| Name | Category | Theorems |
cycles 📖 | CompOp | 60 mathmath: π_comp_H2Iso_hom_assoc, cyclesIso₀_inv_comp_iCycles_apply, cyclesMap_id_comp, cyclesMap_comp_isoCycles₂_hom, toCycles_comp_isoCycles₂_hom_assoc, isoCycles₁_inv_comp_iCycles_apply, π_comp_H0Iso_hom_assoc, cyclesMap_comp_assoc, cyclesMap_comp_cyclesIso₀_hom_apply, toCycles_comp_isoCycles₁_hom_apply, cyclesIso₀_comp_H0π_apply, π_comp_H2Iso_hom, cyclesIso₀_inv_comp_cyclesMap_apply, toCycles_comp_isoCycles₁_hom_assoc, π_comp_H0Iso_hom_apply, π_comp_H0IsoOfIsTrivial_hom_apply, isoCycles₂_hom_comp_i_apply, π_comp_H0IsoOfIsTrivial_hom, cyclesMap_comp_isoCycles₂_hom_assoc, cyclesIso₀_inv_comp_iCycles, π_comp_H1Iso_hom_apply, toCycles_comp_isoCycles₂_hom, cyclesMap_comp_isoCycles₂_hom_apply, isoCycles₁_hom_comp_i_apply, cyclesMap_comp_cyclesIso₀_hom, cyclesMap_comp_isoCycles₁_hom_apply, toCycles_comp_isoCycles₂_hom_apply, π_map_assoc, δ_apply, isoCycles₂_inv_comp_iCycles_apply, isoCycles₂_inv_comp_iCycles_assoc, cyclesMk₂_eq, isoCycles₁_inv_comp_iCycles_assoc, π_comp_H1Iso_hom_assoc, cyclesIso₀_inv_comp_cyclesMap_assoc, cyclesMk₁_eq, cyclesIso₀_comp_H0π_assoc, π_comp_H0Iso_hom, cyclesIso₀_inv_comp_cyclesMap, isoCycles₁_hom_comp_i_assoc, π_comp_H0IsoOfIsTrivial_hom_assoc, π_map_apply, π_comp_H2Iso_hom_apply, isoCycles₁_inv_comp_iCycles, cyclesMap_comp_isoCycles₁_hom_assoc, toCycles_comp_isoCycles₁_hom, isoCycles₂_hom_comp_i, π_comp_H1Iso_hom, isoCycles₂_inv_comp_iCycles, cyclesIso₀_comp_H0π, iCycles_mk, cyclesMk₀_eq, isoCycles₁_hom_comp_i, cyclesMap_comp, cyclesMap_comp_cyclesIso₀_hom_assoc, cyclesIso₀_inv_comp_iCycles_assoc, cyclesMap_id, π_map, isoCycles₂_hom_comp_i_assoc, cyclesMap_comp_isoCycles₁_hom
|
cyclesMk 📖 | CompOp | 5 mathmath: δ_apply, cyclesMk₂_eq, cyclesMk₁_eq, iCycles_mk, cyclesMk₀_eq
|
iCycles 📖 | CompOp | 16 mathmath: cyclesIso₀_inv_comp_iCycles_apply, isoCycles₁_inv_comp_iCycles_apply, isoCycles₂_hom_comp_i_apply, cyclesIso₀_inv_comp_iCycles, isoCycles₁_hom_comp_i_apply, isoCycles₂_inv_comp_iCycles_apply, isoCycles₂_inv_comp_iCycles_assoc, isoCycles₁_inv_comp_iCycles_assoc, isoCycles₁_hom_comp_i_assoc, isoCycles₁_inv_comp_iCycles, isoCycles₂_hom_comp_i, isoCycles₂_inv_comp_iCycles, iCycles_mk, isoCycles₁_hom_comp_i, cyclesIso₀_inv_comp_iCycles_assoc, isoCycles₂_hom_comp_i_assoc
|
inhomogeneousChains 📖 | CompOp | 71 mathmath: chainsMap_f_3_comp_chainsIso₃_apply, eq_d₃₂_comp_inv, chainsMap_id, comp_d₂₁_eq, toCycles_comp_isoCycles₂_hom_assoc, chainsMap_id_f_map_mono, d₁₀ArrowIso_hom_left, chainsMap_f_3_comp_chainsIso₃, eq_d₂₁_comp_inv, inhomogeneousChains.d_def, coinvariantsMk_comp_opcyclesIso₀_inv_assoc, chainsMap_f_single, eq_d₃₂_comp_inv_apply, pOpcycles_comp_opcyclesIso_hom_apply, chainsMap_f_map_epi, isoShortComplexH1_hom, comp_d₁₀_eq, toCycles_comp_isoCycles₁_hom_assoc, chainsFunctor_obj, d₁₀ArrowIso_inv_right, chainsMap_id_f_map_epi, chainsMap_id_comp, eq_d₂₁_comp_inv_assoc, cyclesIso₀_inv_comp_iCycles, chainsMap_id_f_hom_eq_mapRange, toCycles_comp_isoCycles₂_hom, chainsMap_f_map_mono, eq_d₁₀_comp_inv, isoShortComplexH1_inv, eq_d₁₀_comp_inv_assoc, chainsMap_f_1_comp_chainsIso₁_assoc, lsingle_comp_chainsMap_f, coinvariantsMk_comp_opcyclesIso₀_inv_apply, chainsMap_comp, chainsMap_f_3_comp_chainsIso₃_assoc, chainsMap_f_0_comp_chainsIso₀_assoc, eq_d₃₂_comp_inv_assoc, isoCycles₂_inv_comp_iCycles_assoc, isoShortComplexH2_hom, cyclesMk₂_eq, chainsMap_f_1_comp_chainsIso₁, isoCycles₁_inv_comp_iCycles_assoc, chainsMap_f_2_comp_chainsIso₂, pOpcycles_comp_opcyclesIso_hom, coinvariantsMk_comp_opcyclesIso₀_inv, chainsMap_f_hom, pOpcycles_comp_opcyclesIso_hom_assoc, cyclesMk₁_eq, isoCycles₁_hom_comp_i_assoc, isoCycles₁_inv_comp_iCycles, chainsMap_zero, isoShortComplexH2_inv, toCycles_comp_isoCycles₁_hom, chainsMap_f_2_comp_chainsIso₂_assoc, isoCycles₂_hom_comp_i, isoCycles₂_inv_comp_iCycles, d₁₀ArrowIso_hom_right, eq_d₂₁_comp_inv_apply, cyclesMk₀_eq, isoCycles₁_hom_comp_i, chainsMap_f_0_comp_chainsIso₀_apply, lsingle_comp_chainsMap_f_assoc, cyclesIso₀_inv_comp_iCycles_assoc, d₁₀ArrowIso_inv_left, eq_d₁₀_comp_inv_apply, chainsMap_f_1_comp_chainsIso₁_apply, isoCycles₂_hom_comp_i_assoc, comp_d₃₂_eq, chainsMap_f_0_comp_chainsIso₀, chainsMap_f, chainsMap_f_2_comp_chainsIso₂_apply
|
inhomogeneousChainsIso 📖 | CompOp | — |
toCycles 📖 | CompOp | 6 mathmath: toCycles_comp_isoCycles₂_hom_assoc, toCycles_comp_isoCycles₁_hom_apply, toCycles_comp_isoCycles₁_hom_assoc, toCycles_comp_isoCycles₂_hom, toCycles_comp_isoCycles₂_hom_apply, toCycles_comp_isoCycles₁_hom
|
π 📖 | CompOp | 19 mathmath: π_comp_H2Iso_hom_assoc, π_comp_H0Iso_hom_assoc, cyclesIso₀_comp_H0π_apply, π_comp_H2Iso_hom, π_comp_H0Iso_hom_apply, π_comp_H0IsoOfIsTrivial_hom_apply, π_comp_H0IsoOfIsTrivial_hom, π_comp_H1Iso_hom_apply, π_map_assoc, δ_apply, π_comp_H1Iso_hom_assoc, cyclesIso₀_comp_H0π_assoc, π_comp_H0Iso_hom, π_comp_H0IsoOfIsTrivial_hom_assoc, π_map_apply, π_comp_H2Iso_hom_apply, π_comp_H1Iso_hom, cyclesIso₀_comp_H0π, π_map
|