Documentation Verification Report

FiniteIndex

πŸ“ Source: Mathlib/RepresentationTheory/FiniteIndex.lean

Statistics

MetricCount
DefinitionsFiniteIndex, coindResAdjunction, coindToInd, indCoindIso, indCoindNatIso, indToCoind, indToCoindAux, resIndAdjunction, FiniteIndex
9
TheoremscoindResAdjunction_counit_app, coindResAdjunction_homEquiv_apply, coindResAdjunction_homEquiv_symm_apply, coindResAdjunction_unit_app, coindToInd_apply, coindToInd_of_support_subset_orbit, indCoindIso_hom_hom_hom, indCoindIso_inv_hom_hom, indCoindNatIso_hom_app, indCoindNatIso_inv_app, indToCoindAux_comm, indToCoindAux_fst_mul_inv, indToCoindAux_mul_fst, indToCoindAux_mul_snd, indToCoindAux_of_not_rel, indToCoindAux_self, indToCoindAux_snd_mul_inv, instIsLeftAdjointSubtypeMemSubgroupCoindFunctorSubtype, instIsRightAdjointSubtypeMemSubgroupIndFunctorSubtype, resIndAdjunction_counit_app, resIndAdjunction_homEquiv_apply, resIndAdjunction_homEquiv_symm_apply, resIndAdjunction_unit_app
23
Total32

AddSubgroup

Definitions

NameCategoryTheorems
FiniteIndex πŸ“–CompData
24 mathmath: IsFiniteRelIndex.to_finiteIndex_addSubgroupOf, finiteIndex_of_le, exists_finiteIndex_of_leftCoset_cover_aux, FiniteIndexNormalAddSubgroup.isFiniteIndex', Submodule.exists_finiteIndex_of_cover, exists_finiteIndex_of_leftCoset_cover, exists_index_le_card_of_leftCoset_cover, instFiniteIndex_addSubgroupOf, finite_iff_finite_and_finiteIndex, instFiniteIndexTop, finiteIndex_of_finite_quotient, FiniteIndexNormalAddSubgroup.instFiniteIndex, leftCoset_cover_filter_FiniteIndex_aux, finiteIndex_iff, IsComplement.finite_right_iff, finiteIndex_iff_finite_quotient, finiteIndex_ker, leftCoset_cover_filter_FiniteIndex, instFiniteIndexMin, pairwiseDisjoint_leftCoset_cover_of_sum_neg_index_eq_zero, IsComplement.finite_left_iff, finiteIndex_of_leftCoset_cover_const, finiteIndex_of_finite, not_finiteIndex_iff

Rep

Definitions

NameCategoryTheorems
coindResAdjunction πŸ“–CompOp
4 mathmath: coindResAdjunction_counit_app, coindResAdjunction_unit_app, coindResAdjunction_homEquiv_apply, coindResAdjunction_homEquiv_symm_apply
coindToInd πŸ“–CompOp
3 mathmath: coindToInd_of_support_subset_orbit, indCoindIso_inv_hom_hom, coindToInd_apply
indCoindIso πŸ“–CompOp
12 mathmath: coindResAdjunction_counit_app, indCoindNatIso_hom_app, indCoindIso_inv_hom_hom, indCoindIso_hom_hom_hom, coindResAdjunction_unit_app, resIndAdjunction_homEquiv_symm_apply, resIndAdjunction_homEquiv_apply, coindResAdjunction_homEquiv_apply, resIndAdjunction_counit_app, indCoindNatIso_inv_app, coindResAdjunction_homEquiv_symm_apply, resIndAdjunction_unit_app
indCoindNatIso πŸ“–CompOp
2 mathmath: indCoindNatIso_hom_app, indCoindNatIso_inv_app
indToCoind πŸ“–CompOp
1 mathmath: indCoindIso_hom_hom_hom
indToCoindAux πŸ“–CompOp
7 mathmath: indToCoindAux_self, indToCoindAux_fst_mul_inv, indToCoindAux_comm, indToCoindAux_mul_fst, indToCoindAux_mul_snd, indToCoindAux_snd_mul_inv, indToCoindAux_of_not_rel
resIndAdjunction πŸ“–CompOp
4 mathmath: resIndAdjunction_homEquiv_symm_apply, resIndAdjunction_homEquiv_apply, resIndAdjunction_counit_app, resIndAdjunction_unit_app

Theorems

NameKindAssumesProvesValidatesDepends On
coindResAdjunction_counit_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Functor.comp
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
Action.res
Subgroup.subtype
coindFunctor
CategoryTheory.Functor.id
CategoryTheory.Adjunction.counit
coindResAdjunction
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
coind
CategoryTheory.Functor.obj
Action
ind
CategoryTheory.Iso.inv
indCoindIso
indFunctor
indResAdjunction
β€”CategoryTheory.Adjunction.mkOfHomEquiv_homEquiv
coindResAdjunction_homEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Functor.obj
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
coindFunctor
Subgroup.subtype
Action.res
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Adjunction.homEquiv
coindResAdjunction
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
ind
Action
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
Action.instPreadditive
ModuleCat.instPreadditive
CategoryTheory.Linear.homModule
instLinearRep
DFinsupp.instEquivLikeLinearEquiv
indResHomEquiv
CategoryTheory.CategoryStruct.comp
coind
CategoryTheory.Iso.hom
indCoindIso
β€”RingHomInvPair.ids
CategoryTheory.Adjunction.mkOfHomEquiv_homEquiv
coindResAdjunction_homEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
Rep
Subgroup
SetLike.instMembership
Subgroup.instSetLike
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Functor.obj
Action.res
Subgroup.subtype
coindFunctor
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.Adjunction.homEquiv
coindResAdjunction
CategoryTheory.CategoryStruct.comp
coind
ind
CategoryTheory.Iso.inv
indCoindIso
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Action
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
Action.instPreadditive
ModuleCat.instPreadditive
CategoryTheory.Linear.homModule
instLinearRep
DFinsupp.instEquivLikeLinearEquiv
LinearEquiv.symm
indResHomEquiv
β€”RingHomInvPair.ids
CategoryTheory.Adjunction.mkOfHomEquiv_homEquiv
coindResAdjunction_unit_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Rep
Subgroup
SetLike.instMembership
Subgroup.instSetLike
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
coindFunctor
Subgroup.subtype
Action.res
CategoryTheory.Adjunction.unit
coindResAdjunction
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
indFunctor
Action
coind
indResAdjunction
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
ind
indCoindIso
β€”Action.hom_ext
ModuleCat.hom_ext
LinearMap.ext
RingHomCompTriple.ids
CategoryTheory.Adjunction.mkOfHomEquiv_homEquiv
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc
smulCommClass_self
Finsupp.linearCombination_single
one_smul
coindToInd_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
coind
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
Subgroup.subtype
ind
Submodule.addCommMonoid
Pi.addCommMonoid
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
Pi.Function.module
ModuleCat.isModule
Representation.coindV
ρ
Representation.Coinvariants.instAddCommGroup
TensorProduct
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
ModuleCat.isAddCommGroup
Finsupp.module
Semiring.toModule
TensorProduct.addCommGroup
Finsupp.instAddCommGroup
Ring.toAddCommGroup
TensorProduct.instModule
Representation.tprod
MonoidHom.comp
NonAssocSemiring.toNonUnitalNonAssocSemiring
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
Representation.leftRegular
Submodule.module
Representation.Coinvariants.instModule
LinearMap.instFunLike
coindToInd
Finset.sum
QuotientGroup.rightRel
Finset.univ
QuotientGroup.fintypeQuotientRightRel
Subgroup.fintypeQuotientOfFiniteIndex
Representation.IndV
Submodule
Submodule.setLike
β€”β€”
coindToInd_of_support_subset_orbit πŸ“–mathematicalSet
Set.instHasSubset
Function.support
ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
Subgroup
SetLike.instMembership
Subgroup.instSetLike
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupCarrierVModuleCat
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
Pi.addCommMonoid
AddCommGroup.toAddCommMonoid
Pi.Function.module
ModuleCat.isModule
Submodule.setLike
Representation.coindV
Subgroup.subtype
ρ
MulAction.orbit
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Subgroup.instMulAction
Monoid.toMulAction
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
coind
ind
Submodule.addCommMonoid
Representation.Coinvariants.instAddCommGroup
TensorProduct
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
ModuleCat.isAddCommGroup
Finsupp.module
Semiring.toModule
TensorProduct.addCommGroup
Finsupp.instAddCommGroup
Ring.toAddCommGroup
TensorProduct.instModule
Representation.tprod
MonoidHom.comp
NonAssocSemiring.toNonUnitalNonAssocSemiring
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
Representation.leftRegular
Submodule.module
Representation.Coinvariants.instModule
LinearMap.instFunLike
coindToInd
Representation.IndV
β€”coindToInd_apply
Finset.sum_eq_single
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
TensorProduct.tmul_zero
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
instIsEmptyFalse
indCoindIso_hom_hom_hom πŸ“–mathematicalβ€”ModuleCat.Hom.hom
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
ind
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
Subgroup.subtype
coind
Action.Hom.hom
CategoryTheory.Iso.hom
Rep
Action.instCategory
indCoindIso
indToCoind
β€”β€”
indCoindIso_inv_hom_hom πŸ“–mathematicalβ€”ModuleCat.Hom.hom
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
coind
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
Subgroup.subtype
ind
Action.Hom.hom
CategoryTheory.Iso.inv
Rep
Action.instCategory
indCoindIso
coindToInd
β€”β€”
indCoindNatIso_hom_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Rep
Subgroup
SetLike.instMembership
Subgroup.instSetLike
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
indFunctor
Subgroup.subtype
coindFunctor
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
indCoindNatIso
ind
coind
indCoindIso
β€”β€”
indCoindNatIso_inv_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Rep
Subgroup
SetLike.instMembership
Subgroup.instSetLike
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
coindFunctor
Subgroup.subtype
indFunctor
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
indCoindNatIso
ind
coind
indCoindIso
β€”β€”
indToCoindAux_comm πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
Subgroup
SetLike.instMembership
Subgroup.instSetLike
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
Pi.addCommMonoid
ModuleCat.isModule
Pi.Function.module
LinearMap.instFunLike
indToCoindAux
CategoryTheory.ConcreteCategory.hom
Ring.toSemiring
ModuleCat.isAddCommGroup
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.Hom.hom
β€”em
Submonoid.smul_def
indToCoindAux_mul_snd
indToCoindAux_self
hom_comm_apply
indToCoindAux_of_not_rel
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
indToCoindAux_fst_mul_inv πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
Subgroup
SetLike.instMembership
Subgroup.instSetLike
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
Pi.addCommMonoid
ModuleCat.isModule
Pi.Function.module
LinearMap.instFunLike
indToCoindAux
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”inv_inv
indToCoindAux_snd_mul_inv
indToCoindAux_mul_fst πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
Subgroup
SetLike.instMembership
Subgroup.instSetLike
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
Pi.addCommMonoid
ModuleCat.isModule
Pi.Function.module
LinearMap.instFunLike
indToCoindAux
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Representation
MonoidHom.instFunLike
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
ρ
β€”em
Submonoid.smul_def
mul_assoc
inv_mul_cancel_left
Module.End.mul_apply
map_mul
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
mul_inv_rev
mul_inv_cancel_left
mul_inv_cancel
mul_one
Subtype.coe_eta
inv_mul_cancel
indToCoindAux_of_not_rel
indToCoindAux_mul_snd πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
Subgroup
SetLike.instMembership
Subgroup.instSetLike
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
Pi.addCommMonoid
ModuleCat.isModule
Pi.Function.module
LinearMap.instFunLike
indToCoindAux
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Representation
MonoidHom.instFunLike
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
ρ
β€”em
mul_assoc
Submonoid.smul_def
mul_inv_cancel
mul_one
map_mul
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
Subtype.coe_eta
indToCoindAux_of_not_rel
inv_mul_cancel_left
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
indToCoindAux_of_not_rel πŸ“–mathematicalQuotientGroup.rightRelDFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
Subgroup
SetLike.instMembership
Subgroup.instSetLike
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
Pi.addCommMonoid
ModuleCat.isModule
Pi.Function.module
LinearMap.instFunLike
indToCoindAux
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
indToCoindAux_self πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
Subgroup
SetLike.instMembership
Subgroup.instSetLike
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
Pi.addCommMonoid
ModuleCat.isModule
Pi.Function.module
LinearMap.instFunLike
indToCoindAux
β€”indToCoindAux.eq_1
LinearMap.pi_apply
Setoid.refl'
mul_inv_cancel
map_one
MonoidHomClass.toOneHomClass
MonoidHom.instMonoidHomClass
indToCoindAux_snd_mul_inv πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
Subgroup
SetLike.instMembership
Subgroup.instSetLike
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
Pi.addCommMonoid
ModuleCat.isModule
Pi.Function.module
LinearMap.instFunLike
indToCoindAux
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”em
eq_mul_inv_iff_mul_eq
Submonoid.smul_def
mul_assoc
mul_inv_cancel
mul_one
indToCoindAux_mul_snd
indToCoindAux_self
indToCoindAux_of_not_rel
instIsLeftAdjointSubtypeMemSubgroupCoindFunctorSubtype πŸ“–mathematicalβ€”CategoryTheory.Functor.IsLeftAdjoint
Rep
Subgroup
SetLike.instMembership
Subgroup.instSetLike
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
coindFunctor
Subgroup.subtype
β€”CategoryTheory.Adjunction.isLeftAdjoint
instIsRightAdjointSubtypeMemSubgroupIndFunctorSubtype πŸ“–mathematicalβ€”CategoryTheory.Functor.IsRightAdjoint
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
indFunctor
Subgroup.subtype
β€”CategoryTheory.Adjunction.isRightAdjoint
resIndAdjunction_counit_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Action
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
Subgroup
SetLike.instMembership
Subgroup.instSetLike
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
Action.instCategory
CategoryTheory.Functor.comp
indFunctor
Subgroup.subtype
Action.res
CategoryTheory.Functor.id
CategoryTheory.Adjunction.counit
resIndAdjunction
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
ind
coind
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
Rep
indCoindIso
coindFunctor
resCoindAdjunction
β€”β€”
resIndAdjunction_homEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
Action
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
Subgroup
SetLike.instMembership
Subgroup.instSetLike
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Action.instCategory
CategoryTheory.Functor.obj
Action.res
Subgroup.subtype
indFunctor
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Adjunction.homEquiv
resIndAdjunction
CategoryTheory.CategoryStruct.comp
Rep
coind
ind
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
Action.instPreadditive
ModuleCat.instPreadditive
CategoryTheory.Linear.homModule
instLinearRep
DFinsupp.instEquivLikeLinearEquiv
resCoindHomEquiv
CategoryTheory.Iso.inv
indCoindIso
β€”RingHomInvPair.ids
CategoryTheory.Adjunction.mkOfHomEquiv_homEquiv
resIndAdjunction_homEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quiver.Hom
Action
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Action.instCategory
CategoryTheory.Functor.obj
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
indFunctor
Subgroup.subtype
Action.res
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.Adjunction.homEquiv
resIndAdjunction
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Rep
coind
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
Action.instPreadditive
ModuleCat.instPreadditive
CategoryTheory.Linear.homModule
instLinearRep
DFinsupp.instEquivLikeLinearEquiv
LinearEquiv.symm
resCoindHomEquiv
CategoryTheory.CategoryStruct.comp
CategoryTheory.Iso.hom
ind
indCoindIso
β€”RingHomInvPair.ids
CategoryTheory.Adjunction.mkOfHomEquiv_homEquiv
resIndAdjunction_unit_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
Action
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
Action.res
Subgroup.subtype
indFunctor
CategoryTheory.Adjunction.unit
resIndAdjunction
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
coindFunctor
ind
resCoindAdjunction
CategoryTheory.Iso.inv
Rep
coind
indCoindIso
β€”β€”

Subgroup

Definitions

NameCategoryTheorems
FiniteIndex πŸ“–CompData
34 mathmath: CongruenceSubgroup.instFiniteIndexGamma, not_finiteIndex_iff, finiteIndex_center, CongruenceSubgroup.instFiniteIndexGamma1, FiniteIndexNormalSubgroup.instFiniteIndex, finite_iff_finite_and_finiteIndex, instFiniteIndexMin, leftCoset_cover_filter_FiniteIndex_aux, instFiniteIndex_subgroupOf, IsComplement.finite_right_iff, finiteIndex_of_leftCoset_cover_const, FiniteIndexNormalSubgroup.isFiniteIndex', instFiniteIndexTop, exists_index_le_card_of_leftCoset_cover, isArithmetic_iff_finiteIndex, finiteIndex_of_finite, CongruenceSubgroup.finiteIndex_conjGL, CongruenceSubgroup.instFiniteIndexGamma0, finiteIndex_ker, IsFiniteRelIndex.to_finiteIndex_subgroupOf, finiteIndex_iff_finite_quotient, finiteIndex_of_le, leftCoset_cover_filter_FiniteIndex, pairwiseDisjoint_leftCoset_cover_of_sum_inv_index_eq_one, exists_finiteIndex_of_leftCoset_cover_aux, NumberField.Units.isMaxRank_iff_closure_finiteIndex, CongruenceSubgroup.IsCongruenceSubgroup.finiteIndex, NumberField.Units.finiteIndex_iff_sup_torsion_finiteIndex, IsArithmetic.finiteIndex_comap, finiteIndex_iff, IsComplement.finite_left_iff, exists_finiteIndex_of_leftCoset_cover, finiteIndex_normalCore, finiteIndex_of_finite_quotient

---

← Back to Index