Documentation Verification Report

LongExactSequence

📁 Source: Mathlib/RepresentationTheory/Homological/GroupCohomology/LongExactSequence.lean

Statistics

MetricCount
DefinitionscocyclesMkOfCompEqD, mapShortComplex₁, mapShortComplex₂, mapShortComplex₃, δ
5
Theoremsepi_δ_of_isZero, isIso_δ_of_isZero, mapShortComplex₁_exact, mapShortComplex₂_exact, mapShortComplex₃_exact, map_cochainsFunctor_shortExact, mem_cocycles₁_of_comp_eq_d₀₁, mem_cocycles₂_of_comp_eq_d₁₂, mono_δ_of_isZero, δ_apply, δ₀_apply, δ₁_apply
12
Total17

groupCohomology

Definitions

NameCategoryTheorems
cocyclesMkOfCompEqD 📖CompOp
1 mathmath: δ_apply
mapShortComplex₁ 📖CompOp
1 mathmath: mapShortComplex₁_exact
mapShortComplex₂ 📖CompOp
1 mathmath: mapShortComplex₂_exact
mapShortComplex₃ 📖CompOp
1 mathmath: mapShortComplex₃_exact
δ 📖CompOp
6 mathmath: δ_apply, δ₁_apply, epi_δ_of_isZero, δ₀_apply, mono_δ_of_isZero, isIso_δ_of_isZero

Theorems

NameKindAssumesProvesValidatesDepends On
epi_δ_of_isZero 📖mathematicalCategoryTheory.ShortComplex.ShortExact
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
CategoryTheory.Limits.IsZero
groupCohomology
CategoryTheory.ShortComplex.X₂
CategoryTheory.Epi
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.X₁
δ
—CategoryTheory.ShortComplex.SnakeInput.epi_δ
instPreservesZeroMorphismsRepCochainComplexModuleCatNatCochainsFunctor
map_cochainsFunctor_shortExact
isIso_δ_of_isZero 📖mathematicalCategoryTheory.ShortComplex.ShortExact
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
CategoryTheory.Limits.IsZero
groupCohomology
CategoryTheory.ShortComplex.X₂
CategoryTheory.IsIso
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.X₁
δ
—CategoryTheory.ShortComplex.SnakeInput.isIso_δ
instPreservesZeroMorphismsRepCochainComplexModuleCatNatCochainsFunctor
map_cochainsFunctor_shortExact
mapShortComplex₁_exact 📖mathematicalCategoryTheory.ShortComplex.ShortExact
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
CategoryTheory.ShortComplex.Exact
CategoryTheory.Abelian.toPreadditive
ModuleCat.abelian
mapShortComplex₁
—CategoryTheory.ShortComplex.ShortExact.homology_exact₁
AddRightCancelSemigroup.toIsRightCancelAdd
instPreservesZeroMorphismsRepCochainComplexModuleCatNatCochainsFunctor
map_cochainsFunctor_shortExact
mapShortComplex₂_exact 📖mathematicalCategoryTheory.ShortComplex.ShortExact
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
CategoryTheory.ShortComplex.Exact
mapShortComplex₂
—CategoryTheory.ShortComplex.ShortExact.homology_exact₂
AddRightCancelSemigroup.toIsRightCancelAdd
instPreservesZeroMorphismsRepCochainComplexModuleCatNatCochainsFunctor
map_cochainsFunctor_shortExact
mapShortComplex₃_exact 📖mathematicalCategoryTheory.ShortComplex.ShortExact
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
CategoryTheory.ShortComplex.Exact
CategoryTheory.Abelian.toPreadditive
ModuleCat.abelian
mapShortComplex₃
—CategoryTheory.ShortComplex.ShortExact.homology_exact₃
AddRightCancelSemigroup.toIsRightCancelAdd
instPreservesZeroMorphismsRepCochainComplexModuleCatNatCochainsFunctor
map_cochainsFunctor_shortExact
map_cochainsFunctor_shortExact 📖mathematicalCategoryTheory.ShortComplex.ShortExact
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
CochainComplex
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.instHasZeroMorphisms
CategoryTheory.ShortComplex.map
cochainsFunctor
instPreservesZeroMorphismsRepCochainComplexModuleCatNatCochainsFunctor
—HomologicalComplex.shortExact_of_degreewise_shortExact
AddRightCancelSemigroup.toIsRightCancelAdd
instPreservesZeroMorphismsRepCochainComplexModuleCatNatCochainsFunctor
HomologicalComplex.instPreservesZeroMorphismsEval
RingHomSurjective.ids
CategoryTheory.ShortComplex.Exact.moduleCat_range_eq_ker
Action.forget₂_preservesZeroMorphisms
CategoryTheory.ShortComplex.Exact.map
CategoryTheory.ShortComplex.ShortExact.exact
CategoryTheory.Functor.PreservesHomology.preservesLeftHomologyOf
CategoryTheory.Functor.preservesHomologyOfExact
CategoryTheory.Limits.PreservesLimits.preservesFiniteLimits
Rep.instPreservesLimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV
CategoryTheory.Limits.PreservesColimits.preservesFiniteColimits
Rep.instPreservesColimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV
CategoryTheory.Functor.PreservesHomology.preservesRightHomologyOf
LinearMap.range.congr_simp
cochainsMap_id_f_hom_eq_compLeft
LinearMap.range_compLeft
LinearMap.ker_compLeft
cochainsMap_id_f_map_mono
CategoryTheory.ShortComplex.ShortExact.mono_f
cochainsMap_id_f_map_epi
CategoryTheory.ShortComplex.ShortExact.epi_g
mem_cocycles₁_of_comp_eq_d₀₁ 📖mathematicalCategoryTheory.ShortComplex.ShortExact
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
ModuleCat.carrier
Action.V
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.Hom.hom
CategoryTheory.ShortComplex.f
ModuleCat.of
Pi.addCommGroup
Rep.instAddCommGroupCarrierVModuleCat
Pi.Function.module
d₀₁
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
Pi.addCommMonoid
SetLike.instMembership
Submodule.setLike
cocycles₁
—Function.Injective.comp_left
Rep.mono_iff_injective
CategoryTheory.ShortComplex.ShortExact.mono_f
CategoryTheory.ShortComplex.Hom.comm₂₃
RingHomCompTriple.ids
CategoryTheory.Category.assoc
d₀₁_comp_d₁₂_apply
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
mem_cocycles₂_of_comp_eq_d₁₂ 📖mathematicalCategoryTheory.ShortComplex.ShortExact
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
ModuleCat.carrier
Action.V
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.Hom.hom
CategoryTheory.ShortComplex.f
ModuleCat.of
Pi.addCommGroup
Rep.instAddCommGroupCarrierVModuleCat
Pi.Function.module
d₁₂
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
Pi.addCommMonoid
SetLike.instMembership
Submodule.setLike
cocycles₂
—Function.Injective.comp_left
Rep.mono_iff_injective
CategoryTheory.ShortComplex.ShortExact.mono_f
CategoryTheory.ShortComplex.Hom.comm₂₃
RingHomCompTriple.ids
CategoryTheory.Category.assoc
d₁₂_comp_d₂₃_apply
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
mono_δ_of_isZero 📖mathematicalCategoryTheory.ShortComplex.ShortExact
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
CategoryTheory.Limits.IsZero
groupCohomology
CategoryTheory.ShortComplex.X₂
CategoryTheory.Mono
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.X₁
δ
—CategoryTheory.ShortComplex.SnakeInput.mono_δ
instPreservesZeroMorphismsRepCochainComplexModuleCatNatCochainsFunctor
map_cochainsFunctor_shortExact
δ_apply 📖mathematicalCategoryTheory.ShortComplex.ShortExact
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
DFunLike.coe
HomologicalComplex.X
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
inhomogeneousCochains
CategoryTheory.ShortComplex.X₃
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
HomologicalComplex.d
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
HomologicalComplex.Hom.f
cochainsMap
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.ShortComplex.g
Action.V
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
Action.Hom.hom
CategoryTheory.ShortComplex.f
groupCohomology
δ
cocycles
π
cocyclesMk
cocyclesMkOfCompEqD
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.ShortComplex.ShortExact.δ_apply
ModuleCat.forget₂_addCommGrp_additive
CategoryTheory.ShortComplex.instPreservesHomologyModuleCatAbForget₂LinearMapIdCarrierAddMonoidHomCarrier
instPreservesZeroMorphismsRepCochainComplexModuleCatNatCochainsFunctor
map_cochainsFunctor_shortExact
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
AddMonoidHomClass.toAddMonoidHom.congr_simp
cochainsMap_id_f_hom_eq_compLeft
CochainComplex.next
δ₀_apply 📖mathematicalCategoryTheory.ShortComplex.ShortExact
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
DFunLike.coe
Action.V
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.X₃
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.Hom.hom
CategoryTheory.ShortComplex.g
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
Rep.instAddCommGroupCarrierVModuleCat
SetLike.instMembership
Submodule.setLike
Representation.invariants
Rep.ρ
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.f
ModuleCat.of
Pi.addCommGroup
Pi.Function.module
d₀₁
groupCohomology
δ
Submodule.addCommGroup
Submodule.module
H0
CategoryTheory.Iso.inv
H0Iso
Pi.addCommMonoid
cocycles₁
H1
H1π
mem_cocycles₁_of_comp_eq_d₀₁
—mem_cocycles₁_of_comp_eq_d₀₁
AddRightCancelSemigroup.toIsRightCancelAdd
cocyclesMk₀_eq
cocyclesMk₁_eq
δ_apply
eq_d₀₁_comp_inv_apply
subtype_comp_d₀₁_apply
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
inhomogeneousCochains.ext
Fin.isEmpty'
cochainsMap_id_f_hom_eq_compLeft
CategoryTheory.CommSq.w
CategoryTheory.CommSq.vert_inv
cochainsMap_f_1_comp_cochainsIso₁
RingHomCompTriple.ids
CategoryTheory.Category.assoc
Mathlib.Tactic.TermCongr.cHole.congr_simp
LinearMap.comp.congr_simp
δ₁_apply 📖mathematicalCategoryTheory.ShortComplex.ShortExact
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
ModuleCat.carrier
Action.V
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.X₃
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.Hom.hom
CategoryTheory.ShortComplex.g
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
Pi.addCommMonoid
Rep.instAddCommGroupCarrierVModuleCat
Pi.Function.module
SetLike.instMembership
Submodule.setLike
cocycles₁
instFunLikeSubtypeForallCarrierVModuleCatMemSubmoduleCocycles₁
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.f
ModuleCat.of
Pi.addCommGroup
d₁₂
groupCohomology
δ
Submodule.addCommGroup
Submodule.module
H1
H1π
cocycles₂
H2
H2π
mem_cocycles₂_of_comp_eq_d₁₂
—mem_cocycles₂_of_comp_eq_d₁₂
AddRightCancelSemigroup.toIsRightCancelAdd
cocyclesMk₁_eq
cocyclesMk₂_eq
δ_apply
eq_d₁₂_comp_inv_apply
cocycles₁.d₁₂_apply
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
inhomogeneousCochains.ext
cochainsMap_id_f_hom_eq_compLeft
CategoryTheory.CommSq.w
CategoryTheory.CommSq.vert_inv
cochainsMap_f_2_comp_cochainsIso₂
RingHomCompTriple.ids
CategoryTheory.Category.assoc
Mathlib.Tactic.TermCongr.cHole.congr_simp
LinearMap.comp.congr_simp

---

← Back to Index