Documentation Verification Report

Basic

📁 Source: Mathlib/RepresentationTheory/Homological/GroupCohomology/Basic.lean

Statistics

MetricCount
DefinitionsgroupCohomology, cocycles, cocyclesMk, iCocycles, inhomogeneousCochains, inhomogeneousCochainsIso, toCocycles, π, groupCohomologyIso, groupCohomologyIsoExt, d
11
TheoremsiCocycles_mk, d_comp_d, d_def, ext, ext_iff, groupCohomology_induction_on, d_eq, d_hom_apply, isZero_groupCohomology_succ_of_subsingleton
9
Total20

(root)

Definitions

NameCategoryTheorems
groupCohomology 📖CompOp
46 mathmath: groupCohomology.π_comp_H0IsoOfIsTrivial_hom_assoc, groupCohomology.δ_apply, groupCohomology.H1π_comp_map_assoc, groupCohomology.π_comp_H0Iso_hom, groupCohomology.π_comp_H1Iso_hom_assoc, groupCohomology.map_H0Iso_hom_f_apply, groupCohomology.H2π_comp_map_apply, groupCohomology.π_map_assoc, groupCohomology.map_comp, Rep.FiniteCyclicGroup.groupCohomologyπOdd_eq_iff, groupCohomology.π_comp_H0IsoOfIsTrivial_hom, groupCohomology.δ₁_apply, groupCohomology.map_H0Iso_hom_f, groupCohomology.π_comp_H1Iso_hom, Rep.FiniteCyclicGroup.groupCohomologyπEven_eq_zero_iff, groupCohomology.H1InfRes_X₂, groupCohomology.map₁_one, groupCohomology.map_id, groupCohomology.H2π_comp_map, groupCohomology.mono_map_0_of_mono, groupCohomology.π_comp_H0Iso_hom_apply, groupCohomology.H1InfRes_X₃, groupCohomology.functor_obj, groupCohomology.π_comp_H0Iso_hom_assoc, groupCohomology.π_map, groupCohomology.H2π_comp_map_assoc, groupCohomology.map_id_comp_H0Iso_hom_apply, groupCohomology.map_id_comp_H0Iso_hom, isZero_groupCohomology_succ_of_subsingleton, groupCohomology.map_id_comp_assoc, groupCohomology.H1InfRes_X₁, groupCohomology.H1π_comp_map_apply, groupCohomology.π_comp_H2Iso_hom_assoc, Rep.FiniteCyclicGroup.groupCohomologyπEven_eq_iff, groupCohomology.map_id_comp, groupCohomology.δ₀_apply, groupCohomology.H1Map_id, groupCohomology.π_comp_H2Iso_hom_apply, groupCohomology.π_comp_H1Iso_hom_apply, groupCohomology.π_map_apply, groupCohomology.H1π_comp_map, groupCohomology.map_H0Iso_hom_f_assoc, groupCohomology.map_id_comp_H0Iso_hom_assoc, Rep.FiniteCyclicGroup.groupCohomologyπOdd_eq_zero_iff, groupCohomology.π_comp_H2Iso_hom, groupCohomology.map_comp_assoc
groupCohomologyIso 📖CompOp
groupCohomologyIsoExt 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
groupCohomology_induction_on 📖DFunLike.coe
groupCohomology.cocycles
groupCohomology
ModuleCat.carrier
CommRing.toRing
CategoryTheory.ConcreteCategory.hom
ModuleCat
ModuleCat.moduleCategory
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
groupCohomology.π
ModuleCat.epi_iff_surjective
HomologicalComplex.instEpiHomologyπ
isZero_groupCohomology_succ_of_subsingleton 📖mathematicalCategoryTheory.Limits.IsZero
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
groupCohomology
CategoryTheory.Limits.IsZero.of_iso
Rep.instEnoughProjectives
isZero_Ext_succ_of_projective
Rep.trivial_projective_of_subsingleton

groupCohomology

Definitions

NameCategoryTheorems
cocycles 📖CompOp
58 mathmath: toCocycles_comp_isoCocycles₁_hom, isoCocycles₁_hom_comp_i_apply, π_comp_H0IsoOfIsTrivial_hom_assoc, δ_apply, cocyclesMap_id_comp_assoc, toCocycles_comp_isoCocycles₂_hom_apply, cocyclesIso₀_hom_comp_f, π_comp_H0Iso_hom, π_comp_H1Iso_hom_assoc, cocyclesMap_comp_isoCocycles₂_hom_apply, cocyclesMap_cocyclesIso₀_hom_f_apply, cocyclesIso₀_inv_comp_iCocycles, π_map_assoc, toCocycles_comp_isoCocycles₂_hom, π_comp_H0IsoOfIsTrivial_hom, π_comp_H1Iso_hom, cocyclesMap_comp_isoCocycles₁_hom_assoc, isoCocycles₂_hom_comp_i, π_comp_H0Iso_hom_apply, isoCocycles₁_inv_comp_iCocycles_apply, cocyclesMap_comp_isoCocycles₁_hom, cocyclesIso₀_inv_comp_iCocycles_assoc, cocyclesMap_comp, π_comp_H0Iso_hom_assoc, π_map, π_comp_H0IsoOfIsTrivial_hom_apply, toCocycles_comp_isoCocycles₁_hom_assoc, isoCocycles₂_inv_comp_iCocycles_apply, cocyclesMap_cocyclesIso₀_hom_f_assoc, isoCocycles₁_inv_comp_iCocycles, cocyclesMap_comp_isoCocycles₂_hom, cocyclesIso₀_hom_comp_f_assoc, cocyclesMap_comp_isoCocycles₁_hom_apply, cocyclesMk₁_eq, cocyclesMap_cocyclesIso₀_hom_f, π_comp_H2Iso_hom_assoc, toCocycles_comp_isoCocycles₂_hom_assoc, cocyclesMap_comp_assoc, cocyclesMap_comp_isoCocycles₂_hom_assoc, isoCocycles₂_inv_comp_iCocycles, cocyclesMk₂_eq, toCocycles_comp_isoCocycles₁_hom_apply, isoCocycles₁_hom_comp_i, π_comp_H2Iso_hom_apply, π_comp_H1Iso_hom_apply, cocyclesMap_id, cocyclesIso₀_hom_comp_f_apply, iCocycles_mk, π_map_apply, cocyclesMap_id_comp, isoCocycles₁_inv_comp_iCocycles_assoc, isoCocycles₂_hom_comp_i_apply, cocyclesIso₀_inv_comp_iCocycles_apply, cocyclesMk₀_eq, isoCocycles₂_hom_comp_i_assoc, isoCocycles₁_hom_comp_i_assoc, π_comp_H2Iso_hom, isoCocycles₂_inv_comp_iCocycles_assoc
cocyclesMk 📖CompOp
5 mathmath: δ_apply, cocyclesMk₁_eq, cocyclesMk₂_eq, iCocycles_mk, cocyclesMk₀_eq
iCocycles 📖CompOp
23 mathmath: isoCocycles₁_hom_comp_i_apply, π_comp_H0IsoOfIsTrivial_hom_assoc, cocyclesIso₀_hom_comp_f, cocyclesMap_cocyclesIso₀_hom_f_apply, cocyclesIso₀_inv_comp_iCocycles, π_comp_H0IsoOfIsTrivial_hom, isoCocycles₂_hom_comp_i, isoCocycles₁_inv_comp_iCocycles_apply, cocyclesIso₀_inv_comp_iCocycles_assoc, π_comp_H0IsoOfIsTrivial_hom_apply, isoCocycles₂_inv_comp_iCocycles_apply, isoCocycles₁_inv_comp_iCocycles, cocyclesIso₀_hom_comp_f_assoc, isoCocycles₂_inv_comp_iCocycles, isoCocycles₁_hom_comp_i, cocyclesIso₀_hom_comp_f_apply, iCocycles_mk, isoCocycles₁_inv_comp_iCocycles_assoc, isoCocycles₂_hom_comp_i_apply, cocyclesIso₀_inv_comp_iCocycles_apply, isoCocycles₂_hom_comp_i_assoc, isoCocycles₁_hom_comp_i_assoc, isoCocycles₂_inv_comp_iCocycles_assoc
inhomogeneousCochains 📖CompOp
69 mathmath: toCocycles_comp_isoCocycles₁_hom, inhomogeneousCochains.d_def, π_comp_H0IsoOfIsTrivial_hom_assoc, cocyclesIso₀_hom_comp_f, eq_d₀₁_comp_inv, eq_d₁₂_comp_inv, cochainsMap_f_3_comp_cochainsIso₃_assoc, cochainsMap_f_2_comp_cochainsIso₂, cochainsMap_comp, comp_d₁₂_eq, dArrowIso₀₁_inv_right, eq_d₂₃_comp_inv_assoc, eq_d₂₃_comp_inv_apply, eq_d₁₂_comp_inv_apply, cochainsMap_f_1_comp_cochainsIso₁_apply, cochainsMap_f_3_comp_cochainsIso₃_apply, cocyclesIso₀_inv_comp_iCocycles, dArrowIso₀₁_hom_right, toCocycles_comp_isoCocycles₂_hom, cochainsMap_f_1_comp_cochainsIso₁_assoc, comp_d₂₃_eq, π_comp_H0IsoOfIsTrivial_hom, cochainsMap_f_map_epi, comp_d₀₁_eq, cochainsMap_zero, dArrowIso₀₁_inv_left, cochainsMap_id_comp, cochainsMap_comp_assoc, isoCocycles₂_hom_comp_i, dArrowIso₀₁_hom_left, eq_d₀₁_comp_inv_apply, cocyclesIso₀_inv_comp_iCocycles_assoc, cochainsMap_id_f_map_mono, toCocycles_comp_isoCocycles₁_hom_assoc, isoCocycles₁_inv_comp_iCocycles, cochainsMap_f_0_comp_cochainsIso₀_apply, cochainsMap_f_2_comp_cochainsIso₂_apply, cocyclesIso₀_hom_comp_f_assoc, cochainsMap_f, cocyclesMk₁_eq, toCocycles_comp_isoCocycles₂_hom_assoc, eq_d₂₃_comp_inv, cochainsMap_f_map_mono, isoShortComplexH1_hom, isoCocycles₂_inv_comp_iCocycles, cocyclesMk₂_eq, cochainsMap_id_f_map_epi, isoCocycles₁_hom_comp_i, cochainsMap_f_0_comp_cochainsIso₀, cochainsMap_f_3_comp_cochainsIso₃, cochainsMap_f_hom, isoShortComplexH2_hom, iCocycles_mk, isoCocycles₁_inv_comp_iCocycles_assoc, cochainsMap_f_2_comp_cochainsIso₂_assoc, cocyclesMk₀_eq, isoShortComplexH1_inv, cochainsMap_id_f_hom_eq_compLeft, cochainsMap_f_1_comp_cochainsIso₁, cochainsMap_id_comp_assoc, cochainsMap_f_0_comp_cochainsIso₀_assoc, eq_d₁₂_comp_inv_assoc, isoShortComplexH2_inv, isoCocycles₂_hom_comp_i_assoc, eq_d₀₁_comp_inv_assoc, isoCocycles₁_hom_comp_i_assoc, cochainsFunctor_obj, isoCocycles₂_inv_comp_iCocycles_assoc, cochainsMap_id
inhomogeneousCochainsIso 📖CompOp
toCocycles 📖CompOp
6 mathmath: toCocycles_comp_isoCocycles₁_hom, toCocycles_comp_isoCocycles₂_hom_apply, toCocycles_comp_isoCocycles₂_hom, toCocycles_comp_isoCocycles₁_hom_assoc, toCocycles_comp_isoCocycles₂_hom_assoc, toCocycles_comp_isoCocycles₁_hom_apply
π 📖CompOp
15 mathmath: π_comp_H0IsoOfIsTrivial_hom_assoc, δ_apply, π_comp_H0Iso_hom, π_comp_H1Iso_hom_assoc, π_map_assoc, π_comp_H0IsoOfIsTrivial_hom, π_comp_H1Iso_hom, π_comp_H0Iso_hom_apply, π_comp_H0Iso_hom_assoc, π_map, π_comp_H2Iso_hom_assoc, π_comp_H2Iso_hom_apply, π_comp_H1Iso_hom_apply, π_map_apply, π_comp_H2Iso_hom

Theorems

NameKindAssumesProvesValidatesDepends On
iCocycles_mk 📖mathematicalDFunLike.coe
ModuleCat.of
CommRing.toRing
Pi.addCommGroup
ModuleCat.carrier
Action.V
ModuleCat
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Rep.instAddCommGroupCarrierVModuleCat
Pi.Function.module
Ring.toSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isModule
CategoryTheory.ConcreteCategory.hom
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.isAddCommGroup
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
inhomogeneousCochains.d
Pi.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
cocycles
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
inhomogeneousCochains
iCocycles
cocyclesMk
HomologicalComplex.i_cyclesMk
ModuleCat.forget₂_addCommGrp_additive
CategoryTheory.Functor.preservesHomologyOfExact
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Limits.PreservesLimits.preservesFiniteLimits
ModuleCat.forget₂AddCommGroup_preservesLimits
CategoryTheory.Limits.PreservesColimits.preservesFiniteColimits
ModuleCat.instPreservesColimitsOfSizeAddCommGrpCatForget₂LinearMapIdCarrierAddMonoidHomCarrierOfHasColimitsOfSizeAddCommGrpMax
AddCommGrpCat.hasColimitsOfSize
univLE_of_max
UnivLE.self
AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.next
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
CochainComplex.of_d

groupCohomology.inhomogeneousCochains

Theorems

NameKindAssumesProvesValidatesDepends On
d_comp_d 📖mathematicalCategoryTheory.CategoryStruct.comp
ModuleCat
CommRing.toRing
CategoryTheory.Category.toCategoryStruct
ModuleCat.moduleCategory
ModuleCat.of
Pi.addCommGroup
ModuleCat.carrier
Action.V
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Rep.instAddCommGroupCarrierVModuleCat
Pi.Function.module
Ring.toSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isModule
inhomogeneousCochains.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
ModuleCat.instZeroHom
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.comp_id
HomologicalComplex.d_comp_d
d_def 📖mathematicalHomologicalComplex.d
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
groupCohomology.inhomogeneousCochains
inhomogeneousCochains.d
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.of_d
ext 📖AddRightCancelSemigroup.toIsRightCancelAdd
ext_iff 📖AddRightCancelSemigroup.toIsRightCancelAdd
ext

inhomogeneousCochains

Definitions

NameCategoryTheorems
d 📖CompOp
4 mathmath: groupCohomology.inhomogeneousCochains.d_def, groupCohomology.inhomogeneousCochains.d_comp_d, d_hom_apply, d_eq

Theorems

NameKindAssumesProvesValidatesDepends On
d_eq 📖mathematicald
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.CategoryStruct.comp
ModuleCat
CommRing.toRing
CategoryTheory.Category.toCategoryStruct
ModuleCat.moduleCategory
ModuleCat.of
Pi.addCommGroup
ModuleCat.carrier
Action.V
Rep.instAddCommGroupCarrierVModuleCat
Pi.Function.module
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isModule
Quiver.Hom
Rep
CategoryTheory.CategoryStruct.toQuiver
Action.instCategory
Rep.free
CategoryTheory.Preadditive.homGroup
Action.instPreadditive
ModuleCat.instPreadditive
CategoryTheory.Linear.homModule
instLinearRep
CategoryTheory.Iso.inv
LinearEquiv.toModuleIso
Rep.freeLiftLEquiv
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
ChainComplex.linearYonedaObj
Action.instAbelian
ModuleCat.abelian
Rep.barComplex
HomologicalComplex.d
CategoryTheory.Iso.hom
ModuleCat.hom_ext
AddRightCancelSemigroup.toIsRightCancelAdd
LinearMap.ext
RingHomCompTriple.ids
Rep.barComplex.d_def
Rep.barComplex.d_single
map_add
SemilinearMapClass.toAddHomClass
SemilinearEquivClass.instSemilinearMapClass
LinearEquiv.instSemilinearEquivClass
Finsupp.uncurry_single
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
Finset.sum_congr
LinearMap.semilinearMapClass
Finsupp.linearCombination_single
one_smul
map_one
MonoidHomClass.toOneHomClass
MonoidHom.instMonoidHomClass
d_hom_apply 📖mathematicalDFunLike.coe
LinearMap
Ring.toSemiring
CommRing.toRing
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
Pi.addCommGroup
ModuleCat.carrier
Action.V
ModuleCat
ModuleCat.moduleCategory
Rep.instAddCommGroupCarrierVModuleCat
Pi.Function.module
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.Hom.hom
ModuleCat.of
d
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
CommSemiring.toSemiring
CommRing.toCommSemiring
Representation
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
Rep.ρ
Finset.sum
Finset.univ
Fin.fintype
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Monoid.toNatPow
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Fin.contractNth
MulOne.toMul

---

← Back to Index