Documentation Verification Report

Hilbert90

📁 Source: Mathlib/RepresentationTheory/Homological/GroupCohomology/Hilbert90.lean

Statistics

MetricCount
DefinitionsH1ofAutOnUnitsUnique, aux
2
Theoremsaux_ne_zero, exists_div_of_norm_eq_one, exists_mul_galRestrict_of_norm_eq_one, isMulCoboundary₁_of_isMulCocycle₁_of_aut_to_units, norm_ofAlgebraAutOnUnits_eq
5
Total7

groupCohomology

Definitions

NameCategoryTheorems
H1ofAutOnUnitsUnique 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
exists_div_of_norm_eq_one 📖mathematicalAlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Subgroup
AlgEquiv.aut
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
MonoidHom.instFunLike
Algebra.norm
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Units.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AlgEquiv.instFunLike
Ne.isUnit
Algebra.norm_ne_zero_iff
instIsDomain
Module.free_of_finite_type_torsion_free'
EuclideanDomain.to_principal_ideal_domain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
zero_ne_one
NeZero.one
IsLocalRing.toNontrivial
Field.instIsLocalRing
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
norm_ofAlgebraAutOnUnits_eq
RingHomSurjective.ids
Rep.FiniteCyclicGroup.groupCohomologyπOdd_eq_zero_iff
Unique.instSubsingleton
div_eq_mul_inv
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
sub_eq_add_neg
Mathlib.Tactic.TermCongr.cHole.congr_simp
map_add
AddMonoidHomClass.toAddHomClass
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
map_neg
Units.val_inv_eq_inv_val
Units.ext_iff
Algebra.norm_inv
inv_one
IsUnit.div_eq_iff
Units.isUnit
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
one_mul
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₂
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
one_ne_zero
GroupWithZero.toNontrivial
exists_mul_galRestrict_of_norm_eq_one 📖mathematicalAlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Subgroup
AlgEquiv.aut
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
MonoidHom.instFunLike
Algebra.norm
RingHom
RingHom.instFunLike
algebraMap
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AlgEquiv.instFunLike
MulEquiv
MulOne.toMul
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
galRestrict
Algebra.IsSeparable.isAlgebraic
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsGalois.to_isSeparable
Module.isTorsionFree_iff_algebraMap_injective
instIsDomain
IsScalarTower.algebraMap_eq
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsFractionRing.injective
IsIntegralClosure.isLocalization
Algebra.IsSeparable.isAlgebraic
IsGalois.to_isSeparable
Algebra.norm_zero
Module.free_of_finite_type_torsion_free'
EuclideanDomain.to_principal_ideal_domain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
NeZero.one
exists_div_of_norm_eq_one
IsLocalization.exists_mk'_eq
Subtype.prop
Algebra.smul_def
IsScalarTower.algebraMap_apply
IsLocalization.mk'_spec'
zero_ne_one
IsLocalization.mk'_zero
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
div_zero
eq_div_iff_mul_eq
zero_div
map_eq_zero
IsIntegralClosure.algebraMap_injective
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
AlgHom.map_smul_of_tower
LinearMap.IsScalarTower.compatibleSMul
AlgEquiv.toAlgHom_apply
mul_left_comm
algebraMap_galRestrictHom_apply
isMulCoboundary₁_of_isMulCocycle₁_of_aut_to_units 📖mathematicalIsMulCocycle₁
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
Units.instCommGroupUnits
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
MulDistribMulAction.toMulAction
Units.instMonoid
AlgEquiv.instMulDistribMulActionUnits
IsMulCoboundary₁Hilbert90.aux_ne_zero
Finsupp.sum_fintype
zero_smul
Finset.sum_congr
Finset.sum_apply
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
map_inv
MonoidHom.instMonoidHomClass
div_inv_eq_mul
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
Finset.sum_mul
mul_assoc
mul_comm
Fintype.sum_bijective
Group.mulLeft_bijective
norm_ofAlgebraAutOnUnits_eq 📖mathematicalUnits.val
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DFunLike.coe
Equiv
Additive
Units
EquivLike.toFunLike
Equiv.instEquivLike
Additive.toMul
AddEquiv
ModuleCat.carrier
CommRing.toRing
Int.instCommRing
Action.V
ModuleCat
ModuleCat.moduleCategory
AlgEquiv
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
Rep.ofMulDistribMulAction
Units.instCommGroupUnits
CommRing.toCommMonoid
AlgEquiv.instMulDistribMulActionUnits
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
Rep.instAddCommGroupCarrierVModuleCat
Additive.add
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
CommGroup.toGroup
AddEquiv.instEquivLike
Rep.toAdditive
Rep.ofAlgebraAutOnUnits
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.Hom.hom
Rep.norm
AlgEquiv.fintype
AddEquiv.symm
Additive.ofMul
RingHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
MonoidHom
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
DivisionRing.toRing
Field.toDivisionRing
MonoidHom.instFunLike
Algebra.norm
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
LinearMap.coe_sum
Finset.sum_apply
Finset.sum_congr
map_sum
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
Finset.prod_congr
Units.coe_prod
Algebra.norm_eq_prod_automorphisms

groupCohomology.Hilbert90

Definitions

NameCategoryTheorems
aux 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
aux_ne_zero 📖LinearIndependent.comp
linearIndependent_monoidHom
instIsDomain
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
AlgEquiv.ext
DFunLike.ext_iff
linearIndependent_iff
Units.ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing

---

← Back to Index