Documentation Verification Report

Basic

📁 Source: Mathlib/RepresentationTheory/Homological/GroupHomology/Basic.lean

Statistics

MetricCount
DefinitionscoinvariantsTensorObj, torIso, groupHomology, cycles, cyclesMk, iCycles, inhomogeneousChains, d, inhomogeneousChainsIso, toCycles, π, groupHomologyIso, groupHomologyIsoTor
13
TheoremsTor_map, Tor_obj, isZero_Tor_succ_of_projective, iCycles_mk, d_comp_d, d_def, d_eq, d_single, ext, ext_iff, groupHomology_induction_on, isZero_groupHomology_succ_of_subsingleton
12
Total25

HomologicalComplex

Definitions

NameCategoryTheorems
coinvariantsTensorObj 📖CompOp
3 mathmath: groupHomology.inhomogeneousChains.d_eq, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply

Rep

Definitions

NameCategoryTheorems
torIso 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
Tor_map 📖mathematicalCategoryTheory.Functor.map
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
Tor
CategoryTheory.NatTrans.leftDerived
Action.instAbelian
ModuleCat.abelian
CategoryTheory.Functor.obj
coinvariantsTensor
Tor_obj 📖mathematicalCategoryTheory.Functor.obj
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
Tor
CategoryTheory.Functor.leftDerived
Action.instAbelian
ModuleCat.abelian
coinvariantsTensor
isZero_Tor_succ_of_projective 📖mathematicalCategoryTheory.Limits.IsZero
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
CategoryTheory.Functor.obj
Rep
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
Tor
CategoryTheory.Functor.isZero_leftDerived_obj_projective_succ

(root)

Definitions

NameCategoryTheorems
groupHomology 📖CompOp
43 mathmath: groupHomology.π_comp_H2Iso_hom_assoc, groupHomology.map₁_quotientGroupMk'_epi, groupHomology.map₁_one, groupHomology.H0π_comp_map, groupHomology.map_id, groupHomology.δ₀_apply, groupHomology.π_comp_H0Iso_hom_assoc, Rep.FiniteCyclicGroup.groupHomologyπOdd_eq_zero_iff, groupHomology.map_comp, groupHomology.map_id_comp, groupHomology.functor_obj, groupHomology.map_comp_assoc, groupHomology.π_comp_H2Iso_hom, Rep.FiniteCyclicGroup.groupHomologyπEven_eq_iff, groupHomology.H1π_comp_map_apply, groupHomology.H0π_comp_map_assoc, groupHomology.π_comp_H0Iso_hom_apply, groupHomology.H2π_comp_map_assoc, groupHomology.π_comp_H0IsoOfIsTrivial_hom_apply, groupHomology.π_comp_H0IsoOfIsTrivial_hom, groupHomology.map_id_comp_H0Iso_hom_assoc, groupHomology.π_comp_H1Iso_hom_apply, Rep.FiniteCyclicGroup.groupHomologyπEven_eq_zero_iff, groupHomology.π_map_assoc, groupHomology.δ_apply, groupHomology.π_comp_H1Iso_hom_assoc, groupHomology.H2π_comp_map, groupHomology.H1π_comp_map_assoc, groupHomology.H1π_comp_map, groupHomology.map_id_comp_H0Iso_hom_apply, groupHomology.H2π_comp_map_apply, Rep.FiniteCyclicGroup.groupHomologyπOdd_eq_iff, groupHomology.π_comp_H0Iso_hom, groupHomology.map_id_comp_H0Iso_hom, groupHomology.π_comp_H0IsoOfIsTrivial_hom_assoc, groupHomology.π_map_apply, groupHomology.π_comp_H2Iso_hom_apply, groupHomology.π_comp_H1Iso_hom, groupHomology.epi_map_0_of_epi, isZero_groupHomology_succ_of_subsingleton, groupHomology.π_map, groupHomology.H0π_comp_map_apply, groupHomology.δ₁_apply
groupHomologyIso 📖CompOp
groupHomologyIsoTor 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
groupHomology_induction_on 📖DFunLike.coe
groupHomology.cycles
groupHomology
ModuleCat.carrier
CommRing.toRing
CategoryTheory.ConcreteCategory.hom
ModuleCat
ModuleCat.moduleCategory
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
groupHomology.π
ModuleCat.epi_iff_surjective
HomologicalComplex.instEpiHomologyπ
isZero_groupHomology_succ_of_subsingleton 📖mathematicalCategoryTheory.Limits.IsZero
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
groupHomology
CategoryTheory.Limits.IsZero.of_iso
Rep.isZero_Tor_succ_of_projective
Rep.trivial_projective_of_subsingleton

groupHomology

Definitions

NameCategoryTheorems
cycles 📖CompOp
60 mathmath: π_comp_H2Iso_hom_assoc, cyclesIso₀_inv_comp_iCycles_apply, cyclesMap_id_comp, cyclesMap_comp_isoCycles₂_hom, toCycles_comp_isoCycles₂_hom_assoc, isoCycles₁_inv_comp_iCycles_apply, π_comp_H0Iso_hom_assoc, cyclesMap_comp_assoc, cyclesMap_comp_cyclesIso₀_hom_apply, toCycles_comp_isoCycles₁_hom_apply, cyclesIso₀_comp_H0π_apply, π_comp_H2Iso_hom, cyclesIso₀_inv_comp_cyclesMap_apply, toCycles_comp_isoCycles₁_hom_assoc, π_comp_H0Iso_hom_apply, π_comp_H0IsoOfIsTrivial_hom_apply, isoCycles₂_hom_comp_i_apply, π_comp_H0IsoOfIsTrivial_hom, cyclesMap_comp_isoCycles₂_hom_assoc, cyclesIso₀_inv_comp_iCycles, π_comp_H1Iso_hom_apply, toCycles_comp_isoCycles₂_hom, cyclesMap_comp_isoCycles₂_hom_apply, isoCycles₁_hom_comp_i_apply, cyclesMap_comp_cyclesIso₀_hom, cyclesMap_comp_isoCycles₁_hom_apply, toCycles_comp_isoCycles₂_hom_apply, π_map_assoc, δ_apply, isoCycles₂_inv_comp_iCycles_apply, isoCycles₂_inv_comp_iCycles_assoc, cyclesMk₂_eq, isoCycles₁_inv_comp_iCycles_assoc, π_comp_H1Iso_hom_assoc, cyclesIso₀_inv_comp_cyclesMap_assoc, cyclesMk₁_eq, cyclesIso₀_comp_H0π_assoc, π_comp_H0Iso_hom, cyclesIso₀_inv_comp_cyclesMap, isoCycles₁_hom_comp_i_assoc, π_comp_H0IsoOfIsTrivial_hom_assoc, π_map_apply, π_comp_H2Iso_hom_apply, isoCycles₁_inv_comp_iCycles, cyclesMap_comp_isoCycles₁_hom_assoc, toCycles_comp_isoCycles₁_hom, isoCycles₂_hom_comp_i, π_comp_H1Iso_hom, isoCycles₂_inv_comp_iCycles, cyclesIso₀_comp_H0π, iCycles_mk, cyclesMk₀_eq, isoCycles₁_hom_comp_i, cyclesMap_comp, cyclesMap_comp_cyclesIso₀_hom_assoc, cyclesIso₀_inv_comp_iCycles_assoc, cyclesMap_id, π_map, isoCycles₂_hom_comp_i_assoc, cyclesMap_comp_isoCycles₁_hom
cyclesMk 📖CompOp
5 mathmath: δ_apply, cyclesMk₂_eq, cyclesMk₁_eq, iCycles_mk, cyclesMk₀_eq
iCycles 📖CompOp
16 mathmath: cyclesIso₀_inv_comp_iCycles_apply, isoCycles₁_inv_comp_iCycles_apply, isoCycles₂_hom_comp_i_apply, cyclesIso₀_inv_comp_iCycles, isoCycles₁_hom_comp_i_apply, isoCycles₂_inv_comp_iCycles_apply, isoCycles₂_inv_comp_iCycles_assoc, isoCycles₁_inv_comp_iCycles_assoc, isoCycles₁_hom_comp_i_assoc, isoCycles₁_inv_comp_iCycles, isoCycles₂_hom_comp_i, isoCycles₂_inv_comp_iCycles, iCycles_mk, isoCycles₁_hom_comp_i, cyclesIso₀_inv_comp_iCycles_assoc, isoCycles₂_hom_comp_i_assoc
inhomogeneousChains 📖CompOp
71 mathmath: chainsMap_f_3_comp_chainsIso₃_apply, eq_d₃₂_comp_inv, chainsMap_id, comp_d₂₁_eq, toCycles_comp_isoCycles₂_hom_assoc, chainsMap_id_f_map_mono, d₁₀ArrowIso_hom_left, chainsMap_f_3_comp_chainsIso₃, eq_d₂₁_comp_inv, inhomogeneousChains.d_def, coinvariantsMk_comp_opcyclesIso₀_inv_assoc, chainsMap_f_single, eq_d₃₂_comp_inv_apply, pOpcycles_comp_opcyclesIso_hom_apply, chainsMap_f_map_epi, isoShortComplexH1_hom, comp_d₁₀_eq, toCycles_comp_isoCycles₁_hom_assoc, chainsFunctor_obj, d₁₀ArrowIso_inv_right, chainsMap_id_f_map_epi, chainsMap_id_comp, eq_d₂₁_comp_inv_assoc, cyclesIso₀_inv_comp_iCycles, chainsMap_id_f_hom_eq_mapRange, toCycles_comp_isoCycles₂_hom, chainsMap_f_map_mono, eq_d₁₀_comp_inv, isoShortComplexH1_inv, eq_d₁₀_comp_inv_assoc, chainsMap_f_1_comp_chainsIso₁_assoc, lsingle_comp_chainsMap_f, coinvariantsMk_comp_opcyclesIso₀_inv_apply, chainsMap_comp, chainsMap_f_3_comp_chainsIso₃_assoc, chainsMap_f_0_comp_chainsIso₀_assoc, eq_d₃₂_comp_inv_assoc, isoCycles₂_inv_comp_iCycles_assoc, isoShortComplexH2_hom, cyclesMk₂_eq, chainsMap_f_1_comp_chainsIso₁, isoCycles₁_inv_comp_iCycles_assoc, chainsMap_f_2_comp_chainsIso₂, pOpcycles_comp_opcyclesIso_hom, coinvariantsMk_comp_opcyclesIso₀_inv, chainsMap_f_hom, pOpcycles_comp_opcyclesIso_hom_assoc, cyclesMk₁_eq, isoCycles₁_hom_comp_i_assoc, isoCycles₁_inv_comp_iCycles, chainsMap_zero, isoShortComplexH2_inv, toCycles_comp_isoCycles₁_hom, chainsMap_f_2_comp_chainsIso₂_assoc, isoCycles₂_hom_comp_i, isoCycles₂_inv_comp_iCycles, d₁₀ArrowIso_hom_right, eq_d₂₁_comp_inv_apply, cyclesMk₀_eq, isoCycles₁_hom_comp_i, chainsMap_f_0_comp_chainsIso₀_apply, lsingle_comp_chainsMap_f_assoc, cyclesIso₀_inv_comp_iCycles_assoc, d₁₀ArrowIso_inv_left, eq_d₁₀_comp_inv_apply, chainsMap_f_1_comp_chainsIso₁_apply, isoCycles₂_hom_comp_i_assoc, comp_d₃₂_eq, chainsMap_f_0_comp_chainsIso₀, chainsMap_f, chainsMap_f_2_comp_chainsIso₂_apply
inhomogeneousChainsIso 📖CompOp
toCycles 📖CompOp
6 mathmath: toCycles_comp_isoCycles₂_hom_assoc, toCycles_comp_isoCycles₁_hom_apply, toCycles_comp_isoCycles₁_hom_assoc, toCycles_comp_isoCycles₂_hom, toCycles_comp_isoCycles₂_hom_apply, toCycles_comp_isoCycles₁_hom
π 📖CompOp
19 mathmath: π_comp_H2Iso_hom_assoc, π_comp_H0Iso_hom_assoc, cyclesIso₀_comp_H0π_apply, π_comp_H2Iso_hom, π_comp_H0Iso_hom_apply, π_comp_H0IsoOfIsTrivial_hom_apply, π_comp_H0IsoOfIsTrivial_hom, π_comp_H1Iso_hom_apply, π_map_assoc, δ_apply, π_comp_H1Iso_hom_assoc, cyclesIso₀_comp_H0π_assoc, π_comp_H0Iso_hom, π_comp_H0IsoOfIsTrivial_hom_assoc, π_map_apply, π_comp_H2Iso_hom_apply, π_comp_H1Iso_hom, cyclesIso₀_comp_H0π, π_map

Theorems

NameKindAssumesProvesValidatesDepends On
iCycles_mk 📖mathematicalComplexShape.next
ComplexShape.down
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
DFunLike.coe
HomologicalComplex.X
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
inhomogeneousChains
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
HomologicalComplex.d
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
cycles
iCycles
cyclesMk
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.i_cyclesMk
ModuleCat.forget₂_addCommGrp_additive
CategoryTheory.ShortComplex.instPreservesHomologyModuleCatAbForget₂LinearMapIdCarrierAddMonoidHomCarrier

groupHomology.inhomogeneousChains

Definitions

NameCategoryTheorems
d 📖CompOp
4 mathmath: d_def, d_single, d_comp_d, d_eq

Theorems

NameKindAssumesProvesValidatesDepends On
d_comp_d 📖mathematicalCategoryTheory.CategoryStruct.comp
ModuleCat
CommRing.toRing
CategoryTheory.Category.toCategoryStruct
ModuleCat.moduleCategory
ModuleCat.of
Finsupp
ModuleCat.carrier
Action.V
DivInvMonoid.toMonoid
Group.toDivInvMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Rep.instAddCommGroupCarrierVModuleCat
Finsupp.instAddCommGroup
Finsupp.module
Ring.toSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isModule
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
ModuleCat.instZeroHom
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.id_comp
HomologicalComplex.d_comp_d
d_def 📖mathematicalHomologicalComplex.d
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
groupHomology.inhomogeneousChains
d
AddRightCancelSemigroup.toIsRightCancelAdd
ChainComplex.of_d
d_eq 📖mathematicald
CategoryTheory.CategoryStruct.comp
ModuleCat
CommRing.toRing
CategoryTheory.Category.toCategoryStruct
ModuleCat.moduleCategory
ModuleCat.of
Finsupp
ModuleCat.carrier
Action.V
DivInvMonoid.toMonoid
Group.toDivInvMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Rep.instAddCommGroupCarrierVModuleCat
Finsupp.instAddCommGroup
Finsupp.module
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isModule
Representation.Coinvariants
CategoryTheory.MonoidalCategoryStruct.tensorObj
Rep
Action.instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Action.instMonoidalCategory
ModuleCat.monoidalCategory
Rep.free
ModuleCat.isAddCommGroup
Rep.ρ
Representation.Coinvariants.instAddCommGroup
Representation.Coinvariants.instModule
CategoryTheory.Iso.inv
LinearEquiv.toModuleIso
Rep.coinvariantsTensorFreeLEquiv
Fintype.decidablePiFintype
Fin.fintype
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex.coinvariantsTensorObj
Rep.barComplex
HomologicalComplex.d
CategoryTheory.Iso.hom
ModuleCat.hom_ext
AddRightCancelSemigroup.toIsRightCancelAdd
Finsupp.lhom_ext'
LinearMap.ext
RingHomCompTriple.ids
d_single
Finset.sum_congr
Finsupp.smul_single
LinearMap.comp.congr_simp
Rep.barComplex.d_def
Rep.finsuppToCoinvariantsTensorFree_single
Rep.barComplex.d_single
TensorProduct.tmul_add
TensorProduct.tmul_sum
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
Rep.coinvariantsTensorFreeToFinsupp_mk_tmul_single
one_smul
inv_one
map_one
MonoidHomClass.toOneHomClass
MonoidHom.instMonoidHomClass
d_single 📖mathematicalDFunLike.coe
ModuleCat.of
CommRing.toRing
Finsupp
ModuleCat.carrier
Action.V
ModuleCat
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Rep.instAddCommGroupCarrierVModuleCat
Finsupp.instAddCommGroup
Finsupp.module
Ring.toSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isModule
CategoryTheory.ConcreteCategory.hom
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.isAddCommGroup
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
d
Finsupp.single
Finsupp.instAdd
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CommSemiring.toSemiring
CommRing.toCommSemiring
Representation
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
Rep.ρ
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Finset.sum
Finsupp.instAddCommMonoid
Finset.univ
Fin.fintype
SMulZeroClass.toSMul
Finsupp.instZero
Finsupp.smulZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Monoid.toNatPow
NegZeroClass.toNeg
Ring.toAddCommGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Fin.contractNth
MulOne.toMul
Finsupp.sum_single_index
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Finsupp.single_zero
LinearMap.coe_sum
Finset.sum_apply
Finset.sum_congr
smul_zero
Finset.sum_const_zero
add_zero
Finsupp.smul_single
ext 📖CategoryTheory.CategoryStruct.comp
ModuleCat
CommRing.toRing
CategoryTheory.Category.toCategoryStruct
ModuleCat.moduleCategory
ModuleCat.of
ModuleCat.carrier
Action.V
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Rep.instAddCommGroupCarrierVModuleCat
ModuleCat.isModule
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
Finsupp.instAddCommGroup
Finsupp.module
Ring.toSemiring
ModuleCat.ofHom
Finsupp.lsingle
AddRightCancelSemigroup.toIsRightCancelAdd
ModuleCat.hom_ext
Finsupp.lhom_ext'
RingHomCompTriple.ids
ModuleCat.hom_ext_iff
ext_iff 📖mathematicalCategoryTheory.CategoryStruct.comp
ModuleCat
CommRing.toRing
CategoryTheory.Category.toCategoryStruct
ModuleCat.moduleCategory
ModuleCat.of
ModuleCat.carrier
Action.V
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Rep.instAddCommGroupCarrierVModuleCat
ModuleCat.isModule
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
Finsupp.instAddCommGroup
Finsupp.module
Ring.toSemiring
ModuleCat.ofHom
Finsupp.lsingle
AddRightCancelSemigroup.toIsRightCancelAdd
ext

---

← Back to Index