Documentation Verification Report

Invariants

๐Ÿ“ Source: Mathlib/RepresentationTheory/Invariants.lean

Statistics

MetricCount
Definitionsaverage, invariantsAdjunction, invariantsFunctor, quotientToInvariants, quotientToInvariantsFunctor, toInvariants, averageMap, invariants, invariantsEquivFDRepHom, invariantsEquivRepHom, quotientToInvariants, toInvariants
12
Theoremsmul_average_left, mul_average_right, instAdditiveModuleCatInvariantsFunctor, instIsRightAdjointModuleCatInvariantsFunctor, instLinearModuleCatInvariantsFunctor, instPreservesZeroMorphismsModuleCatInvariantsFunctor, invariantsAdjunction_counit_app_hom, invariantsAdjunction_homEquiv_apply_hom, invariantsAdjunction_homEquiv_symm_apply_hom, invariantsAdjunction_unit_app, invariantsFunctor_map_hom, invariantsFunctor_obj_carrier, quotientToInvariantsFunctor_map_hom, quotientToInvariantsFunctor_obj_V, averageMap_id, averageMap_invariant, instIsTrivialSubtypeMemSubgroupSubmoduleInvariantsCompLinearMapIdSubtypeToInvariants, invariants_eq_inter, invariants_eq_top, isProj_averageMap, le_comap_invariants, invariantsEquivRepHom_apply_hom, invariantsEquivRepHom_symm_apply_coe, mem_invariants_iff_comm, mem_invariants, mem_invariants_iff_of_forall_mem_zpowers
26
Total38

GroupAlgebra

Definitions

NameCategoryTheorems
average ๐Ÿ“–CompOp
2 mathmath: mul_average_left, mul_average_right

Theorems

NameKindAssumesProvesValidatesDepends On
mul_average_left ๐Ÿ“–mathematicalโ€”MonoidAlgebra
CommSemiring.toSemiring
MonoidAlgebra.instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Finsupp.single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
average
โ€”Finset.sum_congr
Algebra.mul_smul_comm
Finset.mul_sum
MonoidAlgebra.single_mul_single
mul_one
Function.Bijective.sum_comp
Group.mulLeft_bijective
mul_average_right ๐Ÿ“–mathematicalโ€”MonoidAlgebra
CommSemiring.toSemiring
MonoidAlgebra.instMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
average
Finsupp.single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
โ€”Finset.sum_congr
Algebra.smul_mul_assoc
Finset.sum_mul
MonoidAlgebra.single_mul_single
mul_one
Function.Bijective.sum_comp
Group.mulRight_bijective

Rep

Definitions

NameCategoryTheorems
invariantsAdjunction ๐Ÿ“–CompOp
4 mathmath: invariantsAdjunction_homEquiv_symm_apply_hom, invariantsAdjunction_unit_app, invariantsAdjunction_counit_app_hom, invariantsAdjunction_homEquiv_apply_hom
invariantsFunctor ๐Ÿ“–CompOp
13 mathmath: invariantsAdjunction_homEquiv_symm_apply_hom, invariantsFunctor_obj_carrier, instIsRightAdjointModuleCatInvariantsFunctor, invariantsAdjunction_unit_app, instPreservesZeroMorphismsModuleCatInvariantsFunctor, quotientToInvariantsFunctor_map_hom, groupCohomology.map_id_comp_H0Iso_hom, invariantsAdjunction_counit_app_hom, instLinearModuleCatInvariantsFunctor, invariantsAdjunction_homEquiv_apply_hom, invariantsFunctor_map_hom, instAdditiveModuleCatInvariantsFunctor, groupCohomology.map_id_comp_H0Iso_hom_assoc
quotientToInvariants ๐Ÿ“–CompOp
3 mathmath: quotientToInvariantsFunctor_map_hom, groupCohomology.H1InfRes_Xโ‚, groupCohomology.H1InfRes_f
quotientToInvariantsFunctor ๐Ÿ“–CompOp
3 mathmath: groupCohomology.infNatTrans_app, quotientToInvariantsFunctor_map_hom, quotientToInvariantsFunctor_obj_V
toInvariants ๐Ÿ“–CompOpโ€”

Theorems

NameKindAssumesProvesValidatesDepends On
instAdditiveModuleCatInvariantsFunctor ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.Additive
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
ModuleCat
Action.instCategory
ModuleCat.moduleCategory
Action.instPreadditive
ModuleCat.instPreadditive
invariantsFunctor
โ€”โ€”
instIsRightAdjointModuleCatInvariantsFunctor ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.IsRightAdjoint
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
Rep
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
invariantsFunctor
โ€”CategoryTheory.Adjunction.isRightAdjoint
instLinearModuleCatInvariantsFunctor ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.Linear
CommSemiring.toSemiring
CommRing.toCommSemiring
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
ModuleCat
Action.instCategory
ModuleCat.moduleCategory
Action.instPreadditive
ModuleCat.instPreadditive
instLinearRep
ModuleCat.instLinear
invariantsFunctor
โ€”โ€”
instPreservesZeroMorphismsModuleCatInvariantsFunctor ๐Ÿ“–mathematicalโ€”CategoryTheory.Functor.PreservesZeroMorphisms
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
Action.instHasZeroMorphisms
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ModuleCat.instPreadditive
invariantsFunctor
โ€”โ€”
invariantsAdjunction_counit_app_hom ๐Ÿ“–mathematicalโ€”Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Functor.obj
Rep
Action.instCategory
CategoryTheory.Functor.comp
invariantsFunctor
trivialFunctor
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Adjunction.counit
invariantsAdjunction
ModuleCat.ofHom
ModuleCat.carrier
ModuleCat.isAddCommGroup
ModuleCat.isModule
Submodule.subtype
Action.V
Ring.toSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
Representation.invariants
CommRing.toCommSemiring
ฯ
โ€”โ€”
invariantsAdjunction_homEquiv_apply_hom ๐Ÿ“–mathematicalโ€”ModuleCat.Hom.hom
CommRing.toRing
CategoryTheory.Functor.obj
Rep
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
invariantsFunctor
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
trivialFunctor
EquivLike.toFunLike
Equiv.instEquivLike
CategoryTheory.Adjunction.homEquiv
invariantsAdjunction
LinearMap.codRestrict
ModuleCat.carrier
Action.V
Ring.toSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
RingHom.id
Semiring.toNonAssocSemiring
Representation.invariants
CommRing.toCommSemiring
instAddCommGroupCarrierVModuleCat
ฯ
Action.Hom.hom
โ€”โ€”
invariantsAdjunction_homEquiv_symm_apply_hom ๐Ÿ“–mathematicalโ€”ModuleCat.Hom.hom
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Functor.obj
Rep
Action.instCategory
trivialFunctor
Action.Hom.hom
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
invariantsFunctor
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
CategoryTheory.Adjunction.homEquiv
invariantsAdjunction
LinearMap.comp
ModuleCat.carrier
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
ModuleCat.isModule
SetLike.instMembership
Submodule.setLike
Representation.invariants
CommRing.toCommSemiring
ฯ
ModuleCat.isAddCommGroup
Submodule.addCommMonoid
Submodule.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
Submodule.subtype
โ€”โ€”
invariantsAdjunction_unit_app ๐Ÿ“–mathematicalโ€”CategoryTheory.NatTrans.app
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
Rep
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
trivialFunctor
invariantsFunctor
CategoryTheory.Adjunction.unit
invariantsAdjunction
ModuleCat.ofHom
ModuleCat.carrier
Action.V
CategoryTheory.Functor.obj
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
ModuleCat.isModule
SetLike.instMembership
Submodule.setLike
Representation.invariants
ฯ
ModuleCat.isAddCommGroup
Submodule.addCommGroup
Submodule.module
LinearMap.codRestrict
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.id
โ€”โ€”
invariantsFunctor_map_hom ๐Ÿ“–mathematicalโ€”ModuleCat.Hom.hom
CommRing.toRing
ModuleCat.of
ModuleCat.carrier
Action.V
ModuleCat
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
ModuleCat.isModule
SetLike.instMembership
Submodule.setLike
Representation.invariants
ฯ
Submodule.addCommGroup
ModuleCat.isAddCommGroup
Submodule.module
CategoryTheory.Functor.map
Rep
Action.instCategory
invariantsFunctor
LinearMap.codRestrict
Ring.toSemiring
Submodule.addCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.comp
Action.Hom.hom
Submodule.subtype
โ€”โ€”
invariantsFunctor_obj_carrier ๐Ÿ“–mathematicalโ€”ModuleCat.carrier
CommRing.toRing
CategoryTheory.Functor.obj
Rep
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
invariantsFunctor
Action.V
โ€”โ€”
quotientToInvariantsFunctor_map_hom ๐Ÿ“–mathematicalโ€”Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
QuotientGroup.Quotient.group
quotientToInvariants
CategoryTheory.Functor.map
Rep
Action.instCategory
quotientToInvariantsFunctor
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
invariantsFunctor
CategoryTheory.Functor.obj
Action
Action.res
Subgroup.subtype
โ€”โ€”
quotientToInvariantsFunctor_obj_V ๐Ÿ“–mathematicalโ€”Action.V
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
QuotientGroup.Quotient.group
CategoryTheory.Functor.obj
Rep
Action.instCategory
quotientToInvariantsFunctor
ModuleCat.of
ModuleCat.carrier
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
ModuleCat.isModule
SetLike.instMembership
Submodule.setLike
Representation.invariants
Subgroup.instSetLike
Subgroup.toGroup
MonoidHom.comp
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
ฯ
Subgroup.subtype
Submodule.addCommGroup
ModuleCat.isAddCommGroup
Submodule.module
โ€”โ€”

Representation

Definitions

NameCategoryTheorems
averageMap ๐Ÿ“–CompOp
3 mathmath: isProj_averageMap, averageMap_invariant, averageMap_id
invariants ๐Ÿ“–CompOp
45 mathmath: Rep.invariantsAdjunction_homEquiv_symm_apply_hom, groupCohomology.cocyclesIsoโ‚€_hom_comp_f, groupCohomology.ฯ€_comp_H0Iso_hom, groupCohomology.H0IsoOfIsTrivial_hom, groupCohomology.map_H0Iso_hom_f_apply, groupCohomology.H0IsoOfIsTrivial_inv_apply, instIsTrivialSubtypeMemSubgroupSubmoduleInvariantsCompLinearMapIdSubtypeToInvariants, groupCohomology.cocyclesIsoโ‚€_inv_comp_iCocycles, groupCohomology.shortComplexH0_f, isProj_averageMap, groupCohomology.infNatTrans_app, Rep.invariantsAdjunction_unit_app, groupCohomology.subtype_comp_dโ‚€โ‚_apply, mem_invariants_iff_of_forall_mem_zpowers, groupCohomology.map_H0Iso_hom_f, mem_invariants, FDRep.average_char_eq_finrank_invariants, groupCohomology.ฯ€_comp_H0Iso_hom_apply, groupCohomology.cocyclesIsoโ‚€_inv_comp_iCocycles_assoc, groupCohomology.ฯ€_comp_H0Iso_hom_assoc, groupCohomology.dโ‚€โ‚_ker_eq_invariants, groupCohomology.ฯ€_comp_H0IsoOfIsTrivial_hom_apply, groupCohomology.cocyclesMap_cocyclesIsoโ‚€_hom_f_assoc, averageMap_invariant, groupCohomology.map_id_comp_H0Iso_hom_apply, groupCohomology.subtype_comp_dโ‚€โ‚_assoc, groupCohomology.map_id_comp_H0Iso_hom, linHom.invariantsEquivRepHom_symm_apply_coe, groupCohomology.cocyclesIsoโ‚€_hom_comp_f_assoc, Rep.invariantsAdjunction_counit_app_hom, Rep.quotientToInvariantsFunctor_obj_V, groupCohomology.cocyclesMap_cocyclesIsoโ‚€_hom_f, le_comap_invariants, invariants_eq_inter, Rep.invariantsAdjunction_homEquiv_apply_hom, Rep.invariantsFunctor_map_hom, groupCohomology.cocyclesIsoโ‚€_hom_comp_f_apply, groupCohomology.subtype_comp_dโ‚€โ‚, groupCohomology.cocyclesIsoโ‚€_inv_comp_iCocycles_apply, groupCohomology.cocyclesMkโ‚€_eq, groupCohomology.map_H0Iso_hom_f_assoc, linHom.invariantsEquivRepHom_apply_hom, groupCohomology.H1InfRes_f, invariants_eq_top, groupCohomology.map_id_comp_H0Iso_hom_assoc
quotientToInvariants ๐Ÿ“–CompOpโ€”
toInvariants ๐Ÿ“–CompOp
1 mathmath: instIsTrivialSubtypeMemSubgroupSubmoduleInvariantsCompLinearMapIdSubtypeToInvariants

Theorems

NameKindAssumesProvesValidatesDepends On
averageMap_id ๐Ÿ“–mathematicalSubmodule
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
invariants
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
averageMap
โ€”smulCommClass_self
Finset.sum_congr
map_smul
SemilinearMapClass.toMulActionSemiHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
IsScalarTower.left
asAlgebraHom_single
one_smul
LinearMap.coe_sum
Finset.sum_apply
mem_invariants
Finset.sum_const
Nat.cast_smul_eq_nsmul
smul_smul
invOf_mul_self'
averageMap_invariant ๐Ÿ“–mathematicalโ€”Submodule
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
invariants
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
averageMap
โ€”averageMap.eq_1
smulCommClass_self
IsScalarTower.left
asAlgebraHom_single_one
Module.End.mul_apply
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
GroupAlgebra.mul_average_left
instIsTrivialSubtypeMemSubgroupSubmoduleInvariantsCompLinearMapIdSubtypeToInvariants ๐Ÿ“–mathematicalโ€”IsTrivial
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Submodule
CommSemiring.toSemiring
Submodule.setLike
invariants
Subgroup.toGroup
MonoidHom.comp
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
Subgroup.subtype
Submodule.addCommMonoid
Submodule.module
toInvariants
โ€”LinearMap.ext
invariants_eq_inter ๐Ÿ“–mathematicalโ€”AddSubsemigroup.carrier
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddSubmonoid.toAddSubsemigroup
Submodule.toAddSubmonoid
CommSemiring.toSemiring
invariants
Set.iInter
Function.fixedPoints
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
Representation
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
โ€”Set.ext
invariants_eq_top ๐Ÿ“–mathematicalโ€”invariants
Top.top
Submodule
CommSemiring.toSemiring
Submodule.instTop
โ€”eq_top_iff
isTrivial_apply
isProj_averageMap ๐Ÿ“–mathematicalโ€”LinearMap.IsProj
CommSemiring.toSemiring
invariants
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
averageMap
โ€”averageMap_invariant
averageMap_id
le_comap_invariants ๐Ÿ“–mathematicalโ€”Submodule
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
invariants
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
MonoidHom.comp
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
Subgroup.subtype
Submodule.comap
DFunLike.coe
Representation
MonoidHom.instFunLike
โ€”Subgroup.Normal.conj_mem'
map_mul
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
self_inv_apply
mem_invariants ๐Ÿ“–mathematicalโ€”Submodule
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
invariants
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
Representation
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
โ€”โ€”
mem_invariants_iff_of_forall_mem_zpowers ๐Ÿ“–mathematicalSubgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.zpowers
Submodule
CommSemiring.toSemiring
Submodule.setLike
invariants
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
Representation
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
โ€”Int.induction_on
zpow_zero
map_one
MonoidHomClass.toOneHomClass
MonoidHom.instMonoidHomClass
zpow_add_one
zpow_natCast
map_mul
MonoidHomClass.toMulHomClass
map_pow
neg_sub_comm
zpow_sub
zpow_neg
zpow_one
inv_self_apply

Representation.linHom

Definitions

NameCategoryTheorems
invariantsEquivFDRepHom ๐Ÿ“–CompOpโ€”
invariantsEquivRepHom ๐Ÿ“–CompOp
2 mathmath: invariantsEquivRepHom_symm_apply_coe, invariantsEquivRepHom_apply_hom

Theorems

NameKindAssumesProvesValidatesDepends On
invariantsEquivRepHom_apply_hom ๐Ÿ“–mathematicalโ€”Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearMap
ModuleCat.carrier
Action.V
AddCommGroup.toAddCommMonoid
Rep.instAddCommGroupCarrierVModuleCat
ModuleCat.isModule
Submodule
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
SetLike.instMembership
Submodule.setLike
Representation.invariants
Representation.linHom
Rep.ฯ
Quiver.Hom
Rep
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Action.instCategory
Submodule.addCommMonoid
CategoryTheory.Preadditive.homGroup
Action.instPreadditive
ModuleCat.instPreadditive
Submodule.module
CategoryTheory.Linear.homModule
instLinearRep
EquivLike.toFunLike
LinearEquiv.instEquivLike
invariantsEquivRepHom
ModuleCat.ofHom
ModuleCat.isAddCommGroup
โ€”RingHomInvPair.ids
smulCommClass_self
invariantsEquivRepHom_symm_apply_coe ๐Ÿ“–mathematicalโ€”LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AddCommGroup.toAddCommMonoid
Rep.instAddCommGroupCarrierVModuleCat
ModuleCat.isModule
Submodule
LinearMap.addCommMonoid
LinearMap.module
SetLike.instMembership
Submodule.setLike
Representation.invariants
Representation.linHom
Rep.ฯ
DFunLike.coe
LinearEquiv
RingHomInvPair.ids
Quiver.Hom
Rep
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Action.instCategory
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
CategoryTheory.Preadditive.homGroup
Action.instPreadditive
ModuleCat.instPreadditive
Submodule.addCommMonoid
CategoryTheory.Linear.homModule
instLinearRep
Submodule.module
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
invariantsEquivRepHom
ModuleCat.Hom.hom
Action.Hom.hom
โ€”RingHomInvPair.ids
smulCommClass_self
mem_invariants_iff_comm ๐Ÿ“–mathematicalโ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AddCommGroup.toAddCommMonoid
Rep.instAddCommGroupCarrierVModuleCat
ModuleCat.isModule
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
Representation
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
Representation.linHom
Rep.ฯ
LinearMap.comp
RingHomCompTriple.ids
โ€”smulCommClass_self
RingHomCompTriple.ids
LinearMap.comp_assoc
ModuleCat.hom_ofHom
ModuleCat.hom_comp
Rep.ofHom_ฯ
Action.ฯAut_apply_inv
Action.ฯAut_apply_hom
ModuleCat.hom_ext_iff
CategoryTheory.Iso.inv_comp_eq
comm
IsEquiv.toSymm
eq_isEquiv

---

โ† Back to Index