCompLinearMapIdSubtypeToCoinvariants
|
asAlgebraHom 📖 | CompOp | 7 mathmath: asAlgebraHom_single, asAlgebraHom_def, asAlgebraHom_single_one, asAlgebraHom_of, ofModule_asAlgebraHom_apply_apply, asModuleEquiv_map_smul, asAlgebraHom_mem_of_forall_mem
|
asGroupHom 📖 | CompOp | 1 mathmath: asGroupHom_apply
|
asModule 📖 | CompOp | 23 mathmath: IsIrreducible.instIsSimpleModuleMonoidAlgebraAsModule, ofMulActionSelfAsModuleEquiv_symm_apply, Subrepresentation.mem_ofSubmodule'_iff, smul_ofModule_asModule, instFiniteAsModule, ofMulAction_self_smul_eq_mul, single_smul, asModuleEquiv_symm_map_smul, isSemisimpleRepresentation_iff_isSemisimpleModule_asModule, instIsScalarTowerMonoidAlgebraAsModule, Subrepresentation.mem_asSubmodule_iff, RootPairing.isSimpleModule_weylGroupRootRep, ofMulActionSelfAsModuleEquiv_apply, RootPairing.isSimpleModule_weylGroupRootRep_iff, asModuleEquiv_symm_map_rho, ofModule_asModule_act, smul_tprod_one_asModule, Subrepresentation.subrepresentationSubmoduleOrderIso_symm_apply, irreducible_iff_isSimpleModule_asModule, asModuleEquiv_map_smul, smul_one_tprod_asModule, free_asModule_free, Subrepresentation.subrepresentationSubmoduleOrderIso_apply
|
asModuleEquiv 📖 | CompOp | 8 mathmath: ofMulActionSelfAsModuleEquiv_symm_apply, smul_ofModule_asModule, single_smul, asModuleEquiv_symm_map_smul, ofMulActionSelfAsModuleEquiv_apply, asModuleEquiv_symm_map_rho, ofModule_asModule_act, asModuleEquiv_map_smul
|
diagonal 📖 | CompOp | — |
directSum 📖 | CompOp | 1 mathmath: directSum_apply
|
dual 📖 | CompOp | 4 mathmath: FDRep.char_dual, dual_apply, dualTensorHom_comm, FDRep.dualTensorIsoLinHom_hom_hom
|
finsupp 📖 | CompOp | 6 mathmath: finsupp_apply, coinvariantsFinsuppLEquiv_apply, finsuppToCoinvariants_single_mk, finsupp_single, coinvariantsToFinsupp_mk_single, coinvariantsFinsuppLEquiv_symm_apply
|
finsuppLEquivFreeAsModule 📖 | CompOp | — |
free 📖 | CompOp | 6 mathmath: Rep.finsuppToCoinvariantsTensorFree_single, Rep.coinvariantsTensorFreeLEquiv_symm_apply, Rep.coinvariantsTensorFreeLEquiv_apply, free_single_single, free_asModule_free, Rep.coinvariantsTensorFreeToFinsupp_mk_tmul_single
|
freeAsModuleBasis 📖 | CompOp | — |
instAddCommGroupAsModule 📖 | CompOp | 5 mathmath: IsIrreducible.instIsSimpleModuleMonoidAlgebraAsModule, isSemisimpleRepresentation_iff_isSemisimpleModule_asModule, RootPairing.isSimpleModule_weylGroupRootRep, RootPairing.isSimpleModule_weylGroupRootRep_iff, irreducible_iff_isSimpleModule_asModule
|
instAddCommGroupAsModuleFinsuppFree 📖 | CompOp | — |
instAddCommMonoidAsModule 📖 | CompOp | 18 mathmath: ofMulActionSelfAsModuleEquiv_symm_apply, Subrepresentation.mem_ofSubmodule'_iff, smul_ofModule_asModule, instFiniteAsModule, ofMulAction_self_smul_eq_mul, single_smul, asModuleEquiv_symm_map_smul, instIsScalarTowerMonoidAlgebraAsModule, Subrepresentation.mem_asSubmodule_iff, ofMulActionSelfAsModuleEquiv_apply, asModuleEquiv_symm_map_rho, ofModule_asModule_act, smul_tprod_one_asModule, Subrepresentation.subrepresentationSubmoduleOrderIso_symm_apply, asModuleEquiv_map_smul, smul_one_tprod_asModule, free_asModule_free, Subrepresentation.subrepresentationSubmoduleOrderIso_apply
|
instHMulMonoidAlgebraAsModuleFinsuppOfMulAction 📖 | CompOp | 1 mathmath: ofMulAction_self_smul_eq_mul
|
instInhabitedAsModule 📖 | CompOp | — |
instModuleAsModule 📖 | CompOp | 10 mathmath: ofMulActionSelfAsModuleEquiv_symm_apply, smul_ofModule_asModule, instFiniteAsModule, single_smul, asModuleEquiv_symm_map_smul, instIsScalarTowerMonoidAlgebraAsModule, ofMulActionSelfAsModuleEquiv_apply, asModuleEquiv_symm_map_rho, ofModule_asModule_act, asModuleEquiv_map_smul
|
instModuleMonoidAlgebraAsModule 📖 | CompOp | 22 mathmath: IsIrreducible.instIsSimpleModuleMonoidAlgebraAsModule, ofMulActionSelfAsModuleEquiv_symm_apply, Subrepresentation.mem_ofSubmodule'_iff, smul_ofModule_asModule, ofMulAction_self_smul_eq_mul, single_smul, asModuleEquiv_symm_map_smul, isSemisimpleRepresentation_iff_isSemisimpleModule_asModule, instIsScalarTowerMonoidAlgebraAsModule, Subrepresentation.mem_asSubmodule_iff, RootPairing.isSimpleModule_weylGroupRootRep, ofMulActionSelfAsModuleEquiv_apply, RootPairing.isSimpleModule_weylGroupRootRep_iff, asModuleEquiv_symm_map_rho, ofModule_asModule_act, smul_tprod_one_asModule, Subrepresentation.subrepresentationSubmoduleOrderIso_symm_apply, irreducible_iff_isSimpleModule_asModule, asModuleEquiv_map_smul, smul_one_tprod_asModule, free_asModule_free, Subrepresentation.subrepresentationSubmoduleOrderIso_apply
|
leftRegular 📖 | CompOp | 19 mathmath: Rep.coindToInd_of_support_subset_orbit, ofCoinvariantsTprodLeftRegular_mk_tmul_single, leftRegular_norm_eq_zero_iff, coinvariantsTprodLeftRegularLEquiv_apply, Rep.indResAdjunction_counit_app_hom_hom, Rep.coindToInd_apply, ker_leftRegular_norm_eq, FiniteCyclicGroup.coinvariantsKer_leftRegular_eq_ker, coinvariantsTprodLeftRegularLEquiv_symm_apply, Rep.indMap_hom, leftRegular_norm_apply, ind_mk, Rep.coinvariantsTensorIndHom_mk_tmul_indVMk, ind_apply, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, Rep.coinvariantsTensorIndInv_mk_tmul_indMk, IndV.hom_ext_iff, Rep.indResHomEquiv_symm_apply_hom, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply
|
linHom 📖 | CompOp | 9 mathmath: linHom_apply, FDRep.char_linHom, linHom.invariantsEquivRepHom_symm_apply_coe, Rep.ihom_map_hom, linHom.mem_invariants_iff_comm, dualTensorHom_comm, Rep.ihom_obj_ρ, linHom.invariantsEquivRepHom_apply_hom, FDRep.dualTensorIsoLinHom_hom_hom
|
norm 📖 | CompOp | 14 mathmath: Rep.FiniteCyclicGroup.groupHomologyπOdd_eq_zero_iff, leftRegular_norm_eq_zero_iff, norm_ofMulDistribMulAction_eq, Rep.FiniteCyclicGroup.groupHomologyπEven_eq_iff, norm_comp_self, ker_leftRegular_norm_eq, Rep.FiniteCyclicGroup.groupHomologyπEven_eq_zero_iff, norm_ofDistribMulAction_eq, norm_self_apply, Rep.norm_hom, Rep.FiniteCyclicGroup.groupHomologyπOdd_eq_iff, leftRegular_norm_apply, self_comp_norm, self_norm_apply
|
ofDistribMulAction 📖 | CompOp | 3 mathmath: ofDistribMulAction_apply_apply, norm_ofDistribMulAction_eq, groupHomology.coinvariantsKerOfIsBoundary₀_coe
|
ofModule 📖 | CompOp | 11 mathmath: smul_ofModule_asModule, Subrepresentation.mem_asSubmodule'_iff, Subrepresentation.submoduleSubrepresentationOrderIso_apply, isSimpleModule_iff_irreducible_ofModule, Rep.ofModuleMonoidAlgebra_obj_ρ, ofModule_asModule_act, ofModule_asAlgebraHom_apply_apply, is_simple_module_iff_irreducible_ofModule, Subrepresentation.mem_ofSubmodule_iff, isSemisimpleModule_iff_isSemisimpleRepresentation_ofModule, Subrepresentation.submoduleSubrepresentationOrderIso_symm_apply
|
ofModule' 📖 | CompOp | — |
ofMulAction 📖 | CompOp | 6 mathmath: ofMulActionSelfAsModuleEquiv_symm_apply, ofMulAction_apply, ofMulAction_single, ofMulAction_self_smul_eq_mul, ofMulActionSelfAsModuleEquiv_apply, ofMulAction_def
|
ofMulActionSelfAsModuleEquiv 📖 | CompOp | 2 mathmath: ofMulActionSelfAsModuleEquiv_symm_apply, ofMulActionSelfAsModuleEquiv_apply
|
ofMulDistribMulAction 📖 | CompOp | 2 mathmath: norm_ofMulDistribMulAction_eq, ofMulDistribMulAction_apply_apply
|
ofQuotient 📖 | CompOp | 1 mathmath: ofQuotient_coe_apply
|
prod 📖 | CompOp | 1 mathmath: prod_apply_apply
|
quotient 📖 | CompOp | 1 mathmath: quotient_apply
|
subrepresentation 📖 | CompOp | 1 mathmath: subrepresentation_apply
|
tprod 📖 | CompOp | 27 mathmath: repOfTprodIso_inv_apply, repOfTprodIso_apply, Rep.coindToInd_of_support_subset_orbit, Coinvariants.mk_inv_tmul, ofCoinvariantsTprodLeftRegular_mk_tmul_single, Rep.finsuppToCoinvariantsTensorFree_single, Rep.coinvariantsTensorFreeLEquiv_symm_apply, Coinvariants.mk_tmul_inv, tprod_apply, coinvariantsTprodLeftRegularLEquiv_apply, Rep.coinvariantsTensorFreeLEquiv_apply, Rep.indResAdjunction_counit_app_hom_hom, Rep.coindToInd_apply, Rep.tensor_ρ, smul_tprod_one_asModule, coinvariantsTprodLeftRegularLEquiv_symm_apply, Rep.indMap_hom, ind_mk, Rep.coinvariantsTensorIndHom_mk_tmul_indVMk, smul_one_tprod_asModule, ind_apply, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, Rep.coinvariantsTensorIndInv_mk_tmul_indMk, Rep.coinvariantsTensorFreeToFinsupp_mk_tmul_single, IndV.hom_ext_iff, Rep.indResHomEquiv_symm_apply_hom, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply
|
trivial 📖 | CompOp | 2 mathmath: instIsTrivialTrivial, trivial_apply
|