Documentation Verification Report

Coinvariants

πŸ“ Source: Mathlib/RepresentationTheory/Coinvariants.lean

Statistics

MetricCount
DefinitionscoinvariantsAdjunction, coinvariantsFunctor, coinvariantsMk, coinvariantsShortComplex, coinvariantsTensor, coinvariantsTensorFreeLEquiv, coinvariantsTensorFreeToFinsupp, coinvariantsTensorMk, desc, finsuppToCoinvariantsTensorFree, quotientToCoinvariants, quotientToCoinvariantsFunctor, toCoinvariants, toCoinvariantsKer, toCoinvariantsMkQ, Coinvariants, instAddCommGroup, instModule, ker, map, mk, coinvariantsFinsuppLEquiv, coinvariantsToFinsupp, coinvariantsTprodLeftRegularLEquiv, finsuppToCoinvariants, ofCoinvariantsTprodLeftRegular, quotientToCoinvariants, toCoinvariants, toCoinvariantsKer
29
TheoremscoinvariantsAdjunction_counit_app, coinvariantsAdjunction_homEquiv_apply_hom, coinvariantsAdjunction_homEquiv_symm_apply_hom, coinvariantsAdjunction_unit_app_hom, coinvariantsFunctor_hom_ext, coinvariantsFunctor_hom_ext_iff, coinvariantsFunctor_map_hom, coinvariantsFunctor_obj_carrier, coinvariantsMk_app_hom, coinvariantsShortComplex_X₁, coinvariantsShortComplex_Xβ‚‚, coinvariantsShortComplex_X₃, coinvariantsShortComplex_f, coinvariantsShortComplex_g, coinvariantsShortComplex_shortExact, coinvariantsTensorFreeLEquiv_apply, coinvariantsTensorFreeLEquiv_symm_apply, coinvariantsTensorFreeToFinsupp_mk_tmul_single, coinvariantsTensorMk_apply, coinvariantsTensor_hom_ext, coinvariantsTensor_hom_ext_iff, finsuppToCoinvariantsTensorFree_single, instAdditiveModuleCatCoinvariantsFunctor, instAdditiveModuleCatObjFunctorCoinvariantsTensor, instEpiModuleCatAppActionCoinvariantsMk, instIsLeftAdjointModuleCatCoinvariantsFunctor, instLinearModuleCatCoinvariantsFunctor, instLinearModuleCatObjFunctorCoinvariantsTensor, instPreservesZeroMorphismsModuleCatCoinvariantsFunctor, quotientToCoinvariantsFunctor_map_hom, quotientToCoinvariantsFunctor_obj_V, toCoinvariantsMkQ_hom, hom_ext, hom_ext_iff, induction_on, le_comap_ker, lift_comp_mk, lift_mk, map_comp, map_comp_mk, map_id, map_mk, mem_ker_of_eq, mk_eq_iff, mk_eq_zero, mk_inv_tmul, mk_self_apply, mk_surjective, mk_tmul_inv, sub_mem_ker, coinvariantsFinsuppLEquiv_apply, coinvariantsFinsuppLEquiv_symm_apply, coinvariantsToFinsupp_mk_single, coinvariantsTprodLeftRegularLEquiv_apply, coinvariantsTprodLeftRegularLEquiv_symm_apply, finsuppToCoinvariants_single_mk, instIsTrivialSubtypeMemSubgroupCoinvariantsCompLinearMapIdSubtypeToCoinvariants, ofCoinvariantsTprodLeftRegular_mk_tmul_single, toCoinvariants_mk
59
Total88

Rep

Definitions

NameCategoryTheorems
coinvariantsAdjunction πŸ“–CompOp
4 mathmath: coinvariantsAdjunction_counit_app, coinvariantsAdjunction_homEquiv_symm_apply_hom, coinvariantsAdjunction_unit_app_hom, coinvariantsAdjunction_homEquiv_apply_hom
coinvariantsFunctor πŸ“–CompOp
36 mathmath: groupHomology.coinvariantsMk_comp_H0Iso_inv_apply, coinvariantsAdjunction_counit_app, groupHomology.Ο€_comp_H0Iso_hom_assoc, coinvariantsAdjunction_homEquiv_symm_apply_hom, groupHomology.d₁₀_comp_coinvariantsMk_apply, groupHomology.coinvariantsMk_comp_opcyclesIsoβ‚€_inv_assoc, coinvariantsFunctor_obj_carrier, groupHomology.coinvariantsMk_comp_H0Iso_inv, groupHomology.pOpcycles_comp_opcyclesIso_hom_apply, coinvariantsFunctor_hom_ext_iff, instLinearModuleCatCoinvariantsFunctor, groupHomology.Ο€_comp_H0Iso_hom_apply, instEpiModuleCatAppActionCoinvariantsMk, groupHomology.d₁₀_comp_coinvariantsMk, quotientToCoinvariantsFunctor_map_hom, instIsLeftAdjointModuleCatCoinvariantsFunctor, groupHomology.map_id_comp_H0Iso_hom_assoc, groupHomology.coinvariantsMk_comp_opcyclesIsoβ‚€_inv_apply, coinvariantsMk_app_hom, groupHomology.pOpcycles_comp_opcyclesIso_hom, groupHomology.coinvariantsMk_comp_opcyclesIsoβ‚€_inv, groupHomology.pOpcycles_comp_opcyclesIso_hom_assoc, groupHomology.map_id_comp_H0Iso_hom_apply, groupHomology.Ο€_comp_H0Iso_hom, groupHomology.H0Ο€_comp_H0Iso_hom, groupHomology.map_id_comp_H0Iso_hom, groupHomology.shortComplexH0_g, coinvariantsAdjunction_unit_app_hom, groupHomology.d₁₀_comp_coinvariantsMk_assoc, groupHomology.H0Ο€_comp_H0Iso_hom_assoc, coinvariantsAdjunction_homEquiv_apply_hom, instPreservesZeroMorphismsModuleCatCoinvariantsFunctor, coinvariantsFunctor_map_hom, groupHomology.H0Ο€_comp_H0Iso_hom_apply, groupHomology.coinvariantsMk_comp_H0Iso_inv_assoc, instAdditiveModuleCatCoinvariantsFunctor
coinvariantsMk πŸ“–CompOp
18 mathmath: groupHomology.Ο€_comp_H0Iso_hom_assoc, groupHomology.coinvariantsMk_comp_opcyclesIsoβ‚€_inv_assoc, groupHomology.coinvariantsMk_comp_H0Iso_inv, coinvariantsFunctor_hom_ext_iff, instEpiModuleCatAppActionCoinvariantsMk, groupHomology.d₁₀_comp_coinvariantsMk, coinvariantsMk_app_hom, groupHomology.pOpcycles_comp_opcyclesIso_hom, groupHomology.coinvariantsMk_comp_opcyclesIsoβ‚€_inv, groupHomology.pOpcycles_comp_opcyclesIso_hom_assoc, groupHomology.Ο€_comp_H0Iso_hom, groupHomology.H0Ο€_comp_H0Iso_hom, groupHomology.shortComplexH0_g, coinvariantsAdjunction_unit_app_hom, groupHomology.d₁₀_comp_coinvariantsMk_assoc, groupHomology.H0Ο€_comp_H0Iso_hom_assoc, coinvariantsAdjunction_homEquiv_apply_hom, groupHomology.coinvariantsMk_comp_H0Iso_inv_assoc
coinvariantsShortComplex πŸ“–CompOp
7 mathmath: groupHomology.comap_coinvariantsKer_pOpcycles_range_subtype_pOpcycles_eq_top, coinvariantsShortComplex_g, coinvariantsShortComplex_f, coinvariantsShortComplex_X₁, coinvariantsShortComplex_Xβ‚‚, coinvariantsShortComplex_X₃, coinvariantsShortComplex_shortExact
coinvariantsTensor πŸ“–CompOp
12 mathmath: instLinearModuleCatObjFunctorCoinvariantsTensor, coinvariantsTensorIndIso_inv, coinvariantsTensorIndIso_hom, coinvariantsTensorIndNatIso_inv_app, instAdditiveModuleCatObjFunctorCoinvariantsTensor, Tor_map, coinvariantsTensorIndNatIso_hom_app, coinvariantsTensor_hom_ext_iff, coinvariantsTensorMk_apply, coinvariantsTensorIndHom_mk_tmul_indVMk, coinvariantsTensorIndInv_mk_tmul_indMk, Tor_obj
coinvariantsTensorFreeLEquiv πŸ“–CompOp
2 mathmath: coinvariantsTensorFreeLEquiv_symm_apply, groupHomology.inhomogeneousChains.d_eq
coinvariantsTensorFreeToFinsupp πŸ“–CompOp
2 mathmath: coinvariantsTensorFreeLEquiv_apply, coinvariantsTensorFreeToFinsupp_mk_tmul_single
coinvariantsTensorMk πŸ“–CompOp
4 mathmath: coinvariantsTensor_hom_ext_iff, coinvariantsTensorMk_apply, coinvariantsTensorIndHom_mk_tmul_indVMk, coinvariantsTensorIndInv_mk_tmul_indMk
desc πŸ“–CompOp
2 mathmath: coinvariantsAdjunction_counit_app, coinvariantsAdjunction_homEquiv_symm_apply_hom
finsuppToCoinvariantsTensorFree πŸ“–CompOp
2 mathmath: finsuppToCoinvariantsTensorFree_single, coinvariantsTensorFreeLEquiv_symm_apply
quotientToCoinvariants πŸ“–CompOp
3 mathmath: groupHomology.H1CoresCoinf_X₃, groupHomology.H1CoresCoinf_g, quotientToCoinvariantsFunctor_map_hom
quotientToCoinvariantsFunctor πŸ“–CompOp
3 mathmath: groupHomology.coinfNatTrans_app, quotientToCoinvariantsFunctor_map_hom, quotientToCoinvariantsFunctor_obj_V
toCoinvariants πŸ“–CompOp
3 mathmath: toCoinvariantsMkQ_hom, coinvariantsShortComplex_X₃, quotientToCoinvariantsFunctor_obj_V
toCoinvariantsKer πŸ“–CompOp
1 mathmath: coinvariantsShortComplex_X₁
toCoinvariantsMkQ πŸ“–CompOp
3 mathmath: groupHomology.H1CoresCoinf_g, coinvariantsShortComplex_g, toCoinvariantsMkQ_hom

Theorems

NameKindAssumesProvesValidatesDepends On
coinvariantsAdjunction_counit_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
CategoryTheory.Functor.comp
Rep
Action.instCategory
trivialFunctor
coinvariantsFunctor
CategoryTheory.Functor.id
CategoryTheory.Adjunction.counit
coinvariantsAdjunction
desc
CategoryTheory.Functor.obj
trivial
ModuleCat.carrier
ModuleCat.isAddCommGroup
ModuleCat.isModule
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
coinvariantsAdjunction_homEquiv_apply_hom πŸ“–mathematicalβ€”Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
CategoryTheory.Functor.obj
Rep
Action.instCategory
trivialFunctor
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
coinvariantsFunctor
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Adjunction.homEquiv
coinvariantsAdjunction
CategoryTheory.CategoryStruct.comp
Action
Action.forget
CategoryTheory.NatTrans.app
coinvariantsMk
β€”β€”
coinvariantsAdjunction_homEquiv_symm_apply_hom πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
Rep
CommRing.toRing
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Functor.obj
trivialFunctor
coinvariantsFunctor
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.Adjunction.homEquiv
coinvariantsAdjunction
desc
instIsTrivialObjModuleCatTrivialFunctor
β€”coinvariantsFunctor_hom_ext
instIsTrivialObjModuleCatTrivialFunctor
ModuleCat.hom_ext
LinearMap.ext
coinvariantsAdjunction_unit_app_hom πŸ“–mathematicalβ€”Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
CategoryTheory.Functor.obj
Rep
Action.instCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
coinvariantsFunctor
trivialFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.unit
coinvariantsAdjunction
Action
Action.forget
coinvariantsMk
β€”β€”
coinvariantsFunctor_hom_ext πŸ“–β€”CategoryTheory.CategoryStruct.comp
ModuleCat
CommRing.toRing
CategoryTheory.Category.toCategoryStruct
ModuleCat.moduleCategory
CategoryTheory.Functor.obj
Action
Action.instCategory
Action.forget
coinvariantsFunctor
CategoryTheory.NatTrans.app
coinvariantsMk
β€”β€”CategoryTheory.cancel_epi
instEpiModuleCatAppActionCoinvariantsMk
coinvariantsFunctor_hom_ext_iff πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
ModuleCat
CommRing.toRing
CategoryTheory.Category.toCategoryStruct
ModuleCat.moduleCategory
CategoryTheory.Functor.obj
Action
Action.instCategory
Action.forget
coinvariantsFunctor
CategoryTheory.NatTrans.app
coinvariantsMk
β€”coinvariantsFunctor_hom_ext
coinvariantsFunctor_map_hom πŸ“–mathematicalβ€”ModuleCat.Hom.hom
CommRing.toRing
ModuleCat.of
Representation.Coinvariants
ModuleCat.carrier
Action.V
ModuleCat
ModuleCat.moduleCategory
ModuleCat.isAddCommGroup
ModuleCat.isModule
ρ
Representation.Coinvariants.instAddCommGroup
Representation.Coinvariants.instModule
CategoryTheory.Functor.map
Rep
Action.instCategory
coinvariantsFunctor
Representation.Coinvariants.map
Action.Hom.hom
β€”β€”
coinvariantsFunctor_obj_carrier πŸ“–mathematicalβ€”ModuleCat.carrier
CommRing.toRing
CategoryTheory.Functor.obj
Rep
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
coinvariantsFunctor
Representation.Coinvariants
Action.V
ModuleCat.isAddCommGroup
ModuleCat.isModule
ρ
β€”β€”
coinvariantsMk_app_hom πŸ“–mathematicalβ€”ModuleCat.Hom.hom
CommRing.toRing
ModuleCat.of
ModuleCat.carrier
ModuleCat.isAddCommGroup
ModuleCat.isModule
Representation.Coinvariants
Action.V
ModuleCat
ModuleCat.moduleCategory
ρ
Representation.Coinvariants.instAddCommGroup
Representation.Coinvariants.instModule
CategoryTheory.NatTrans.app
Action
Action.instCategory
Action.forget
coinvariantsFunctor
coinvariantsMk
β€”β€”
coinvariantsShortComplex_X₁ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.X₁
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
coinvariantsShortComplex
toCoinvariantsKer
β€”β€”
coinvariantsShortComplex_Xβ‚‚ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.Xβ‚‚
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
coinvariantsShortComplex
β€”β€”
coinvariantsShortComplex_X₃ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.X₃
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
coinvariantsShortComplex
toCoinvariants
β€”β€”
coinvariantsShortComplex_f πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.f
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
coinvariantsShortComplex
subtype
Representation.Coinvariants.ker
Subgroup
SetLike.instMembership
Subgroup.instSetLike
ModuleCat.carrier
Action.V
Subgroup.toGroup
ModuleCat.isAddCommGroup
ModuleCat.isModule
MonoidHom.comp
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
ρ
Subgroup.subtype
β€”β€”
coinvariantsShortComplex_g πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.g
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
coinvariantsShortComplex
toCoinvariantsMkQ
β€”β€”
coinvariantsShortComplex_shortExact πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.ShortExact
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
coinvariantsShortComplex
β€”CategoryTheory.Functor.reflects_exact_of_faithful
Action.forgetβ‚‚_preservesZeroMorphisms
CategoryTheory.forgetβ‚‚_faithful
CategoryTheory.ShortComplex.moduleCat_exact_iff
Submodule.Quotient.mk_eq_zero
mono_iff_injective
epi_iff_surjective
Submodule.mkQ_surjective
coinvariantsTensorFreeLEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Representation.Coinvariants
TensorProduct
ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Finsupp.instZero
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
ModuleCat.isModule
Finsupp.module
Semiring.toModule
TensorProduct.addCommGroup
ModuleCat.isAddCommGroup
TensorProduct.instModule
Representation.tprod
ρ
Representation.free
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Representation.Coinvariants.instAddCommGroup
Representation.Coinvariants.instModule
CategoryTheory.MonoidalCategoryStruct.tensorObj
Rep
Action.instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Action.instMonoidalCategory
ModuleCat.monoidalCategory
free
LinearMap.instFunLike
coinvariantsTensorFreeToFinsupp
β€”β€”
coinvariantsTensorFreeLEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Finsupp
ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupCarrierVModuleCat
Representation.Coinvariants
CategoryTheory.MonoidalCategoryStruct.tensorObj
Rep
Action.instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Action.instMonoidalCategory
ModuleCat.monoidalCategory
free
ModuleCat.isAddCommGroup
ModuleCat.isModule
ρ
Finsupp.instAddCommMonoid
AddCommGroup.toAddCommMonoid
Representation.Coinvariants.instAddCommGroup
Finsupp.module
Representation.Coinvariants.instModule
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
coinvariantsTensorFreeLEquiv
LinearMap
ModuleCat.of
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finsupp.instZero
Finsupp.instAddCommGroup
Ring.toAddCommGroup
NonAssocSemiring.toNonUnitalNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toModule
Representation.tprod
Representation.free
LinearMap.instFunLike
finsuppToCoinvariantsTensorFree
β€”RingHomInvPair.ids
coinvariantsTensorFreeToFinsupp_mk_tmul_single πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Representation.Coinvariants
TensorProduct
ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Finsupp.instZero
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
ModuleCat.isModule
Finsupp.module
Semiring.toModule
TensorProduct.addCommGroup
ModuleCat.isAddCommGroup
TensorProduct.instModule
Representation.tprod
ρ
Representation.free
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Representation.Coinvariants.instAddCommGroup
Representation.Coinvariants.instModule
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
LinearMap.instFunLike
coinvariantsTensorFreeToFinsupp
TensorProduct.tmul
Finsupp.single
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Representation
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”RingHomCompTriple.ids
TensorProduct.finsuppRight_tmul_single
RingHomInvPair.ids
Representation.coinvariantsFinsuppLEquiv_apply
Representation.coinvariantsToFinsupp_mk_single
Finsupp.lcongr_single
Representation.coinvariantsTprodLeftRegularLEquiv_apply
Representation.ofCoinvariantsTprodLeftRegular_mk_tmul_single
coinvariantsTensorMk_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Functor.obj
Rep
Action.instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
coinvariantsTensor
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
coinvariantsTensorMk
TensorProduct
Representation.Coinvariants
TensorProduct.addCommGroup
CategoryTheory.MonoidalCategory.curriedTensor
Action.instMonoidalCategory
ModuleCat.monoidalCategory
ρ
Representation.Coinvariants.instAddCommGroup
Representation.Coinvariants.instModule
TensorProduct.tmul
β€”smulCommClass_self
coinvariantsTensor_hom_ext πŸ“–β€”LinearMap.comprβ‚‚
CommRing.toCommSemiring
CommSemiring.toSemiring
ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Functor.obj
Rep
Action.instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
coinvariantsTensor
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
ModuleCat.isAddCommGroup
ModuleCat.isModule
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
coinvariantsTensorMk
ModuleCat.Hom.hom
β€”β€”smulCommClass_self
IsScalarTower.left
coinvariantsFunctor_hom_ext
ModuleCat.hom_ext
TensorProduct.ext
coinvariantsTensor_hom_ext_iff πŸ“–mathematicalβ€”LinearMap.comprβ‚‚
CommRing.toCommSemiring
CommSemiring.toSemiring
ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Functor.obj
Rep
Action.instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
coinvariantsTensor
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
ModuleCat.isAddCommGroup
ModuleCat.isModule
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
coinvariantsTensorMk
ModuleCat.Hom.hom
β€”smulCommClass_self
IsScalarTower.left
coinvariantsTensor_hom_ext
finsuppToCoinvariantsTensorFree_single πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupCarrierVModuleCat
Representation.Coinvariants
TensorProduct
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Finsupp.instZero
AddCommGroup.toAddCommMonoid
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
ModuleCat.isModule
Finsupp.module
Semiring.toModule
TensorProduct.addCommGroup
ModuleCat.isAddCommGroup
TensorProduct.instModule
Representation.tprod
ρ
Representation.free
Representation.Coinvariants.instAddCommGroup
Representation.Coinvariants.instModule
LinearMap.instFunLike
finsuppToCoinvariantsTensorFree
Finsupp.single
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
TensorProduct.tmul
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”RingHomCompTriple.ids
LinearMap.comp.congr_simp
LinearEquiv.trans.congr_simp
Finsupp.lcongr_symm
Finsupp.lcongr_single
TensorProduct.finsuppRight_symm_apply_single
instAdditiveModuleCatCoinvariantsFunctor πŸ“–mathematicalβ€”CategoryTheory.Functor.Additive
Rep
CommRing.toRing
ModuleCat
Action.instCategory
ModuleCat.moduleCategory
Action.instPreadditive
ModuleCat.instPreadditive
coinvariantsFunctor
β€”coinvariantsFunctor_hom_ext
ModuleCat.hom_ext
LinearMap.ext
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
RingHomCompTriple.ids
CategoryTheory.Preadditive.comp_add
instAdditiveModuleCatObjFunctorCoinvariantsTensor πŸ“–mathematicalβ€”CategoryTheory.Functor.Additive
Rep
CommRing.toRing
ModuleCat
Action.instCategory
ModuleCat.moduleCategory
Action.instPreadditive
ModuleCat.instPreadditive
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
coinvariantsTensor
β€”CategoryTheory.MonoidalPreadditive.whiskerLeft_add
Action.instMonoidalPreadditive
ModuleCat.instMonoidalPreadditive
CategoryTheory.Functor.map_add
instAdditiveModuleCatCoinvariantsFunctor
instEpiModuleCatAppActionCoinvariantsMk πŸ“–mathematicalβ€”CategoryTheory.Epi
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
CategoryTheory.Functor.obj
Action
Action.instCategory
Action.forget
coinvariantsFunctor
CategoryTheory.NatTrans.app
coinvariantsMk
β€”ModuleCat.epi_iff_surjective
Representation.Coinvariants.mk_surjective
instIsLeftAdjointModuleCatCoinvariantsFunctor πŸ“–mathematicalβ€”CategoryTheory.Functor.IsLeftAdjoint
Rep
CommRing.toRing
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
coinvariantsFunctor
β€”CategoryTheory.Adjunction.isLeftAdjoint
instLinearModuleCatCoinvariantsFunctor πŸ“–mathematicalβ€”CategoryTheory.Functor.Linear
CommSemiring.toSemiring
CommRing.toCommSemiring
Rep
CommRing.toRing
ModuleCat
Action.instCategory
ModuleCat.moduleCategory
Action.instPreadditive
ModuleCat.instPreadditive
instLinearRep
ModuleCat.instLinear
coinvariantsFunctor
β€”coinvariantsFunctor_hom_ext
ModuleCat.hom_ext
LinearMap.ext
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
ModuleCat.Algebra.instSMulCommClassCarrier
RingHomCompTriple.ids
CategoryTheory.Linear.comp_smul
instLinearModuleCatObjFunctorCoinvariantsTensor πŸ“–mathematicalβ€”CategoryTheory.Functor.Linear
CommSemiring.toSemiring
CommRing.toCommSemiring
Rep
CommRing.toRing
ModuleCat
Action.instCategory
ModuleCat.moduleCategory
Action.instPreadditive
ModuleCat.instPreadditive
instLinearRep
ModuleCat.instLinear
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
coinvariantsTensor
β€”CategoryTheory.MonoidalLinear.whiskerLeft_smul
Action.instMonoidalPreadditive
ModuleCat.instMonoidalPreadditive
Action.instMonoidalLinear
ModuleCat.instMonoidalLinear
CategoryTheory.Functor.map_smul
instLinearModuleCatCoinvariantsFunctor
instPreservesZeroMorphismsModuleCatCoinvariantsFunctor πŸ“–mathematicalβ€”CategoryTheory.Functor.PreservesZeroMorphisms
Rep
CommRing.toRing
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
coinvariantsFunctor
β€”CategoryTheory.Functor.map_zero
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
instAdditiveModuleCatCoinvariantsFunctor
quotientToCoinvariantsFunctor_map_hom πŸ“–mathematicalβ€”Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
QuotientGroup.Quotient.group
quotientToCoinvariants
CategoryTheory.Functor.map
Rep
Action.instCategory
quotientToCoinvariantsFunctor
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
coinvariantsFunctor
CategoryTheory.Functor.obj
Action
Action.res
Subgroup.subtype
β€”β€”
quotientToCoinvariantsFunctor_obj_V πŸ“–mathematicalβ€”Action.V
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
QuotientGroup.Quotient.group
CategoryTheory.Functor.obj
Rep
Action.instCategory
quotientToCoinvariantsFunctor
ModuleCat.of
ModuleCat.carrier
toCoinvariants
ModuleCat.isAddCommGroup
ModuleCat.isModule
β€”β€”
toCoinvariantsMkQ_hom πŸ“–mathematicalβ€”ModuleCat.Hom.hom
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toCoinvariants
Action.Hom.hom
toCoinvariantsMkQ
Subgroup
SetLike.instMembership
Subgroup.instSetLike
ModuleCat.carrier
Subgroup.toGroup
ModuleCat.isAddCommGroup
ModuleCat.isModule
MonoidHom.comp
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
ρ
Subgroup.subtype
β€”β€”

Representation

Definitions

NameCategoryTheorems
Coinvariants πŸ“–CompOp
41 mathmath: groupHomology.coinvariantsMk_comp_H0Iso_inv_apply, Coinvariants.mk_inv_tmul, ofCoinvariantsTprodLeftRegular_mk_tmul_single, Rep.finsuppToCoinvariantsTensorFree_single, Rep.coinvariantsTensorFreeLEquiv_symm_apply, Coinvariants.mk_tmul_inv, Coinvariants.map_comp_mk, Coinvariants.lift_mk, coinvariantsFinsuppLEquiv_apply, groupHomology.d₁₀_comp_coinvariantsMk_apply, coinvariantsTprodLeftRegularLEquiv_apply, Coinvariants.mk_self_apply, Rep.coinvariantsFunctor_obj_carrier, Coinvariants.lift_comp_mk, Rep.coinvariantsTensorFreeLEquiv_apply, groupHomology.pOpcycles_comp_opcyclesIso_hom_apply, groupHomology.Ο€_comp_H0Iso_hom_apply, finsuppToCoinvariants_single_mk, Coinvariants.map_mk, instIsTrivialSubtypeMemSubgroupCoinvariantsCompLinearMapIdSubtypeToCoinvariants, groupHomology.coinvariantsMk_comp_opcyclesIsoβ‚€_inv_apply, Coinvariants.mk_eq_zero, Rep.coinvariantsMk_app_hom, Coinvariants.map_id, Coinvariants.mk_eq_iff, coinvariantsTprodLeftRegularLEquiv_symm_apply, groupHomology.map_id_comp_H0Iso_hom_apply, toCoinvariants_mk, Rep.coinvariantsTensorMk_apply, coinvariantsToFinsupp_mk_single, coinvariantsFinsuppLEquiv_symm_apply, groupHomology.inhomogeneousChains.d_eq, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, Coinvariants.map_comp, Rep.coinvariantsTensorIndInv_mk_tmul_indMk, Rep.coinvariantsFunctor_map_hom, groupHomology.H0Ο€_comp_H0Iso_hom_apply, Rep.coinvariantsTensorFreeToFinsupp_mk_tmul_single, Coinvariants.hom_ext_iff, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply, Coinvariants.mk_surjective
coinvariantsFinsuppLEquiv πŸ“–CompOp
2 mathmath: coinvariantsFinsuppLEquiv_apply, coinvariantsFinsuppLEquiv_symm_apply
coinvariantsToFinsupp πŸ“–CompOp
2 mathmath: coinvariantsFinsuppLEquiv_apply, coinvariantsToFinsupp_mk_single
coinvariantsTprodLeftRegularLEquiv πŸ“–CompOp
3 mathmath: coinvariantsTprodLeftRegularLEquiv_apply, coinvariantsTprodLeftRegularLEquiv_symm_apply, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply
finsuppToCoinvariants πŸ“–CompOp
2 mathmath: finsuppToCoinvariants_single_mk, coinvariantsFinsuppLEquiv_symm_apply
ofCoinvariantsTprodLeftRegular πŸ“–CompOp
2 mathmath: ofCoinvariantsTprodLeftRegular_mk_tmul_single, coinvariantsTprodLeftRegularLEquiv_apply
quotientToCoinvariants πŸ“–CompOpβ€”
toCoinvariants πŸ“–CompOp
2 mathmath: instIsTrivialSubtypeMemSubgroupCoinvariantsCompLinearMapIdSubtypeToCoinvariants, toCoinvariants_mk
toCoinvariantsKer πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
coinvariantsFinsuppLEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Coinvariants
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Finsupp.instAddCommGroup
Finsupp.module
finsupp
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Coinvariants.instAddCommGroup
Finsupp.instAddCommMonoid
Coinvariants.instModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
coinvariantsFinsuppLEquiv
LinearMap
LinearMap.instFunLike
coinvariantsToFinsupp
β€”RingHomInvPair.ids
coinvariantsFinsuppLEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Finsupp
Coinvariants
DivInvMonoid.toMonoid
Group.toDivInvMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Coinvariants.instAddCommGroup
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
Finsupp.instAddCommGroup
Finsupp.module
finsupp
Finsupp.instAddCommMonoid
Coinvariants.instModule
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
coinvariantsFinsuppLEquiv
LinearMap
LinearMap.instFunLike
finsuppToCoinvariants
β€”RingHomInvPair.ids
coinvariantsToFinsupp_mk_single πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Coinvariants
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Finsupp.instAddCommGroup
Finsupp.module
finsupp
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Coinvariants.instAddCommGroup
Finsupp.instAddCommMonoid
Coinvariants.instModule
LinearMap.instFunLike
coinvariantsToFinsupp
Finsupp.single
β€”Finsupp.mapRange_single
LinearMap.map_zero
coinvariantsTprodLeftRegularLEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Coinvariants
TensorProduct
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
AddCommGroup.toAddCommMonoid
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
DivInvMonoid.toMonoid
Group.toDivInvMonoid
TensorProduct.addCommGroup
TensorProduct.instModule
tprod
leftRegular
Coinvariants.instAddCommGroup
Coinvariants.instModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
coinvariantsTprodLeftRegularLEquiv
LinearMap
LinearMap.instFunLike
ofCoinvariantsTprodLeftRegular
β€”RingHomInvPair.ids
coinvariantsTprodLeftRegularLEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Coinvariants
TensorProduct
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
AddCommGroup.toAddCommMonoid
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
DivInvMonoid.toMonoid
Group.toDivInvMonoid
TensorProduct.addCommGroup
TensorProduct.instModule
tprod
leftRegular
Coinvariants.instAddCommGroup
Coinvariants.instModule
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
coinvariantsTprodLeftRegularLEquiv
LinearMap
LinearMap.instFunLike
TensorProduct.tmul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finsupp.single
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”RingHomInvPair.ids
finsuppToCoinvariants_single_mk πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
Coinvariants
DivInvMonoid.toMonoid
Group.toDivInvMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Coinvariants.instAddCommGroup
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
Finsupp.instAddCommGroup
Finsupp.module
finsupp
Finsupp.instAddCommMonoid
Coinvariants.instModule
LinearMap.instFunLike
finsuppToCoinvariants
Finsupp.single
β€”Finsupp.sum_single_index
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
instIsTrivialSubtypeMemSubgroupCoinvariantsCompLinearMapIdSubtypeToCoinvariants πŸ“–mathematicalβ€”IsTrivial
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Coinvariants
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MonoidHom.comp
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
Subgroup.subtype
Coinvariants.instAddCommGroup
Coinvariants.instModule
toCoinvariants
β€”Coinvariants.hom_ext
LinearMap.ext
RingHomCompTriple.ids
Coinvariants.mk_eq_iff
Coinvariants.mem_ker_of_eq
ofCoinvariantsTprodLeftRegular_mk_tmul_single πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Coinvariants
TensorProduct
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
AddCommGroup.toAddCommMonoid
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
DivInvMonoid.toMonoid
Group.toDivInvMonoid
TensorProduct.addCommGroup
TensorProduct.instModule
tprod
leftRegular
Coinvariants.instAddCommGroup
Coinvariants.instModule
LinearMap.instFunLike
ofCoinvariantsTprodLeftRegular
TensorProduct.tmul
Finsupp.single
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Representation
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”smulCommClass_self
Finsupp.linearCombination_single
toCoinvariants_mk πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Coinvariants
Subgroup
SetLike.instMembership
Subgroup.instSetLike
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MonoidHom.comp
AddCommGroup.toAddCommMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
Subgroup.subtype
Coinvariants.instAddCommGroup
Coinvariants.instModule
LinearMap.instFunLike
Representation
MonoidHom.instFunLike
toCoinvariants
β€”β€”

Representation.Coinvariants

Definitions

NameCategoryTheorems
instAddCommGroup πŸ“–CompOp
42 mathmath: Rep.coindToInd_of_support_subset_orbit, mk_inv_tmul, Representation.ofCoinvariantsTprodLeftRegular_mk_tmul_single, Rep.finsuppToCoinvariantsTensorFree_single, Rep.coinvariantsTensorFreeLEquiv_symm_apply, mk_tmul_inv, map_comp_mk, lift_mk, Representation.coinvariantsFinsuppLEquiv_apply, Representation.coinvariantsTprodLeftRegularLEquiv_apply, mk_self_apply, lift_comp_mk, Rep.coinvariantsTensorFreeLEquiv_apply, Rep.indResAdjunction_counit_app_hom_hom, Rep.coindToInd_apply, Representation.finsuppToCoinvariants_single_mk, map_mk, Representation.instIsTrivialSubtypeMemSubgroupCoinvariantsCompLinearMapIdSubtypeToCoinvariants, mk_eq_zero, Rep.coinvariantsMk_app_hom, map_id, mk_eq_iff, Representation.coinvariantsTprodLeftRegularLEquiv_symm_apply, Representation.toCoinvariants_mk, Rep.coinvariantsTensorMk_apply, Rep.indMap_hom, Representation.coinvariantsToFinsupp_mk_single, Representation.ind_mk, Representation.coinvariantsFinsuppLEquiv_symm_apply, Rep.coinvariantsTensorIndHom_mk_tmul_indVMk, groupHomology.inhomogeneousChains.d_eq, Representation.ind_apply, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, map_comp, Rep.coinvariantsTensorIndInv_mk_tmul_indMk, Rep.coinvariantsFunctor_map_hom, Rep.coinvariantsTensorFreeToFinsupp_mk_tmul_single, Representation.IndV.hom_ext_iff, Rep.indResHomEquiv_symm_apply_hom, hom_ext_iff, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply, mk_surjective
instModule πŸ“–CompOp
42 mathmath: Rep.coindToInd_of_support_subset_orbit, mk_inv_tmul, Representation.ofCoinvariantsTprodLeftRegular_mk_tmul_single, Rep.finsuppToCoinvariantsTensorFree_single, Rep.coinvariantsTensorFreeLEquiv_symm_apply, mk_tmul_inv, map_comp_mk, lift_mk, Representation.coinvariantsFinsuppLEquiv_apply, Representation.coinvariantsTprodLeftRegularLEquiv_apply, mk_self_apply, lift_comp_mk, Rep.coinvariantsTensorFreeLEquiv_apply, Rep.indResAdjunction_counit_app_hom_hom, Rep.coindToInd_apply, Representation.finsuppToCoinvariants_single_mk, map_mk, Representation.instIsTrivialSubtypeMemSubgroupCoinvariantsCompLinearMapIdSubtypeToCoinvariants, mk_eq_zero, Rep.coinvariantsMk_app_hom, map_id, mk_eq_iff, Representation.coinvariantsTprodLeftRegularLEquiv_symm_apply, Representation.toCoinvariants_mk, Rep.coinvariantsTensorMk_apply, Rep.indMap_hom, Representation.coinvariantsToFinsupp_mk_single, Representation.ind_mk, Representation.coinvariantsFinsuppLEquiv_symm_apply, Rep.coinvariantsTensorIndHom_mk_tmul_indVMk, groupHomology.inhomogeneousChains.d_eq, Representation.ind_apply, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, map_comp, Rep.coinvariantsTensorIndInv_mk_tmul_indMk, Rep.coinvariantsFunctor_map_hom, Rep.coinvariantsTensorFreeToFinsupp_mk_tmul_single, Representation.IndV.hom_ext_iff, Rep.indResHomEquiv_symm_apply_hom, hom_ext_iff, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply, mk_surjective
ker πŸ“–CompOp
13 mathmath: groupHomology.coinfNatTrans_app, groupHomology.chains₁ToCoinvariantsKer_surjective, le_comap_ker, sub_mem_ker, Representation.FiniteCyclicGroup.coinvariantsKer_eq_range, groupHomology.range_d₁₀_eq_coinvariantsKer, Rep.coinvariantsShortComplex_f, mk_eq_zero, Representation.FiniteCyclicGroup.coinvariantsKer_leftRegular_eq_ker, mk_eq_iff, mem_ker_of_eq, groupHomology.coinvariantsKerOfIsBoundaryβ‚€_coe, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply
map πŸ“–CompOp
8 mathmath: map_comp_mk, map_mk, map_id, groupHomology.map_id_comp_H0Iso_hom_apply, Rep.indMap_hom, Representation.ind_apply, map_comp, Rep.coinvariantsFunctor_map_hom
mk πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
hom_ext πŸ“–β€”LinearMap.comp
Representation.Coinvariants
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroup
instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
β€”β€”RingHomCompTriple.ids
Submodule.linearMap_qext
hom_ext_iff πŸ“–mathematicalβ€”LinearMap.comp
Representation.Coinvariants
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroup
instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
β€”RingHomCompTriple.ids
hom_ext
induction_on πŸ“–β€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Representation.Coinvariants
AddCommGroup.toAddCommMonoid
instAddCommGroup
instModule
LinearMap.instFunLike
β€”β€”Submodule.Quotient.induction_on
le_comap_ker πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
ker
Subgroup
SetLike.instMembership
Subgroup.instSetLike
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
MonoidHom.comp
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
Subgroup.subtype
Submodule.comap
DFunLike.coe
Representation
MonoidHom.instFunLike
β€”Submodule.span_le
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
mem_ker_of_eq
Subgroup.Normal.conj_mem
map_mul
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
Representation.inv_self_apply
lift_comp_mk πŸ“–mathematicalLinearMap.comp
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
DFunLike.coe
Representation
LinearMap
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
Representation.Coinvariants
instAddCommGroup
instModule
lift
β€”RingHomCompTriple.ids
lift_mk πŸ“–mathematicalLinearMap.comp
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
DFunLike.coe
Representation
LinearMap
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
Representation.Coinvariants
instAddCommGroup
instModule
LinearMap.instFunLike
lift
β€”RingHomCompTriple.ids
map_comp πŸ“–mathematicalLinearMap.comp
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
DFunLike.coe
Representation
LinearMap
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
Representation.Coinvariants
instAddCommGroup
instModule
map
β€”RingHomCompTriple.ids
hom_ext
map_comp_mk πŸ“–mathematicalLinearMap.comp
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
DFunLike.coe
Representation
LinearMap
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
Representation.Coinvariants
instAddCommGroup
instModule
map
β€”RingHomCompTriple.ids
map_id πŸ“–mathematicalβ€”map
LinearMap.id
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Representation.Coinvariants
instAddCommGroup
instModule
β€”hom_ext
LinearMap.ext
RingHomCompTriple.ids
map_mk πŸ“–mathematicalLinearMap.comp
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
DFunLike.coe
Representation
LinearMap
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
Representation.Coinvariants
instAddCommGroup
instModule
LinearMap.instFunLike
map
β€”RingHomCompTriple.ids
mem_ker_of_eq πŸ“–mathematicalSubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
Representation
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
Submodule
SetLike.instMembership
Submodule.setLike
ker
β€”Submodule.subset_span
mk_eq_iff πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Representation.Coinvariants
AddCommGroup.toAddCommMonoid
instAddCommGroup
instModule
LinearMap.instFunLike
Submodule
SetLike.instMembership
Submodule.setLike
ker
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”Submodule.Quotient.eq
mk_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Representation.Coinvariants
AddCommGroup.toAddCommMonoid
instAddCommGroup
instModule
LinearMap.instFunLike
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Submodule
SetLike.instMembership
Submodule.setLike
ker
β€”Submodule.Quotient.mk_eq_zero
mk_inv_tmul πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
AddCommGroup.toAddCommMonoid
Representation.Coinvariants
DivInvMonoid.toMonoid
Group.toDivInvMonoid
TensorProduct.addCommGroup
TensorProduct.instModule
Representation.tprod
instAddCommGroup
instModule
LinearMap.instFunLike
TensorProduct.tmul
Representation
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”mk_eq_iff
mem_ker_of_eq
Representation.inv_self_apply
mk_self_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Representation.Coinvariants
AddCommGroup.toAddCommMonoid
instAddCommGroup
instModule
LinearMap.instFunLike
Representation
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
β€”mk_eq_iff
mem_ker_of_eq
mk_surjective πŸ“–mathematicalβ€”Representation.Coinvariants
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroup
instModule
LinearMap.instFunLike
β€”Submodule.Quotient.mk_surjective
mk_tmul_inv πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
AddCommGroup.toAddCommMonoid
Representation.Coinvariants
DivInvMonoid.toMonoid
Group.toDivInvMonoid
TensorProduct.addCommGroup
TensorProduct.instModule
Representation.tprod
instAddCommGroup
instModule
LinearMap.instFunLike
TensorProduct.tmul
Representation
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”mk_eq_iff
mem_ker_of_eq
Representation.inv_self_apply
sub_mem_ker πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
ker
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
Representation
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
β€”Submodule.subset_span
Set.mem_range_self

---

← Back to Index