Documentation Verification Report

LongExactSequence

📁 Source: Mathlib/RepresentationTheory/Homological/GroupHomology/LongExactSequence.lean

Statistics

MetricCount
DefinitionscyclesMkOfCompEqD, mapShortComplex₁, mapShortComplex₂, mapShortComplex₃, δ
5
Theoremsepi_δ_of_isZero, isIso_δ_of_isZero, mapShortComplex₁_exact, mapShortComplex₂_exact, mapShortComplex₃_exact, map_chainsFunctor_shortExact, mem_cycles₁_of_comp_eq_d₂₁, mono_δ_of_isZero, δ_apply, δ₀_apply, δ₁_apply
11
Total16

groupHomology

Definitions

NameCategoryTheorems
cyclesMkOfCompEqD 📖CompOp
1 mathmath: δ_apply
mapShortComplex₁ 📖CompOp
1 mathmath: mapShortComplex₁_exact
mapShortComplex₂ 📖CompOp
1 mathmath: mapShortComplex₂_exact
mapShortComplex₃ 📖CompOp
1 mathmath: mapShortComplex₃_exact
δ 📖CompOp
6 mathmath: mono_δ_of_isZero, δ₀_apply, epi_δ_of_isZero, δ_apply, isIso_δ_of_isZero, δ₁_apply

Theorems

NameKindAssumesProvesValidatesDepends On
epi_δ_of_isZero 📖mathematicalCategoryTheory.ShortComplex.ShortExact
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
CategoryTheory.Limits.IsZero
groupHomology
CategoryTheory.ShortComplex.X₂
CategoryTheory.Epi
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.X₁
δ
—CategoryTheory.ShortComplex.SnakeInput.epi_δ
instPreservesZeroMorphismsRepChainComplexModuleCatNatChainsFunctor
map_chainsFunctor_shortExact
isIso_δ_of_isZero 📖mathematicalCategoryTheory.ShortComplex.ShortExact
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
CategoryTheory.Limits.IsZero
groupHomology
CategoryTheory.ShortComplex.X₂
CategoryTheory.IsIso
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.X₁
δ
—CategoryTheory.ShortComplex.SnakeInput.isIso_δ
instPreservesZeroMorphismsRepChainComplexModuleCatNatChainsFunctor
map_chainsFunctor_shortExact
mapShortComplex₁_exact 📖mathematicalCategoryTheory.ShortComplex.ShortExact
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
CategoryTheory.ShortComplex.Exact
CategoryTheory.Abelian.toPreadditive
ModuleCat.abelian
mapShortComplex₁
—CategoryTheory.ShortComplex.ShortExact.homology_exact₁
AddRightCancelSemigroup.toIsRightCancelAdd
instPreservesZeroMorphismsRepChainComplexModuleCatNatChainsFunctor
map_chainsFunctor_shortExact
mapShortComplex₂_exact 📖mathematicalCategoryTheory.ShortComplex.ShortExact
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
CategoryTheory.ShortComplex.Exact
mapShortComplex₂
—CategoryTheory.ShortComplex.ShortExact.homology_exact₂
AddRightCancelSemigroup.toIsRightCancelAdd
instPreservesZeroMorphismsRepChainComplexModuleCatNatChainsFunctor
map_chainsFunctor_shortExact
mapShortComplex₃_exact 📖mathematicalCategoryTheory.ShortComplex.ShortExact
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
CategoryTheory.ShortComplex.Exact
CategoryTheory.Abelian.toPreadditive
ModuleCat.abelian
mapShortComplex₃
—CategoryTheory.ShortComplex.ShortExact.homology_exact₃
AddRightCancelSemigroup.toIsRightCancelAdd
instPreservesZeroMorphismsRepChainComplexModuleCatNatChainsFunctor
map_chainsFunctor_shortExact
map_chainsFunctor_shortExact 📖mathematicalCategoryTheory.ShortComplex.ShortExact
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
ChainComplex
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.instHasZeroMorphisms
CategoryTheory.ShortComplex.map
chainsFunctor
instPreservesZeroMorphismsRepChainComplexModuleCatNatChainsFunctor
—HomologicalComplex.shortExact_of_degreewise_shortExact
AddRightCancelSemigroup.toIsRightCancelAdd
instPreservesZeroMorphismsRepChainComplexModuleCatNatChainsFunctor
HomologicalComplex.instPreservesZeroMorphismsEval
RingHomSurjective.ids
CategoryTheory.ShortComplex.Exact.moduleCat_range_eq_ker
Action.forget₂_preservesZeroMorphisms
CategoryTheory.ShortComplex.Exact.map
CategoryTheory.ShortComplex.ShortExact.exact
CategoryTheory.Functor.PreservesHomology.preservesLeftHomologyOf
CategoryTheory.Functor.preservesHomologyOfExact
CategoryTheory.Limits.PreservesLimits.preservesFiniteLimits
Rep.instPreservesLimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV
CategoryTheory.Limits.PreservesColimits.preservesFiniteColimits
Rep.instPreservesColimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV
CategoryTheory.Functor.PreservesHomology.preservesRightHomologyOf
LinearMap.range.congr_simp
chainsMap_id_f_hom_eq_mapRange
Finsupp.range_mapRange_linearMap
LinearMap.ker_eq_bot
ModuleCat.mono_iff_injective
Rep.instMonoModuleCatHom
CategoryTheory.ShortComplex.ShortExact.mono_f
Finsupp.ker_mapRange
chainsMap_id_f_map_mono
chainsMap_id_f_map_epi
CategoryTheory.ShortComplex.ShortExact.epi_g
mem_cycles₁_of_comp_eq_d₂₁ 📖mathematicalCategoryTheory.ShortComplex.ShortExact
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
ModuleCat.carrier
Action.V
CategoryTheory.ShortComplex.X₁
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
CategoryTheory.ShortComplex.X₂
Finsupp.instAddCommMonoid
Finsupp.module
ModuleCat.isModule
LinearMap.instFunLike
Finsupp.mapRange.linearMap
ModuleCat.Hom.hom
Action.Hom.hom
CategoryTheory.ShortComplex.f
ModuleCat.of
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Rep.instAddCommGroupCarrierVModuleCat
Finsupp.instAddCommGroup
CategoryTheory.ConcreteCategory.hom
ModuleCat.instConcreteCategoryLinearMapIdCarrier
d₂₁
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
cycles₁
—LinearMap.mem_ker
Rep.mono_iff_injective
CategoryTheory.ShortComplex.ShortExact.mono_f
CategoryTheory.ShortComplex.Hom.comm₂₃
RingHomCompTriple.ids
Finsupp.lmapDomain_id
CategoryTheory.Category.id_comp
LinearMap.map_zero
d₂₁_comp_d₁₀_apply
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
mono_δ_of_isZero 📖mathematicalCategoryTheory.ShortComplex.ShortExact
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
CategoryTheory.Limits.IsZero
groupHomology
CategoryTheory.ShortComplex.X₂
CategoryTheory.Mono
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.X₁
δ
—CategoryTheory.ShortComplex.SnakeInput.mono_δ
instPreservesZeroMorphismsRepChainComplexModuleCatNatChainsFunctor
map_chainsFunctor_shortExact
δ_apply 📖mathematicalCategoryTheory.ShortComplex.ShortExact
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
DFunLike.coe
HomologicalComplex.X
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
inhomogeneousChains
CategoryTheory.ShortComplex.X₃
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
HomologicalComplex.d
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
CategoryTheory.ShortComplex.X₂
HomologicalComplex.Hom.f
chainsMap
MonoidHom.id
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.ShortComplex.g
Finsupp
Action.V
CategoryTheory.ShortComplex.X₁
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finsupp.instAddCommMonoid
Finsupp.module
Finsupp.mapRange.linearMap
ModuleCat.Hom.hom
Action.Hom.hom
CategoryTheory.ShortComplex.f
groupHomology
δ
cycles
π
cyclesMk
cyclesMkOfCompEqD
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.ShortComplex.ShortExact.δ_apply
ModuleCat.forget₂_addCommGrp_additive
CategoryTheory.ShortComplex.instPreservesHomologyModuleCatAbForget₂LinearMapIdCarrierAddMonoidHomCarrier
instPreservesZeroMorphismsRepChainComplexModuleCatNatChainsFunctor
map_chainsFunctor_shortExact
LinearMap.map_zero
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
AddMonoidHomClass.toAddMonoidHom.congr_simp
chainsMap_id_f_hom_eq_mapRange
δ₀_apply 📖mathematicalCategoryTheory.ShortComplex.ShortExact
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
ModuleCat.carrier
Action.V
CategoryTheory.ShortComplex.X₂
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
CategoryTheory.ShortComplex.X₃
Finsupp.instAddCommMonoid
Finsupp.module
ModuleCat.isModule
LinearMap.instFunLike
Finsupp.mapRange.linearMap
ModuleCat.Hom.hom
Action.Hom.hom
CategoryTheory.ShortComplex.g
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Rep.instAddCommGroupCarrierVModuleCat
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
cycles₁
CategoryTheory.ShortComplex.X₁
CategoryTheory.ConcreteCategory.hom
ModuleCat.instConcreteCategoryLinearMapIdCarrier
CategoryTheory.ShortComplex.f
ModuleCat.of
Finsupp.instAddCommGroup
d₁₀
groupHomology
δ
Submodule.addCommGroup
Submodule.module
H1
H1π
H0
H0π
—AddRightCancelSemigroup.toIsRightCancelAdd
cyclesMk₁_eq
cyclesMk₀_eq
δ_apply
eq_d₁₀_comp_inv_apply
LinearMap.map_coe_ker
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Finsupp.ext
LinearMap.map_zero
chainsMap_id_f_hom_eq_mapRange
Finsupp.domLCongr_symm
Fin.isEmpty'
Finsupp.LinearEquiv.finsuppUnique_symm_apply
Finsupp.mapRange_single
δ₁_apply 📖mathematicalCategoryTheory.ShortComplex.ShortExact
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
ModuleCat.carrier
Action.V
CategoryTheory.ShortComplex.X₂
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
CategoryTheory.ShortComplex.X₃
Finsupp.instAddCommMonoid
Finsupp.module
ModuleCat.isModule
LinearMap.instFunLike
Finsupp.mapRange.linearMap
ModuleCat.Hom.hom
Action.Hom.hom
CategoryTheory.ShortComplex.g
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Rep.instAddCommGroupCarrierVModuleCat
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submodule.setLike
cycles₂
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.f
ModuleCat.of
Finsupp.instAddCommGroup
CategoryTheory.ConcreteCategory.hom
ModuleCat.instConcreteCategoryLinearMapIdCarrier
d₂₁
groupHomology
δ
Submodule.addCommGroup
Submodule.module
H2
H2π
cycles₁
H1
H1π
mem_cycles₁_of_comp_eq_d₂₁
—mem_cycles₁_of_comp_eq_d₂₁
AddRightCancelSemigroup.toIsRightCancelAdd
cyclesMk₂_eq
cyclesMk₁_eq
δ_apply
eq_d₂₁_comp_inv_apply
LinearMap.map_coe_ker
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Finsupp.ext
LinearMap.map_zero
chainsMap_id_f_hom_eq_mapRange
Finsupp.domLCongr_symm

---

← Back to Index