Documentation Verification Report

Resolution

📁 Source: Mathlib/RepresentationTheory/Homological/Resolution.lean

Statistics

MetricCount
DefinitionsbarComplex, d, isoStandardComplex, barResolution, extIso, standardComplex, compForgetAugmentedIso, d, forget₂ToModuleCat, forget₂ToModuleCatHomotopyEquiv, xIso, Δ, ΔToSingle₀, standardResolution, extIso, classifyingSpaceUniversalCover, cechNerveTerminalFromIso, cechNerveTerminalFromIsoCompForget, compForgetAugmented, toModule, extraDegeneracyAugmentedCechNerve, extraDegeneracyCompForgetAugmented, extraDegeneracyCompForgetAugmentedToModule
23
Theoremsd_comp_diagonalSuccIsoFree_inv_eq, d_def, d_single, barResolution_complex, d_comp_Δ, d_eq, d_of, forget₂ToModuleCatHomotopyEquiv_f_0_eq, instQuasiIsoNatΔToSingle₀, quasiIso_forget₂_ΔToSingle₀, x_projective, ΔToSingle₀_comp_eq, classifyingSpaceUniversalCover_map, classifyingSpaceUniversalCover_obj
14
Total37

Rep

Definitions

NameCategoryTheorems
barComplex 📖CompOp
4 mathmath: barComplex.d_def, barResolution_complex, inhomogeneousCochains.d_eq, groupHomology.inhomogeneousChains.d_eq
barResolution 📖CompOp
1 mathmath: barResolution_complex
standardComplex 📖CompOp
7 mathmath: standardComplex.d_eq, standardComplex.ΔToSingle₀_comp_eq, standardComplex.quasiIso_forget₂_ΔToSingle₀, standardComplex.d_comp_Δ, standardComplex.instQuasiIsoNatΔToSingle₀, standardComplex.x_projective, barComplex.d_comp_diagonalSuccIsoFree_inv_eq
standardResolution 📖CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
barResolution_complex 📖mathematical—CategoryTheory.ProjectiveResolution.complex
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Abelian.hasZeroObject
Action.instAbelian
ModuleCat.abelian
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
trivial
Ring.toAddCommGroup
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
barResolution
barComplex
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Abelian.hasZeroObject

Rep.barComplex

Definitions

NameCategoryTheorems
d 📖CompOp
3 mathmath: d_def, d_comp_diagonalSuccIsoFree_inv_eq, d_single
isoStandardComplex 📖CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
d_comp_diagonalSuccIsoFree_inv_eq 📖mathematical—CategoryTheory.CategoryStruct.comp
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Category.toCategoryStruct
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Rep.free
Rep.diagonal
d
CategoryTheory.Iso.inv
Rep.diagonalSuccIsoFree
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
Action.instPreadditive
ModuleCat.instPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
Rep.standardComplex
HomologicalComplex.d
—Rep.free_ext
AddRightCancelSemigroup.toIsRightCancelAdd
d_single
Fin.sum_univ_succ
zero_add
pow_one
Finsupp.single_neg
Finset.sum_congr
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
Rep.diagonalSuccIsoFree_inv_hom_single_single
map_neg
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
Fin.partialProd_contractNth
one_smul
map_sum
RingHomCompTriple.ids
Rep.standardComplex.d_eq
Rep.standardComplex.d_of
pow_zero
Finsupp.instIsRightCancelAdd
Fin.partialProd_succ'
d_def 📖mathematical—HomologicalComplex.d
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
Rep.barComplex
d
—ChainComplex.of_d
d_single 📖mathematical—DFunLike.coe
Action.V
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Rep.free
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.Hom.hom
d
Finsupp.single
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finsupp.instZero
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Finsupp.instAdd
Finsupp.instAddZeroClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
Finset.sum
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.univ
Fin.fintype
Fin.contractNth
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
—RingHomCompTriple.ids
LinearMap.comp.congr_simp
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
Representation.finsupp_single
Representation.ofMulAction_single
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
Finset.sum_congr
mul_one
Finsupp.uncurry_single
Finsupp.linearCombination_single
one_mul
smul_add
one_smul

Rep.barResolution

Definitions

NameCategoryTheorems
extIso 📖CompOp—

Rep.standardComplex

Definitions

NameCategoryTheorems
compForgetAugmentedIso 📖CompOp—
d 📖CompOp
2 mathmath: d_eq, d_of
forget₂ToModuleCat 📖CompOp
2 mathmath: ΔToSingle₀_comp_eq, forget₂ToModuleCatHomotopyEquiv_f_0_eq
forget₂ToModuleCatHomotopyEquiv 📖CompOp
2 mathmath: ΔToSingle₀_comp_eq, forget₂ToModuleCatHomotopyEquiv_f_0_eq
xIso 📖CompOp—
Δ 📖CompOp
2 mathmath: d_comp_Δ, forget₂ToModuleCatHomotopyEquiv_f_0_eq
ΔToSingle₀ 📖CompOp
3 mathmath: ΔToSingle₀_comp_eq, quasiIso_forget₂_ΔToSingle₀, instQuasiIsoNatΔToSingle₀

Theorems

NameKindAssumesProvesValidatesDepends On
d_comp_Δ 📖mathematical—CategoryTheory.CategoryStruct.comp
Rep
CommRing.toRing
CategoryTheory.Category.toCategoryStruct
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
Action.instPreadditive
ModuleCat.instPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
Rep.standardComplex
Rep.trivial
Ring.toAddCommGroup
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
HomologicalComplex.d
Δ
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
Action.instZeroHom
—Action.hom_ext
AddRightCancelSemigroup.toIsRightCancelAdd
ModuleCat.hom_ext
LinearMap.ext
ModuleCat.instHasZeroObject
forget₂ToModuleCatHomotopyEquiv_f_0_eq
HomologicalComplex.Hom.comm'
CategoryTheory.Limits.comp_zero
LinearMap.ext_iff
ModuleCat.hom_ext_iff
d_eq 📖mathematical—Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
HomologicalComplex.X
Rep
Action.instCategory
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
Action.instPreadditive
ModuleCat.instPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
Rep.standardComplex
HomologicalComplex.d
ModuleCat.ofHom
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finsupp.instAddCommGroup
Ring.toAddCommGroup
Finsupp.module
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toModule
d
—ModuleCat.hom_ext
AddRightCancelSemigroup.toIsRightCancelAdd
Finsupp.lhom_ext'
LinearMap.ext_ring
RingHomCompTriple.ids
ModuleCat.Algebra.instSMulCommClassCarrier
LinearMap.comp.congr_simp
Fin.strictMono_succAbove
AlgebraicTopology.alternatingFaceMapComplex_obj_d
Finset.sum_congr
Int.cast_smul_eq_zsmul
Int.cast_pow
Int.cast_neg
Int.cast_one
Action.sum_hom
ModuleCat.hom_sum
LinearMap.coe_sum
Finset.sum_apply
Finsupp.mapDomain_single
Finsupp.smul_single
mul_one
d_of
d_of 📖mathematical—DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
LinearMap.instFunLike
d
Finsupp.single
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Finset.sum
Finset.univ
Fin.fintype
Fin.succAbove
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
—Finsupp.sum_single_index
zero_smul
one_smul
forget₂ToModuleCatHomotopyEquiv_f_0_eq 📖mathematical—HomologicalComplex.Hom.f
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
forget₂ToModuleCat
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
ChainComplex.single₀
ModuleCat.instHasZeroObject
Rep
Action.instCategory
CategoryTheory.forget₂
Action.HomSubtype
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.V
Action.instFunLikeHomSubtypeV
Action.instConcreteCategoryHomSubtypeV
Action.hasForgetToV
Rep.trivial
Ring.toAddCommGroup
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
HomotopyEquiv.hom
forget₂ToModuleCatHomotopyEquiv
CategoryTheory.Functor.map
Rep.ofMulAction
Pi.mulAction
Monoid.toMulAction
Δ
—ModuleCat.hom_ext
AddRightCancelSemigroup.toIsRightCancelAdd
ModuleCat.instHasZeroObject
Finsupp.lhom_ext
HomologicalComplex.eqToHom_f
CompTriple.comp_eq
CompTriple.instComp_id
CompTriple.instIsIdId
CategoryTheory.Limits.Types.instSubsingletonTerminalType
SimplexCategory.const_eq_id
Unique.eq_default
Finsupp.mapDomain_single
Finsupp.single_apply
Finsupp.linearCombination_single
mul_one
instQuasiIsoNatΔToSingle₀ 📖mathematical—QuasiIso
Rep
CommRing.toRing
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
Action.instPreadditive
ModuleCat.instPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
Rep.standardComplex
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
ChainComplex.single₀
CategoryTheory.Abelian.hasZeroObject
Action.instAbelian
ModuleCat.abelian
Rep.trivial
Ring.toAddCommGroup
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
ΔToSingle₀
CategoryTheory.CategoryWithHomology.hasHomology
Action.instHasZeroMorphisms
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
HomologicalComplex.instHasHomologyObjSingle
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.instHasHomologyObjSingle
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
Action.forget₂_additive
HomologicalComplex.quasiIso_map_iff_of_preservesHomology
CategoryTheory.Functor.preservesHomologyOfExact
CategoryTheory.Limits.PreservesLimits.preservesFiniteLimits
Rep.instPreservesLimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV
CategoryTheory.Limits.PreservesColimits.preservesFiniteColimits
Rep.instPreservesColimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV
CategoryTheory.reflectsIsomorphisms_of_reflectsMonomorphisms_of_reflectsEpimorphisms
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
CategoryTheory.Abelian.toIsNormalMonoCategory
CategoryTheory.Functor.reflectsMonomorphisms_of_faithful
CategoryTheory.forget₂_faithful
CategoryTheory.Functor.reflectsEpimorphisms_of_faithful
quasiIso_forget₂_ΔToSingle₀
quasiIso_forget₂_ΔToSingle₀ 📖mathematical—QuasiIso
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
HomologicalComplex
Rep
Action.instCategory
Action.instPreadditive
HomologicalComplex.instCategory
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.forget₂
Action.HomSubtype
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.V
Action.instFunLikeHomSubtypeV
Action.instConcreteCategoryHomSubtypeV
Action.hasForgetToV
Action.forget₂_preservesZeroMorphisms
Rep.standardComplex
ChainComplex
ChainComplex.single₀
CategoryTheory.Abelian.hasZeroObject
Action.instAbelian
ModuleCat.abelian
Rep.trivial
Ring.toAddCommGroup
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
CategoryTheory.Functor.map
ΔToSingle₀
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
—AddRightCancelSemigroup.toIsRightCancelAdd
ModuleCat.instHasZeroObject
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.instHasHomologyObjSingle
HomotopyEquiv.quasiIso_hom
quasiIso_of_comp_right
Action.forget₂_preservesZeroMorphisms
CategoryTheory.Abelian.hasZeroObject
quasiIso_of_isIso
CategoryTheory.NatIso.hom_app_isIso
ΔToSingle₀_comp_eq
x_projective 📖mathematical—CategoryTheory.Projective
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
Action.instPreadditive
ModuleCat.instPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
Rep.standardComplex
—Rep.diagonal_succ_projective
ΔToSingle₀_comp_eq 📖mathematical—CategoryTheory.CategoryStruct.comp
HomologicalComplex
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
CategoryTheory.Functor.obj
Rep
Action.instCategory
Action.instPreadditive
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.forget₂
Action.HomSubtype
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.V
Action.instFunLikeHomSubtypeV
Action.instConcreteCategoryHomSubtypeV
Action.hasForgetToV
Action.forget₂_preservesZeroMorphisms
Rep.standardComplex
ChainComplex
ChainComplex.single₀
CategoryTheory.Abelian.hasZeroObject
Action.instAbelian
ModuleCat.abelian
Rep.trivial
Ring.toAddCommGroup
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
CategoryTheory.Functor.comp
HomologicalComplex.single
ModuleCat.instHasZeroObject
CategoryTheory.Functor.map
ΔToSingle₀
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
HomologicalComplex.singleMapHomologicalComplex
HomotopyEquiv.hom
forget₂ToModuleCat
forget₂ToModuleCatHomotopyEquiv
—AddRightCancelSemigroup.toIsRightCancelAdd
Action.forget₂_preservesZeroMorphisms
ModuleCat.instHasZeroObject
CategoryTheory.Abelian.hasZeroObject
HomologicalComplex.to_single_hom_ext
HomologicalComplex.singleMapHomologicalComplex_hom_app_self
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
forget₂ToModuleCatHomotopyEquiv_f_0_eq

Rep.standardResolution

Definitions

NameCategoryTheorems
extIso 📖CompOp—

(root)

Definitions

NameCategoryTheorems
classifyingSpaceUniversalCover 📖CompOp
2 mathmath: classifyingSpaceUniversalCover_map, classifyingSpaceUniversalCover_obj

Theorems

NameKindAssumesProvesValidatesDepends On
classifyingSpaceUniversalCover_map 📖mathematical—CategoryTheory.Functor.map
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Action
CategoryTheory.types
Action.instCategory
classifyingSpaceUniversalCover
Action.ofMulAction
Pi.mulAction
SimplexCategory.len
Opposite.unop
Monoid.toMulAction
DFunLike.coe
OrderHom
PartialOrder.toPreorder
Fin.instPartialOrder
OrderHom.instFunLike
SimplexCategory.Hom.toOrderHom
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
——
classifyingSpaceUniversalCover_obj 📖mathematical—CategoryTheory.Functor.obj
Opposite
SimplexCategory
CategoryTheory.Category.opposite
SimplexCategory.smallCategory
Action
CategoryTheory.types
Action.instCategory
classifyingSpaceUniversalCover
Action.ofMulAction
Pi.mulAction
SimplexCategory.len
Opposite.unop
Monoid.toMulAction
——

classifyingSpaceUniversalCover

Definitions

NameCategoryTheorems
cechNerveTerminalFromIso 📖CompOp—
cechNerveTerminalFromIsoCompForget 📖CompOp—
compForgetAugmented 📖CompOp—
extraDegeneracyAugmentedCechNerve 📖CompOp—
extraDegeneracyCompForgetAugmented 📖CompOp—
extraDegeneracyCompForgetAugmentedToModule 📖CompOp—

classifyingSpaceUniversalCover.compForgetAugmented

Definitions

NameCategoryTheorems
toModule 📖CompOp—

---

← Back to Index