Documentation Verification Report

FinGroupCharZero

📁 Source: Mathlib/RepresentationTheory/FinGroupCharZero.lean

Statistics

MetricCount
Definitions0
TheoremsinstInjectiveOfNeZeroCastCard, instProjectiveOfNeZeroCastCard, simple_iff_char_is_norm_one, simple_iff_end_is_rank_one, instInjective, instProjective
6
Total6

FDRep

Theorems

NameKindAssumesProvesValidatesDepends On
instInjectiveOfNeZeroCastCard 📖mathematical—CategoryTheory.Injective
FDRep
DivisionRing.toRing
Field.toDivisionRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instLargeCategory
EuclideanDomain.toCommRing
Field.toEuclideanDomain
—CategoryTheory.Functor.injective_of_map_injective
instFullRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV
instFaithfulRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV
CategoryTheory.preservesMonomorphisms_of_preservesLimitsOfShape
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
instPreservesFiniteLimitsRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGVOfIsNoetherianRing
IsSimpleModule.instIsNoetherian
instIsSimpleModule
Rep.instInjective
instProjectiveOfNeZeroCastCard 📖mathematical—CategoryTheory.Projective
FDRep
DivisionRing.toRing
Field.toDivisionRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instLargeCategory
EuclideanDomain.toCommRing
Field.toEuclideanDomain
—CategoryTheory.Functor.projective_of_map_projective
instFullRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV
instFaithfulRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV
CategoryTheory.preservesEpimorphisms_of_preservesColimitsOfShape
CategoryTheory.Limits.PreservesFiniteColimits.preservesFiniteColimits
instPreservesFiniteColimitsRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV
Rep.instProjective
simple_iff_char_is_norm_one 📖mathematical—CategoryTheory.Simple
FDRep
DivisionRing.toRing
Field.toDivisionRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instLargeCategory
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Action.instHasZeroMorphisms
FGModuleCat
CategoryTheory.ObjectProperty.FullSubcategory.category
ModuleCat
ModuleCat.moduleCategory
ModuleCat.isFG
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Preadditive.fullSubcategory
ModuleCat.instPreadditive
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finset.univ
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
character
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Nat.card
—Fintype.card_eq_nat_card
NeZero.charZero
Fintype.instNeZeroNatCardOfNonempty
One.instNonempty
Invertible.congr
char_orthonormal
one_mul
smul_eq_mul
mul_invOf_self
smul_smul
mul_comm
scalar_product_char_eq_finrank_equivariant
simple_iff_end_is_rank_one
Finite.of_fintype
invOf_eq_inv
inv_mul_cancel_of_invertible
Nat.cast_one
simple_iff_end_is_rank_one 📖mathematical—CategoryTheory.Simple
FDRep
DivisionRing.toRing
Field.toDivisionRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instLargeCategory
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Action.instHasZeroMorphisms
FGModuleCat
CategoryTheory.ObjectProperty.FullSubcategory.category
ModuleCat
ModuleCat.moduleCategory
ModuleCat.isFG
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Preadditive.fullSubcategory
ModuleCat.instPreadditive
Module.finrank
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
instPreadditive
CategoryTheory.Linear.homModule
instLinear
—CategoryTheory.finrank_endomorphism_simple_eq_one
instHasKernels
instFiniteDimensionalHom
Module.finrank_pos_iff_exists_ne_zero
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
CategoryTheory.Limits.IsZero.eq_zero_of_src
CategoryTheory.Limits.isIsoZero_iff_source_target_isZero
CategoryTheory.Abelian.hasZeroObject
IsSimpleModule.instIsNoetherian
instIsSimpleModule
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
CategoryTheory.Limits.HasKernels.has_limit
instInjectiveOfNeZeroCastCard
CategoryTheory.Limits.equalizer.ι_mono
CategoryTheory.Injective.comp_factorThru
CategoryTheory.Category.id_comp
CategoryTheory.Category.assoc
CategoryTheory.Limits.comp_zero
CategoryTheory.Abelian.isIso_factorThruImage
CategoryTheory.Abelian.image.fac
finrank_eq_one_iff_of_nonzero'
CategoryTheory.Preadditive.epi_of_cancel_zero
CategoryTheory.Linear.smul_comp
smul_zero
CategoryTheory.epi_comp
CategoryTheory.Abelian.instEpiFactorThruImage
CategoryTheory.isIso_of_mono_of_epi
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
CategoryTheory.Abelian.toIsNormalMonoCategory

Rep

Theorems

NameKindAssumesProvesValidatesDepends On
instInjective 📖mathematical—CategoryTheory.Injective
Rep
DivisionRing.toRing
Field.toDivisionRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
—CategoryTheory.Equivalence.map_injective_iff
Module.injective_iff_injective_object
Module.injective_of_isSemisimpleRing
MonoidAlgebra.Submodule.instIsSemisimpleModule
instProjective 📖mathematical—CategoryTheory.Projective
Rep
DivisionRing.toRing
Field.toDivisionRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
—CategoryTheory.Equivalence.map_projective_iff
IsProjective.iff_projective
UnivLE.small
UnivLE.self
Module.projective_of_isSemisimpleRing
MonoidAlgebra.Submodule.instIsSemisimpleModule

---

← Back to Index