| Metric | Count |
DefinitionsH0, H0Iso, H0IsoOfIsTrivial, H0π, H1AddEquivOfIsTrivial, H1Iso, H1ToTensorOfIsTrivial, H1π, H2, H2Iso, H2π, IsBoundary₀, IsBoundary₁, IsBoundary₂, IsCycle₁, IsCycle₂, boundariesOfIsBoundary₁, boundariesOfIsBoundary₂, boundariesToCycles₁, boundariesToCycles₂, boundaries₁, boundaries₂, chainsIso₀, chainsIso₁, chainsIso₂, chainsIso₃, chains₁ToCoinvariantsKer, coinvariantsKerOfIsBoundary₀, cyclesIso₀, cyclesOfIsCycle₁, cyclesOfIsCycle₂, cycles₁, cycles₁IsoOfIsTrivial, cycles₂, d₁₀, d₁₀ArrowIso, d₂₁, d₃₂, isoCycles₁, isoCycles₂, isoShortComplexH1, isoShortComplexH2, mkH1OfIsTrivial, opcyclesIso₀, shortComplexH0, shortComplexH1, shortComplexH2 | 47 |
TheoremsH0IsoOfIsTrivial_inv_eq_π, H0_induction_on, H0π_comp_H0Iso_hom, H0π_comp_H0Iso_hom_apply, H0π_comp_H0Iso_hom_assoc, H1AddEquivOfIsTrivial_apply, H1AddEquivOfIsTrivial_single, H1AddEquivOfIsTrivial_symm_apply, H1AddEquivOfIsTrivial_symm_tmul, H1ToTensorOfIsTrivial_H1π_single, H1_induction_on, H1π_eq_iff, H1π_eq_zero_iff, H2_induction_on, H2π_eq_iff, H2π_eq_zero_iff, boundariesOfIsBoundary₁_coe, boundariesOfIsBoundary₂_coe, boundariesToCycles₁_apply, boundariesToCycles₂_apply, boundaries₁_le_cycles₁, boundaries₂_le_cycles₂, chains₁ToCoinvariantsKer_surjective, coinvariantsKerOfIsBoundary₀_coe, coinvariantsMk_comp_H0Iso_inv, coinvariantsMk_comp_H0Iso_inv_apply, coinvariantsMk_comp_H0Iso_inv_assoc, coinvariantsMk_comp_opcyclesIso₀_inv, coinvariantsMk_comp_opcyclesIso₀_inv_apply, coinvariantsMk_comp_opcyclesIso₀_inv_assoc, comp_d₁₀_eq, comp_d₂₁_eq, comp_d₃₂_eq, cyclesIso₀_comp_H0π, cyclesIso₀_comp_H0π_apply, cyclesIso₀_comp_H0π_assoc, cyclesIso₀_inv_comp_iCycles, cyclesIso₀_inv_comp_iCycles_apply, cyclesIso₀_inv_comp_iCycles_assoc, cyclesMk₀_eq, cyclesMk₁_eq, cyclesMk₂_eq, cyclesOfIsCycle₁_coe, cyclesOfIsCycle₂_coe, cycles₁IsoOfIsTrivial_hom_apply, cycles₁IsoOfIsTrivial_inv_apply, cycles₁_eq_top_of_isTrivial, d₁₀ArrowIso_hom_left, d₁₀ArrowIso_hom_right, d₁₀ArrowIso_inv_left, d₁₀ArrowIso_inv_right, d₁₀_comp_coinvariantsMk, d₁₀_comp_coinvariantsMk_apply, d₁₀_comp_coinvariantsMk_assoc, d₁₀_eq_zero_of_isTrivial, d₁₀_single, d₁₀_single_inv, d₁₀_single_one, d₂₁_apply_mem_cycles₁, d₂₁_comp_d₁₀, d₂₁_comp_d₁₀_apply, d₂₁_comp_d₁₀_assoc, d₂₁_single, d₂₁_single_inv_mul_ρ_add_single, d₂₁_single_inv_self_ρ_sub_self_inv, d₂₁_single_one_fst, d₂₁_single_one_snd, d₂₁_single_self_inv_ρ_sub_inv_self, d₂₁_single_ρ_add_single_inv_mul, d₃₂_apply_mem_cycles₂, d₃₂_comp_d₂₁, d₃₂_comp_d₂₁_apply, d₃₂_comp_d₂₁_assoc, d₃₂_single, d₃₂_single_one_fst, d₃₂_single_one_snd, d₃₂_single_one_thd, eq_d₁₀_comp_inv, eq_d₁₀_comp_inv_apply, eq_d₁₀_comp_inv_assoc, eq_d₂₁_comp_inv, eq_d₂₁_comp_inv_apply, eq_d₂₁_comp_inv_assoc, eq_d₃₂_comp_inv, eq_d₃₂_comp_inv_apply, eq_d₃₂_comp_inv_assoc, instEpiModuleCatGShortComplexH0, instEpiModuleCatH0π, instEpiModuleCatH1π, instEpiModuleCatH2π, isBoundary₀_iff, isBoundary₀_of_mem_coinvariantsKer, isBoundary₁_iff, isBoundary₁_of_mem_boundaries₁, isBoundary₂_iff, isBoundary₂_of_mem_boundaries₂, isCycle₁_of_mem_cycles₁, isCycle₂_of_mem_cycles₂, isoCycles₁_hom_comp_i, isoCycles₁_hom_comp_i_apply, isoCycles₁_hom_comp_i_assoc, isoCycles₁_inv_comp_iCycles, isoCycles₁_inv_comp_iCycles_apply, isoCycles₁_inv_comp_iCycles_assoc, isoCycles₂_hom_comp_i, isoCycles₂_hom_comp_i_apply, isoCycles₂_hom_comp_i_assoc, isoCycles₂_inv_comp_iCycles, isoCycles₂_inv_comp_iCycles_apply, isoCycles₂_inv_comp_iCycles_assoc, isoShortComplexH1_hom, isoShortComplexH1_inv, isoShortComplexH2_hom, isoShortComplexH2_inv, mem_cycles₁_iff, mem_cycles₁_of_mem_boundaries₁, mem_cycles₂_iff, mem_cycles₂_of_mem_boundaries₂, mkH1OfIsTrivial_apply, pOpcycles_comp_opcyclesIso_hom, pOpcycles_comp_opcyclesIso_hom_apply, pOpcycles_comp_opcyclesIso_hom_assoc, range_d₁₀_eq_coinvariantsKer, shortComplexH0_exact, shortComplexH0_f, shortComplexH0_g, shortComplexH1_f, shortComplexH1_g, shortComplexH2_f, shortComplexH2_g, single_inv_ρ_self_add_single_mem_boundaries₁, single_isCycle₁_iff, single_isCycle₁_of_mem_fixedPoints, single_isCycle₂_iff, single_isCycle₂_iff_inv, single_mem_cycles₁_iff, single_mem_cycles₁_of_mem_invariants, single_mem_cycles₂_iff, single_mem_cycles₂_iff_inv, single_one_fst_sub_single_one_fst_mem_boundaries₂, single_one_fst_sub_single_one_snd_mem_boundaries₂, single_one_mem_boundaries₁, single_one_snd_sub_single_one_fst_mem_boundaries₂, single_one_snd_sub_single_one_snd_mem_boundaries₂, single_ρ_self_add_single_inv_mem_boundaries₁, toCycles_comp_isoCycles₁_hom, toCycles_comp_isoCycles₁_hom_apply, toCycles_comp_isoCycles₁_hom_assoc, toCycles_comp_isoCycles₂_hom, toCycles_comp_isoCycles₂_hom_apply, toCycles_comp_isoCycles₂_hom_assoc, π_comp_H0IsoOfIsTrivial_hom, π_comp_H0IsoOfIsTrivial_hom_apply, π_comp_H0IsoOfIsTrivial_hom_assoc, π_comp_H0Iso_hom, π_comp_H0Iso_hom_apply, π_comp_H0Iso_hom_assoc, π_comp_H1Iso_hom, π_comp_H1Iso_hom_apply, π_comp_H1Iso_hom_assoc, π_comp_H1Iso_inv, π_comp_H1Iso_inv_apply, π_comp_H1Iso_inv_assoc, π_comp_H2Iso_hom, π_comp_H2Iso_hom_apply, π_comp_H2Iso_hom_assoc, π_comp_H2Iso_inv, π_comp_H2Iso_inv_apply, π_comp_H2Iso_inv_assoc | 169 |
| Total | 216 |
| Name | Category | Theorems |
H0 📖 | CompOp | 24 mathmath: coinvariantsMk_comp_H0Iso_inv_apply, H0IsoOfIsTrivial_inv_eq_π, H0π_comp_map, δ₀_apply, π_comp_H0Iso_hom_assoc, coinvariantsMk_comp_H0Iso_inv, cyclesIso₀_comp_H0π_apply, H0π_comp_map_assoc, π_comp_H0Iso_hom_apply, π_comp_H0IsoOfIsTrivial_hom_apply, π_comp_H0IsoOfIsTrivial_hom, map_id_comp_H0Iso_hom_assoc, map_id_comp_H0Iso_hom_apply, cyclesIso₀_comp_H0π_assoc, instEpiModuleCatH0π, π_comp_H0Iso_hom, H0π_comp_H0Iso_hom, map_id_comp_H0Iso_hom, π_comp_H0IsoOfIsTrivial_hom_assoc, cyclesIso₀_comp_H0π, H0π_comp_H0Iso_hom_assoc, H0π_comp_H0Iso_hom_apply, coinvariantsMk_comp_H0Iso_inv_assoc, H0π_comp_map_apply
|
H0Iso 📖 | CompOp | 12 mathmath: coinvariantsMk_comp_H0Iso_inv_apply, π_comp_H0Iso_hom_assoc, coinvariantsMk_comp_H0Iso_inv, π_comp_H0Iso_hom_apply, map_id_comp_H0Iso_hom_assoc, map_id_comp_H0Iso_hom_apply, π_comp_H0Iso_hom, H0π_comp_H0Iso_hom, map_id_comp_H0Iso_hom, H0π_comp_H0Iso_hom_assoc, H0π_comp_H0Iso_hom_apply, coinvariantsMk_comp_H0Iso_inv_assoc
|
H0IsoOfIsTrivial 📖 | CompOp | 4 mathmath: H0IsoOfIsTrivial_inv_eq_π, π_comp_H0IsoOfIsTrivial_hom_apply, π_comp_H0IsoOfIsTrivial_hom, π_comp_H0IsoOfIsTrivial_hom_assoc
|
H0π 📖 | CompOp | 15 mathmath: coinvariantsMk_comp_H0Iso_inv_apply, H0IsoOfIsTrivial_inv_eq_π, H0π_comp_map, δ₀_apply, coinvariantsMk_comp_H0Iso_inv, cyclesIso₀_comp_H0π_apply, H0π_comp_map_assoc, cyclesIso₀_comp_H0π_assoc, instEpiModuleCatH0π, H0π_comp_H0Iso_hom, cyclesIso₀_comp_H0π, H0π_comp_H0Iso_hom_assoc, H0π_comp_H0Iso_hom_apply, coinvariantsMk_comp_H0Iso_inv_assoc, H0π_comp_map_apply
|
H1AddEquivOfIsTrivial 📖 | CompOp | 4 mathmath: H1AddEquivOfIsTrivial_single, H1AddEquivOfIsTrivial_symm_apply, H1AddEquivOfIsTrivial_apply, H1AddEquivOfIsTrivial_symm_tmul
|
H1Iso 📖 | CompOp | 6 mathmath: π_comp_H1Iso_inv, π_comp_H1Iso_hom_apply, π_comp_H1Iso_hom_assoc, π_comp_H1Iso_hom, π_comp_H1Iso_inv_apply, π_comp_H1Iso_inv_assoc
|
H1ToTensorOfIsTrivial 📖 | CompOp | 2 mathmath: H1ToTensorOfIsTrivial_H1π_single, H1AddEquivOfIsTrivial_apply
|
H1π 📖 | CompOp | 15 mathmath: δ₀_apply, π_comp_H1Iso_inv, H1π_comp_map_apply, H1AddEquivOfIsTrivial_single, H1ToTensorOfIsTrivial_H1π_single, H1π_eq_zero_iff, H1π_comp_map_assoc, instEpiModuleCatH1π, H1π_comp_map, mkH1OfIsTrivial_apply, π_comp_H1Iso_inv_apply, H1AddEquivOfIsTrivial_symm_tmul, π_comp_H1Iso_inv_assoc, δ₁_apply, H1π_eq_iff
|
H2 📖 | CompOp | 13 mathmath: π_comp_H2Iso_hom_assoc, π_comp_H2Iso_inv_assoc, π_comp_H2Iso_hom, H2π_comp_map_assoc, H2π_eq_iff, H2π_comp_map, π_comp_H2Iso_inv, instEpiModuleCatH2π, H2π_comp_map_apply, π_comp_H2Iso_hom_apply, π_comp_H2Iso_inv_apply, H2π_eq_zero_iff, δ₁_apply
|
H2Iso 📖 | CompOp | 6 mathmath: π_comp_H2Iso_hom_assoc, π_comp_H2Iso_inv_assoc, π_comp_H2Iso_hom, π_comp_H2Iso_inv, π_comp_H2Iso_hom_apply, π_comp_H2Iso_inv_apply
|
H2π 📖 | CompOp | 10 mathmath: π_comp_H2Iso_inv_assoc, H2π_comp_map_assoc, H2π_eq_iff, H2π_comp_map, π_comp_H2Iso_inv, instEpiModuleCatH2π, H2π_comp_map_apply, π_comp_H2Iso_inv_apply, H2π_eq_zero_iff, δ₁_apply
|
IsBoundary₀ 📖 | MathDef | 2 mathmath: isBoundary₀_of_mem_coinvariantsKer, isBoundary₀_iff
|
IsBoundary₁ 📖 | MathDef | 2 mathmath: isBoundary₁_of_mem_boundaries₁, isBoundary₁_iff
|
IsBoundary₂ 📖 | MathDef | 2 mathmath: isBoundary₂_of_mem_boundaries₂, isBoundary₂_iff
|
IsCycle₁ 📖 | MathDef | 3 mathmath: isCycle₁_of_mem_cycles₁, single_isCycle₁_iff, single_isCycle₁_of_mem_fixedPoints
|
IsCycle₂ 📖 | MathDef | 3 mathmath: single_isCycle₂_iff_inv, isCycle₂_of_mem_cycles₂, single_isCycle₂_iff
|
boundariesOfIsBoundary₁ 📖 | CompOp | 1 mathmath: boundariesOfIsBoundary₁_coe
|
boundariesOfIsBoundary₂ 📖 | CompOp | 1 mathmath: boundariesOfIsBoundary₂_coe
|
boundariesToCycles₁ 📖 | CompOp | 1 mathmath: boundariesToCycles₁_apply
|
boundariesToCycles₂ 📖 | CompOp | 1 mathmath: boundariesToCycles₂_apply
|
boundaries₁ 📖 | CompOp | 8 mathmath: boundariesOfIsBoundary₁_coe, single_ρ_self_add_single_inv_mem_boundaries₁, H1π_eq_zero_iff, single_one_mem_boundaries₁, single_inv_ρ_self_add_single_mem_boundaries₁, boundaries₁_le_cycles₁, boundariesToCycles₁_apply, H1π_eq_iff
|
boundaries₂ 📖 | CompOp | 9 mathmath: boundaries₂_le_cycles₂, single_one_snd_sub_single_one_fst_mem_boundaries₂, single_one_fst_sub_single_one_snd_mem_boundaries₂, single_one_fst_sub_single_one_fst_mem_boundaries₂, H2π_eq_iff, single_one_snd_sub_single_one_snd_mem_boundaries₂, boundariesOfIsBoundary₂_coe, boundariesToCycles₂_apply, H2π_eq_zero_iff
|
chainsIso₀ 📖 | CompOp | 21 mathmath: cyclesIso₀_inv_comp_iCycles_apply, coinvariantsMk_comp_opcyclesIso₀_inv_assoc, pOpcycles_comp_opcyclesIso_hom_apply, isoShortComplexH1_hom, comp_d₁₀_eq, d₁₀ArrowIso_inv_right, cyclesIso₀_inv_comp_iCycles, eq_d₁₀_comp_inv, isoShortComplexH1_inv, eq_d₁₀_comp_inv_assoc, coinvariantsMk_comp_opcyclesIso₀_inv_apply, chainsMap_f_0_comp_chainsIso₀_assoc, pOpcycles_comp_opcyclesIso_hom, coinvariantsMk_comp_opcyclesIso₀_inv, pOpcycles_comp_opcyclesIso_hom_assoc, d₁₀ArrowIso_hom_right, cyclesMk₀_eq, chainsMap_f_0_comp_chainsIso₀_apply, cyclesIso₀_inv_comp_iCycles_assoc, eq_d₁₀_comp_inv_apply, chainsMap_f_0_comp_chainsIso₀
|
chainsIso₁ 📖 | CompOp | 24 mathmath: comp_d₂₁_eq, isoCycles₁_inv_comp_iCycles_apply, d₁₀ArrowIso_hom_left, eq_d₂₁_comp_inv, isoShortComplexH1_hom, comp_d₁₀_eq, eq_d₂₁_comp_inv_assoc, eq_d₁₀_comp_inv, isoShortComplexH1_inv, eq_d₁₀_comp_inv_assoc, chainsMap_f_1_comp_chainsIso₁_assoc, isoCycles₁_hom_comp_i_apply, isoShortComplexH2_hom, chainsMap_f_1_comp_chainsIso₁, isoCycles₁_inv_comp_iCycles_assoc, cyclesMk₁_eq, isoCycles₁_hom_comp_i_assoc, isoCycles₁_inv_comp_iCycles, isoShortComplexH2_inv, eq_d₂₁_comp_inv_apply, isoCycles₁_hom_comp_i, d₁₀ArrowIso_inv_left, eq_d₁₀_comp_inv_apply, chainsMap_f_1_comp_chainsIso₁_apply
|
chainsIso₂ 📖 | CompOp | 25 mathmath: eq_d₃₂_comp_inv, comp_d₂₁_eq, eq_d₂₁_comp_inv, toCycles_comp_isoCycles₁_hom_apply, eq_d₃₂_comp_inv_apply, isoShortComplexH1_hom, toCycles_comp_isoCycles₁_hom_assoc, isoCycles₂_hom_comp_i_apply, eq_d₂₁_comp_inv_assoc, isoShortComplexH1_inv, eq_d₃₂_comp_inv_assoc, isoCycles₂_inv_comp_iCycles_apply, isoCycles₂_inv_comp_iCycles_assoc, isoShortComplexH2_hom, cyclesMk₂_eq, chainsMap_f_2_comp_chainsIso₂, isoShortComplexH2_inv, toCycles_comp_isoCycles₁_hom, chainsMap_f_2_comp_chainsIso₂_assoc, isoCycles₂_hom_comp_i, isoCycles₂_inv_comp_iCycles, eq_d₂₁_comp_inv_apply, isoCycles₂_hom_comp_i_assoc, comp_d₃₂_eq, chainsMap_f_2_comp_chainsIso₂_apply
|
chainsIso₃ 📖 | CompOp | 12 mathmath: chainsMap_f_3_comp_chainsIso₃_apply, eq_d₃₂_comp_inv, toCycles_comp_isoCycles₂_hom_assoc, chainsMap_f_3_comp_chainsIso₃, eq_d₃₂_comp_inv_apply, toCycles_comp_isoCycles₂_hom, chainsMap_f_3_comp_chainsIso₃_assoc, toCycles_comp_isoCycles₂_hom_apply, eq_d₃₂_comp_inv_assoc, isoShortComplexH2_hom, isoShortComplexH2_inv, comp_d₃₂_eq
|
chains₁ToCoinvariantsKer 📖 | CompOp | 1 mathmath: chains₁ToCoinvariantsKer_surjective
|
coinvariantsKerOfIsBoundary₀ 📖 | CompOp | 1 mathmath: coinvariantsKerOfIsBoundary₀_coe
|
cyclesIso₀ 📖 | CompOp | 19 mathmath: cyclesIso₀_inv_comp_iCycles_apply, π_comp_H0Iso_hom_assoc, cyclesMap_comp_cyclesIso₀_hom_apply, cyclesIso₀_comp_H0π_apply, cyclesIso₀_inv_comp_cyclesMap_apply, π_comp_H0Iso_hom_apply, π_comp_H0IsoOfIsTrivial_hom_apply, π_comp_H0IsoOfIsTrivial_hom, cyclesIso₀_inv_comp_iCycles, cyclesMap_comp_cyclesIso₀_hom, cyclesIso₀_inv_comp_cyclesMap_assoc, cyclesIso₀_comp_H0π_assoc, π_comp_H0Iso_hom, cyclesIso₀_inv_comp_cyclesMap, π_comp_H0IsoOfIsTrivial_hom_assoc, cyclesIso₀_comp_H0π, cyclesMk₀_eq, cyclesMap_comp_cyclesIso₀_hom_assoc, cyclesIso₀_inv_comp_iCycles_assoc
|
cyclesOfIsCycle₁ 📖 | CompOp | 1 mathmath: cyclesOfIsCycle₁_coe
|
cyclesOfIsCycle₂ 📖 | CompOp | 1 mathmath: cyclesOfIsCycle₂_coe
|
cycles₁ 📖 | CompOp | 51 mathmath: mapCycles₁_comp_apply, mapCycles₁_comp_assoc, mem_cycles₁_of_comp_eq_d₂₁, isoCycles₁_inv_comp_iCycles_apply, cycles₁_eq_top_of_isTrivial, cycles₁IsoOfIsTrivial_hom_apply, mapCycles₁_id_comp_assoc, mapCycles₁_comp, mapCycles₁_comp_i, toCycles_comp_isoCycles₁_hom_apply, mapCycles₁_id_comp_apply, mapCycles₁_comp_i_apply, H1π_comp_map_apply, toCycles_comp_isoCycles₁_hom_assoc, H1AddEquivOfIsTrivial_single, π_comp_H1Iso_hom_apply, mapCycles₁_id_comp, isoCycles₁_hom_comp_i_apply, H1ToTensorOfIsTrivial_H1π_single, cyclesOfIsCycle₁_coe, d₂₁_apply_mem_cycles₁, cyclesMap_comp_isoCycles₁_hom_apply, mem_cycles₁_of_mem_boundaries₁, H1π_eq_zero_iff, isoCycles₁_inv_comp_iCycles_assoc, π_comp_H1Iso_hom_assoc, H1π_comp_map_assoc, instEpiModuleCatH1π, H1π_comp_map, cyclesMk₁_eq, isoCycles₁_hom_comp_i_assoc, mapCycles₁_hom, isoCycles₁_inv_comp_iCycles, cyclesMap_comp_isoCycles₁_hom_assoc, single_mem_cycles₁_of_mem_invariants, coe_mapCycles₁, toCycles_comp_isoCycles₁_hom, π_comp_H1Iso_hom, mkH1OfIsTrivial_apply, cycles₁IsoOfIsTrivial_inv_apply, isoCycles₁_hom_comp_i, boundaries₁_le_cycles₁, H1AddEquivOfIsTrivial_symm_tmul, single_mem_cycles₁_iff, mapCycles₁_quotientGroupMk'_epi, mapCycles₁_comp_i_assoc, mem_cycles₁_iff, boundariesToCycles₁_apply, δ₁_apply, H1π_eq_iff, cyclesMap_comp_isoCycles₁_hom
|
cycles₁IsoOfIsTrivial 📖 | CompOp | 6 mathmath: cycles₁IsoOfIsTrivial_hom_apply, H1AddEquivOfIsTrivial_single, H1ToTensorOfIsTrivial_H1π_single, mkH1OfIsTrivial_apply, cycles₁IsoOfIsTrivial_inv_apply, H1AddEquivOfIsTrivial_symm_tmul
|
cycles₂ 📖 | CompOp | 41 mathmath: π_comp_H2Iso_hom_assoc, mapCycles₂_comp_assoc, boundaries₂_le_cycles₂, mem_cycles₂_iff, cyclesMap_comp_isoCycles₂_hom, toCycles_comp_isoCycles₂_hom_assoc, mapCycles₂_id_comp, mapCycles₂_comp_i, π_comp_H2Iso_hom, mapCycles₂_comp, coe_mapCycles₂, H2π_comp_map_assoc, mapCycles₂_comp_apply, H2π_eq_iff, isoCycles₂_hom_comp_i_apply, cyclesMap_comp_isoCycles₂_hom_assoc, mapCycles₂_id_comp_assoc, toCycles_comp_isoCycles₂_hom, cyclesMap_comp_isoCycles₂_hom_apply, toCycles_comp_isoCycles₂_hom_apply, mapCycles₂_hom, isoCycles₂_inv_comp_iCycles_apply, isoCycles₂_inv_comp_iCycles_assoc, cyclesMk₂_eq, H2π_comp_map, mem_cycles₂_of_mem_boundaries₂, instEpiModuleCatH2π, d₃₂_apply_mem_cycles₂, mapCycles₂_comp_i_assoc, mapCycles₂_id_comp_apply, H2π_comp_map_apply, π_comp_H2Iso_hom_apply, mapCycles₂_comp_i_apply, boundariesToCycles₂_apply, cyclesOfIsCycle₂_coe, isoCycles₂_hom_comp_i, isoCycles₂_inv_comp_iCycles, single_mem_cycles₂_iff, single_mem_cycles₂_iff_inv, isoCycles₂_hom_comp_i_assoc, H2π_eq_zero_iff
|
d₁₀ 📖 | CompOp | 21 mathmath: d₁₀_single_one, d₁₀ArrowIso_hom_left, d₁₀_comp_coinvariantsMk_apply, comp_d₁₀_eq, d₁₀ArrowIso_inv_right, d₁₀_comp_coinvariantsMk, d₂₁_comp_d₁₀_apply, range_d₁₀_eq_coinvariantsKer, shortComplexH0_f, eq_d₁₀_comp_inv, eq_d₁₀_comp_inv_assoc, d₂₁_comp_d₁₀, d₁₀_eq_zero_of_isTrivial, d₁₀_single_inv, d₁₀ArrowIso_hom_right, d₁₀_comp_coinvariantsMk_assoc, shortComplexH1_g, d₁₀ArrowIso_inv_left, eq_d₁₀_comp_inv_apply, d₂₁_comp_d₁₀_assoc, d₁₀_single
|
d₁₀ArrowIso 📖 | CompOp | 4 mathmath: d₁₀ArrowIso_hom_left, d₁₀ArrowIso_inv_right, d₁₀ArrowIso_hom_right, d₁₀ArrowIso_inv_left
|
d₂₁ 📖 | CompOp | 20 mathmath: shortComplexH1_f, comp_d₂₁_eq, d₃₂_comp_d₂₁_assoc, d₂₁_single_inv_mul_ρ_add_single, eq_d₂₁_comp_inv, d₂₁_single_inv_self_ρ_sub_self_inv, d₂₁_comp_d₁₀_apply, eq_d₂₁_comp_inv_assoc, d₂₁_comp_d₁₀, d₂₁_single_self_inv_ρ_sub_inv_self, d₂₁_apply_mem_cycles₁, shortComplexH2_g, d₂₁_single_one_fst, d₂₁_single_one_snd, d₃₂_comp_d₂₁, d₂₁_single, eq_d₂₁_comp_inv_apply, d₂₁_single_ρ_add_single_inv_mul, d₂₁_comp_d₁₀_assoc, d₃₂_comp_d₂₁_apply
|
d₃₂ 📖 | CompOp | 13 mathmath: d₃₂_single, eq_d₃₂_comp_inv, d₃₂_single_one_thd, d₃₂_comp_d₂₁_assoc, shortComplexH2_f, eq_d₃₂_comp_inv_apply, d₃₂_single_one_fst, eq_d₃₂_comp_inv_assoc, d₃₂_apply_mem_cycles₂, d₃₂_comp_d₂₁, d₃₂_single_one_snd, comp_d₃₂_eq, d₃₂_comp_d₂₁_apply
|
isoCycles₁ 📖 | CompOp | 16 mathmath: isoCycles₁_inv_comp_iCycles_apply, toCycles_comp_isoCycles₁_hom_apply, toCycles_comp_isoCycles₁_hom_assoc, π_comp_H1Iso_hom_apply, isoCycles₁_hom_comp_i_apply, cyclesMap_comp_isoCycles₁_hom_apply, isoCycles₁_inv_comp_iCycles_assoc, π_comp_H1Iso_hom_assoc, cyclesMk₁_eq, isoCycles₁_hom_comp_i_assoc, isoCycles₁_inv_comp_iCycles, cyclesMap_comp_isoCycles₁_hom_assoc, toCycles_comp_isoCycles₁_hom, π_comp_H1Iso_hom, isoCycles₁_hom_comp_i, cyclesMap_comp_isoCycles₁_hom
|
isoCycles₂ 📖 | CompOp | 16 mathmath: π_comp_H2Iso_hom_assoc, cyclesMap_comp_isoCycles₂_hom, toCycles_comp_isoCycles₂_hom_assoc, π_comp_H2Iso_hom, isoCycles₂_hom_comp_i_apply, cyclesMap_comp_isoCycles₂_hom_assoc, toCycles_comp_isoCycles₂_hom, cyclesMap_comp_isoCycles₂_hom_apply, toCycles_comp_isoCycles₂_hom_apply, isoCycles₂_inv_comp_iCycles_apply, isoCycles₂_inv_comp_iCycles_assoc, cyclesMk₂_eq, π_comp_H2Iso_hom_apply, isoCycles₂_hom_comp_i, isoCycles₂_inv_comp_iCycles, isoCycles₂_hom_comp_i_assoc
|
isoShortComplexH1 📖 | CompOp | 2 mathmath: isoShortComplexH1_hom, isoShortComplexH1_inv
|
isoShortComplexH2 📖 | CompOp | 2 mathmath: isoShortComplexH2_hom, isoShortComplexH2_inv
|
mkH1OfIsTrivial 📖 | CompOp | 2 mathmath: H1AddEquivOfIsTrivial_symm_apply, mkH1OfIsTrivial_apply
|
opcyclesIso₀ 📖 | CompOp | 6 mathmath: coinvariantsMk_comp_opcyclesIso₀_inv_assoc, pOpcycles_comp_opcyclesIso_hom_apply, coinvariantsMk_comp_opcyclesIso₀_inv_apply, pOpcycles_comp_opcyclesIso_hom, coinvariantsMk_comp_opcyclesIso₀_inv, pOpcycles_comp_opcyclesIso_hom_assoc
|
shortComplexH0 📖 | CompOp | 4 mathmath: shortComplexH0_f, shortComplexH0_exact, instEpiModuleCatGShortComplexH0, shortComplexH0_g
|
shortComplexH1 📖 | CompOp | 30 mathmath: shortComplexH1_f, mapShortComplexH1_zero, comap_coinvariantsKer_pOpcycles_range_subtype_pOpcycles_eq_top, π_comp_H1Iso_inv, isoCycles₁_inv_comp_iCycles_apply, mapShortComplexH1_τ₂, mapCycles₁_comp_i, toCycles_comp_isoCycles₁_hom_apply, mapCycles₁_comp_i_apply, isoShortComplexH1_hom, toCycles_comp_isoCycles₁_hom_assoc, mapShortComplexH1_id_comp, mapShortComplexH1_comp, π_comp_H1Iso_hom_apply, isoShortComplexH1_inv, isoCycles₁_hom_comp_i_apply, mapShortComplexH1_τ₁, isoCycles₁_inv_comp_iCycles_assoc, π_comp_H1Iso_hom_assoc, mapShortComplexH1_id, isoCycles₁_hom_comp_i_assoc, isoCycles₁_inv_comp_iCycles, toCycles_comp_isoCycles₁_hom, π_comp_H1Iso_hom, π_comp_H1Iso_inv_apply, isoCycles₁_hom_comp_i, mapShortComplexH1_τ₃, shortComplexH1_g, π_comp_H1Iso_inv_assoc, mapCycles₁_comp_i_assoc
|
shortComplexH2 📖 | CompOp | 29 mathmath: mapShortComplexH2_τ₁, π_comp_H2Iso_hom_assoc, mapShortComplexH2_id, mapShortComplexH2_zero, toCycles_comp_isoCycles₂_hom_assoc, π_comp_H2Iso_inv_assoc, shortComplexH2_f, mapCycles₂_comp_i, π_comp_H2Iso_hom, isoCycles₂_hom_comp_i_apply, mapShortComplexH2_comp, toCycles_comp_isoCycles₂_hom, mapShortComplexH2_τ₂, toCycles_comp_isoCycles₂_hom_apply, shortComplexH2_g, isoCycles₂_inv_comp_iCycles_apply, isoCycles₂_inv_comp_iCycles_assoc, isoShortComplexH2_hom, π_comp_H2Iso_inv, mapCycles₂_comp_i_assoc, π_comp_H2Iso_hom_apply, mapShortComplexH2_id_comp, isoShortComplexH2_inv, mapCycles₂_comp_i_apply, isoCycles₂_hom_comp_i, isoCycles₂_inv_comp_iCycles, mapShortComplexH2_τ₃, π_comp_H2Iso_inv_apply, isoCycles₂_hom_comp_i_assoc
|