Documentation Verification Report

FiniteCyclic

πŸ“ Source: Mathlib/RepresentationTheory/Homological/FiniteCyclic.lean

Statistics

MetricCount
DefinitionschainComplexFunctor, moduleCatChainComplex, moduleCatCochainComplex, normHomCompSub, resolution, Ο€, subCompNormHom, coinvariantsEquiv
8
TheoremschainComplexFunctor_map_f, chainComplexFunctor_obj, range_applyAsHom_sub_eq_ker_linearCombination, range_applyAsHom_sub_eq_ker_norm, range_norm_eq_ker_applyAsHom_sub, Ο€_f, resolution_complex, resolution_quasiIso, resolution_Ο€, coinvariantsKer_eq_range, coinvariantsKer_leftRegular_eq_ker
11
Total19

Rep.FiniteCyclicGroup

Definitions

NameCategoryTheorems
chainComplexFunctor πŸ“–CompOp
5 mathmath: chainComplexFunctor_obj, chainComplexFunctor_map_f, resolution_complex, resolution_quasiIso, resolution.Ο€_f
moduleCatChainComplex πŸ“–CompOp
2 mathmath: coinvariantsTensorResolutionIso_inv_f_hom_apply, coinvariantsTensorResolutionIso_hom_f_hom_apply
moduleCatCochainComplex πŸ“–CompOp
2 mathmath: homResolutionIso_hom_f_hom_apply, homResolutionIso_inv_f_hom_apply_hom_hom_apply
normHomCompSub πŸ“–CompOpβ€”
resolution πŸ“–CompOp
6 mathmath: resolution_complex, homResolutionIso_hom_f_hom_apply, homResolutionIso_inv_f_hom_apply_hom_hom_apply, coinvariantsTensorResolutionIso_inv_f_hom_apply, resolution_Ο€, coinvariantsTensorResolutionIso_hom_f_hom_apply
subCompNormHom πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
chainComplexFunctor_map_f πŸ“–mathematicalβ€”HomologicalComplex.Hom.f
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.alternatingConst
Rep.norm
Quiver.Hom
CommMonoid.toMonoid
CommGroup.toCommMonoid
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Action.instSubHom
Rep.applyAsHom
CategoryTheory.CategoryStruct.id
ComplexShape.instDecidableRelRelDown
ComplexShape.down_nat_odd_add
CategoryTheory.Functor.map
ChainComplex
HomologicalComplex.instCategory
AddRightCancelSemigroup.toIsRightCancelAdd
chainComplexFunctor
β€”ComplexShape.down_nat_odd_add
AddRightCancelSemigroup.toIsRightCancelAdd
chainComplexFunctor_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
ChainComplex
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
chainComplexFunctor
HomologicalComplex.alternatingConst
Rep.norm
Quiver.Hom
CommMonoid.toMonoid
CommGroup.toCommMonoid
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Action.instSubHom
Rep.applyAsHom
CategoryTheory.CategoryStruct.id
ComplexShape.instDecidableRelRelDown
ComplexShape.down_nat_odd_add
β€”AddRightCancelSemigroup.toIsRightCancelAdd
resolution_complex πŸ“–mathematicalSubgroup
CommGroup.toGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
CategoryTheory.ProjectiveResolution.complex
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Abelian.hasZeroObject
Action.instAbelian
ModuleCat.abelian
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
Rep.trivial
Ring.toAddCommGroup
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
resolution
CategoryTheory.Functor.obj
ChainComplex
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
chainComplexFunctor
Rep.leftRegular
β€”AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Abelian.hasZeroObject
resolution_quasiIso πŸ“–mathematicalSubgroup
CommGroup.toGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
QuasiIso
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
chainComplexFunctor
Rep.leftRegular
ChainComplex.singleβ‚€
CategoryTheory.Abelian.hasZeroObject
Action.instAbelian
ModuleCat.abelian
Rep.trivial
Ring.toAddCommGroup
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
resolution.Ο€
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
HomologicalComplex.instHasHomologyObjSingle
β€”AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.instHasHomologyObjSingle
ChainComplex.quasiIsoAtβ‚€_iff
CategoryTheory.ShortComplex.quasiIso_iff_of_zeros'
CategoryTheory.Functor.reflects_exact_of_faithful
Action.forget_preservesZeroMorphisms
Action.instFaithfulForget
RingHomSurjective.ids
ComplexShape.down_nat_odd_add
HomologicalComplex.mkHomToSingle_f
CategoryTheory.Category.comp_id
zero_add
CategoryTheory.ShortComplex.map.congr_simp
Representation.isTrivial_def
Representation.instIsTrivialTrivial
leftRegular.range_applyAsHom_sub_eq_ker_linearCombination
Finite.of_fintype
Rep.epi_iff_surjective
mul_one
Finsupp.sum_single_index
quasiIsoAt_iff_exactAt'
ChainComplex.exactAt_succ_single_obj
HomologicalComplex.exactAt_iff'
ChainComplex.prev
ChainComplex.next_nat_succ
CategoryTheory.ShortComplex.moduleCat_exact_iff_range_eq_ker
LinearMap.range.congr_simp
Nat.even_add_one
Nat.not_even_iff_odd
leftRegular.range_norm_eq_ker_applyAsHom_sub
Nat.odd_add_one
Nat.not_odd_iff_even
leftRegular.range_applyAsHom_sub_eq_ker_norm
resolution_Ο€ πŸ“–mathematicalSubgroup
CommGroup.toGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
CategoryTheory.ProjectiveResolution.Ο€
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Abelian.hasZeroObject
Action.instAbelian
ModuleCat.abelian
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
Rep.trivial
Ring.toAddCommGroup
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
resolution
resolution.Ο€
β€”AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Abelian.hasZeroObject

Rep.FiniteCyclicGroup.leftRegular

Theorems

NameKindAssumesProvesValidatesDepends On
range_applyAsHom_sub_eq_ker_linearCombination πŸ“–mathematicalSubgroup
CommGroup.toGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
LinearMap.range
ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
CommMonoid.toMonoid
CommGroup.toCommMonoid
Rep.leftRegular
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Ring.toSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
ModuleCat.isModule
Finsupp.module
Semiring.toModule
RingHom.id
RingHomSurjective.ids
ModuleCat.Hom.hom
Action.Hom.hom
Quiver.Hom
Rep
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Action.instCategory
Action.instSubHom
ModuleCat.instPreadditive
Rep.applyAsHom
CategoryTheory.CategoryStruct.id
LinearMap.ker
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finsupp.linearCombination
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”RingHomSurjective.ids
Representation.FiniteCyclicGroup.coinvariantsKer_eq_range
range_applyAsHom_sub_eq_ker_norm πŸ“–mathematicalSubgroup
CommGroup.toGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
LinearMap.range
ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
CommMonoid.toMonoid
CommGroup.toCommMonoid
Rep.leftRegular
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Ring.toSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
ModuleCat.Hom.hom
Action.Hom.hom
Quiver.Hom
Rep
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Action.instCategory
Action.instSubHom
ModuleCat.instPreadditive
Rep.applyAsHom
CategoryTheory.CategoryStruct.id
LinearMap.ker
Rep.norm
β€”RingHomSurjective.ids
Representation.ker_leftRegular_norm_eq
range_applyAsHom_sub_eq_ker_linearCombination
Finite.of_fintype
range_norm_eq_ker_applyAsHom_sub πŸ“–mathematicalSubgroup
CommGroup.toGroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
LinearMap.range
ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Rep.leftRegular
Ring.toSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
ModuleCat.Hom.hom
Action.Hom.hom
Rep.norm
LinearMap.ker
CommMonoid.toMonoid
CommGroup.toCommMonoid
Quiver.Hom
Rep
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Action.instCategory
Action.instSubHom
ModuleCat.instPreadditive
Rep.applyAsHom
CategoryTheory.CategoryStruct.id
β€”le_antisymm
RingHomSurjective.ids
Representation.self_norm_apply
sub_self
Finsupp.ext
Finset.sum_congr
LinearMap.coe_sum
Finset.sum_apply
Representation.ofMulAction_single
mul_one
Finsupp.coe_finset_sum
Finsupp.univ_sum_single_apply'
Representation.apply_eq_of_leftRegular_eq_of_generator

Rep.FiniteCyclicGroup.resolution

Definitions

NameCategoryTheorems
Ο€ πŸ“–CompOp
3 mathmath: Rep.FiniteCyclicGroup.resolution_quasiIso, Rep.FiniteCyclicGroup.resolution_Ο€, Ο€_f

Theorems

NameKindAssumesProvesValidatesDepends On
Ο€_f πŸ“–mathematicalβ€”HomologicalComplex.Hom.f
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
Rep.FiniteCyclicGroup.chainComplexFunctor
Rep.leftRegular
ChainComplex.singleβ‚€
CategoryTheory.Abelian.hasZeroObject
Action.instAbelian
ModuleCat.abelian
Rep.trivial
Ring.toAddCommGroup
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
Ο€
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex
HomologicalComplex.single
CategoryTheory.CategoryStruct.comp
CategoryTheory.Iso.hom
HomologicalComplex.XIsoOfEq
HomologicalComplex.alternatingConst
Rep.norm
CommMonoid.toMonoid
CommGroup.toCommMonoid
Action.instSubHom
Rep.applyAsHom
CategoryTheory.CategoryStruct.id
ComplexShape.instDecidableRelRelDown
ComplexShape.down_nat_odd_add
Rep.leftRegularHom
ModuleCat.carrier
Action.V
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CategoryTheory.Iso.inv
HomologicalComplex.singleObjXIsoOfEq
CategoryTheory.Limits.HasZeroMorphisms.zero
β€”AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Abelian.hasZeroObject

Representation.FiniteCyclicGroup

Definitions

NameCategoryTheorems
coinvariantsEquiv πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
coinvariantsKer_eq_range πŸ“–mathematicalSubgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
Representation.Coinvariants.ker
DivInvMonoid.toMonoid
Group.toDivInvMonoid
LinearMap.range
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearMap
LinearMap.instSub
DFunLike.coe
Representation
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
LinearMap.id
β€”le_antisymm
RingHomSurjective.ids
Submodule.span_le
mem_powers_iff_mem_zpowers
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
sub_self
pow_zero
map_one
MonoidHomClass.toOneHomClass
MonoidHom.instMonoidHomClass
map_pow
Representation.apply_sub_id_partialSum_eq
Representation.Coinvariants.sub_mem_ker
coinvariantsKer_leftRegular_eq_ker πŸ“–mathematicalβ€”Representation.Coinvariants.ker
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Finsupp.instAddCommGroup
Ring.toAddCommGroup
CommRing.toRing
Finsupp.module
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toModule
Representation.leftRegular
LinearMap.ker
Finsupp.instAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
RingHom.id
Finsupp.linearCombination
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”le_antisymm
Submodule.span_le
RingHomInvPair.ids
mul_one
Finsupp.sum_fintype
Finset.sum_congr
Representation.ofMulAction_apply
Finset.sum_sub_distrib
Finset.sum_bijective
Group.mulLeft_bijective
Finsupp.ext
Finsupp.sum_sub
Finsupp.sum_single
Finsupp.coe_sum
Finsupp.sum_apply'
Finsupp.single_eq_same
sub_zero
Finsupp.single_eq_of_ne
Finsupp.sum_fun_zero
Submodule.finsuppSum_mem
Representation.Coinvariants.mem_ker_of_eq
Representation.ofMulAction_single

---

← Back to Index