| Name | Category | Theorems |
IsTrivial đ | MathDef | 3 mathmath: instIsTrivialObjModuleCatTrivialFunctor, instIsTrivialTrivial, instIsTrivialOfOfIsTrivial
|
applyAsHom đ | CompOp | 18 mathmath: FiniteCyclicGroup.chainComplexFunctor_obj, FiniteCyclicGroup.groupHomologyÏOdd_eq_zero_iff, FiniteCyclicGroup.groupCohomologyÏOdd_eq_iff, applyAsHom_comm_apply, FiniteCyclicGroup.groupCohomologyÏEven_eq_zero_iff, FiniteCyclicGroup.groupHomologyÏEven_eq_iff, applyAsHom_comm_assoc, FiniteCyclicGroup.chainComplexFunctor_map_f, FiniteCyclicGroup.groupHomologyÏEven_eq_zero_iff, applyAsHom_comm, FiniteCyclicGroup.groupCohomologyÏEven_eq_iff, FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_norm, FiniteCyclicGroup.groupHomologyÏOdd_eq_iff, FiniteCyclicGroup.leftRegular.range_norm_eq_ker_applyAsHom_sub, applyAsHom_hom, FiniteCyclicGroup.resolution.Ï_f, FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_linearCombination, FiniteCyclicGroup.groupCohomologyÏOdd_eq_zero_iff
|
counitIso đ | CompOp | â |
counitIsoAddEquiv đ | CompOp | â |
diagonal đ | CompOp | 13 mathmath: diagonalSuccIsoFree_inv_hom_single, diagonalSuccIsoTensorTrivial_inv_hom_single_left, diagonalHomEquiv_symm_apply, diagonalSuccIsoTensorTrivial_inv_hom_single_right, diagonalSuccIsoTensorTrivial_inv_hom_single_single, diagonalSuccIsoFree_inv_hom_single_single, diagonal_succ_projective, diagonalOneIsoLeftRegular_inv_hom, diagonalSuccIsoTensorTrivial_hom_hom_single, diagonalOneIsoLeftRegular_hom_hom, diagonalHomEquiv_apply, diagonalSuccIsoFree_hom_hom_single, barComplex.d_comp_diagonalSuccIsoFree_inv_eq
|
diagonalHomEquiv đ | CompOp | 2 mathmath: diagonalHomEquiv_symm_apply, diagonalHomEquiv_apply
|
diagonalOneIsoLeftRegular đ | CompOp | 2 mathmath: diagonalOneIsoLeftRegular_inv_hom, diagonalOneIsoLeftRegular_hom_hom
|
diagonalSuccIsoFree đ | CompOp | 4 mathmath: diagonalSuccIsoFree_inv_hom_single, diagonalSuccIsoFree_inv_hom_single_single, diagonalSuccIsoFree_hom_hom_single, barComplex.d_comp_diagonalSuccIsoFree_inv_eq
|
diagonalSuccIsoTensorTrivial đ | CompOp | 4 mathmath: diagonalSuccIsoTensorTrivial_inv_hom_single_left, diagonalSuccIsoTensorTrivial_inv_hom_single_right, diagonalSuccIsoTensorTrivial_inv_hom_single_single, diagonalSuccIsoTensorTrivial_hom_hom_single
|
equivalenceModuleMonoidAlgebra đ | CompOp | â |
finsupp đ | CompOp | 4 mathmath: finsuppTensorRight_hom_hom, finsuppTensorRight_inv_hom, finsuppTensorLeft_inv_hom, finsuppTensorLeft_hom_hom
|
finsuppTensorLeft đ | CompOp | 2 mathmath: finsuppTensorLeft_inv_hom, finsuppTensorLeft_hom_hom
|
finsuppTensorRight đ | CompOp | 2 mathmath: finsuppTensorRight_hom_hom, finsuppTensorRight_inv_hom
|
free đ | CompOp | 19 mathmath: diagonalSuccIsoFree_inv_hom_single, coinvariantsTensorFreeLEquiv_symm_apply, free_projective, diagonalSuccIsoFree_inv_hom_single_single, coinvariantsTensorFreeLEquiv_apply, freeLiftLEquiv_apply, inhomogeneousCochains.d_eq, leftRegularTensorTrivialIsoFree_inv_hom, freeLift_hom, freeLift_hom_single_single, leftRegularTensorTrivialIsoFree_hom_hom_single_tmul_single, freeLiftLEquiv_symm_apply, groupHomology.inhomogeneousChains.d_eq, diagonalSuccIsoFree_hom_hom_single, free_ext_iff, barComplex.d_comp_diagonalSuccIsoFree_inv_eq, leftRegularTensorTrivialIsoFree_hom_hom, barComplex.d_single, leftRegularTensorTrivialIsoFree_inv_hom_single_single
|
freeLift đ | CompOp | 3 mathmath: freeLift_hom, freeLift_hom_single_single, freeLiftLEquiv_symm_apply
|
freeLiftLEquiv đ | CompOp | 3 mathmath: freeLiftLEquiv_apply, inhomogeneousCochains.d_eq, freeLiftLEquiv_symm_apply
|
homEquiv đ | CompOp | 3 mathmath: homEquiv_apply_hom, homEquiv_def, homEquiv_symm_apply_hom
|
ihom đ | CompOp | 9 mathmath: homEquiv_apply_hom, ihom_obj_Ï_apply, ihom_obj_V_isAddCommGroup, ihom_map_hom, homEquiv_symm_apply_hom, ihom_obj_V_isModule, ihom_obj_Ï, ihom_obj_Ï_def, ihom_obj_V_carrier
|
instAddCommGroupCarrierVModuleCat đ | CompOp | 422 mathmath: resCoindHomEquiv_symm_apply_hom, resCoindHomEquiv_apply_hom, groupCohomology.instEpiModuleCatH2Ï, groupHomology.Ï_comp_H2Iso_hom_assoc, invariantsAdjunction_homEquiv_symm_apply_hom, groupHomology.mapCyclesâ_comp_assoc, groupCohomology.toCocycles_comp_isoCocyclesâ_hom, MonoidalClosed.linearHomEquiv_symm_hom, groupCohomology.isoCocyclesâ_hom_comp_i_apply, groupCohomology.mem_cocyclesâ_def, groupCohomology.dââ_hom_apply, groupHomology.dââ_single_one, groupHomology.boundariesâ_le_cyclesâ, groupCohomology.dââ_comp_dââ, groupCohomology.toCocycles_comp_isoCocyclesâ_hom_apply, groupHomology.chainsMap_f_3_comp_chainsIsoâ_apply, groupCohomology.cocyclesIsoâ_hom_comp_f, resCoindAdjunction_counit_app_hom_hom, groupHomology.dââ_single, groupCohomology.eq_dââ_comp_inv, groupCohomology.H1Ï_comp_map_assoc, groupHomology.mapCyclesâ_comp_apply, groupHomology.cyclesIsoâ_inv_comp_iCycles_apply, leftRegularHom_hom, groupCohomology.Ï_comp_H0Iso_hom, groupCohomology.Ï_comp_H1Iso_hom_assoc, groupCohomology.eq_dââ_comp_inv, indToCoindAux_self, groupCohomology.mapCocyclesâ_comp_i, groupHomology.eq_dââ_comp_inv, coe_res_obj_Ï, diagonalHomEquiv_symm_apply, groupCohomology.H0IsoOfIsTrivial_hom, groupCohomology.coe_mapCocyclesâ, groupHomology.mem_cyclesâ_iff, groupHomology.cyclesMap_comp_isoCyclesâ_hom, groupCohomology.dââ_hom_apply, groupHomology.comp_dââ_eq, groupCohomology.coboundariesToCocyclesâ_apply, groupHomology.mapCyclesâ_comp_assoc, groupCohomology.cochainsMap_f_3_comp_cochainsIsoâ_assoc, groupHomology.toCycles_comp_isoCyclesâ_hom_assoc, groupCohomology.cochainsMap_f_2_comp_cochainsIsoâ, groupCohomology.comp_dââ_eq, groupCohomology.mem_cocyclesâ_of_addMonoidHom, groupCohomology.cocyclesâ.dââ_apply, groupCohomology.dââ_hom_apply, linearization_single, groupHomology.dââ_single_one_thd, groupHomology.isoCyclesâ_inv_comp_iCycles_apply, groupCohomology.dArrowIsoââ_inv_right, groupCohomology.map_H0Iso_hom_f_apply, groupCohomology.dââ_comp_dââ_apply, groupCohomology.H0IsoOfIsTrivial_inv_apply, groupCohomology.eq_dââ_comp_inv_assoc, finsuppToCoinvariantsTensorFree_single, groupCohomology.eq_dââ_comp_inv_apply, groupCohomology.eq_dââ_comp_inv_apply, groupHomology.chainsâToCoinvariantsKer_surjective, coinvariantsTensorFreeLEquiv_symm_apply, groupHomology.cyclesâ_eq_top_of_isTrivial, resCoindAdjunction_unit_app_hom_hom, groupHomology.dââ_comp_dââ_assoc, groupCohomology.mem_cocyclesâ_def, homEquiv_apply_hom, FiniteCyclicGroup.groupHomologyÏOdd_eq_zero_iff, groupCohomology.cochainsMap_f_1_comp_cochainsIsoâ_apply, coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply, groupCohomology.mapCocyclesâ_comp_i_apply, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom_apply, groupHomology.single_one_snd_sub_single_one_fst_mem_boundariesâ, groupCohomology.cochainsMap_f_3_comp_cochainsIsoâ_apply, groupHomology.dââArrowIso_hom_left, groupHomology.cyclesâIsoOfIsTrivial_hom_apply, groupCohomology.cocyclesMap_cocyclesIsoâ_hom_f_apply, groupCohomology.coboundariesâ_eq_bot_of_isTrivial, groupHomology.dââ_single_inv_mul_Ï_add_single, groupCohomology.cocyclesIsoâ_inv_comp_iCocycles, groupCohomology.cocyclesâ_map_one_fst, groupCohomology.mapCocyclesâ_comp_i_assoc, groupHomology.dââ_comp_coinvariantsMk_apply, Ï_hom, groupCohomology.H1IsoOfIsTrivial_inv_apply, groupHomology.chainsMap_f_3_comp_chainsIsoâ, groupHomology.mapCyclesâ_id_comp_assoc, groupHomology.eq_dââ_comp_inv, groupCohomology.cocyclesâIsoOfIsTrivial_hom_hom_apply_apply, groupCohomology.H2Ï_comp_map_apply, groupHomology.mapCyclesâ_comp, ihom_ev_app_hom, groupCohomology.dArrowIsoââ_hom_right, groupCohomology.toCocycles_comp_isoCocyclesâ_hom, groupCohomology.cochainsMap_f_1_comp_cochainsIsoâ_assoc, groupHomology.mapCyclesâ_comp_i, groupCohomology.shortComplexH0_f, groupCohomology.cocyclesOfIsCocycleâ_coe, groupCohomology.coboundariesâ_le_cocyclesâ, coindVEquiv_symm_apply_coe, groupCohomology.H1IsoOfIsTrivial_H1Ï_apply_apply, groupCohomology.comp_dââ_eq, groupCohomology.coboundariesâ.val_eq_coe, groupHomology.single_one_fst_sub_single_one_snd_mem_boundariesâ, FiniteCyclicGroup.groupCohomologyÏOdd_eq_iff, groupCohomology.infNatTrans_app, groupCohomology.dââ_apply_mem_cocyclesâ, invariantsAdjunction_unit_app, groupHomology.mapCyclesâ_id_comp, groupCohomology.dââ_apply_mem_cocyclesâ, indToCoindAux_fst_mul_inv, groupHomology.dââ_single_inv_self_Ï_sub_self_inv, groupHomology.chainsMap_f_single, groupCohomology.subtype_comp_dââ_apply, groupCohomology.H2Ï_eq_iff, groupCohomology.comp_dââ_eq, groupCohomology.cocyclesâ_map_one_snd, coinvariantsTensorFreeLEquiv_apply, groupHomology.toCycles_comp_isoCyclesâ_hom_apply, groupHomology.mapCyclesâ_comp_i, groupCohomology.map_H0Iso_hom_f, groupHomology.boundariesOfIsBoundaryâ_coe, indToCoindAux_comm, groupCohomology.dArrowIsoââ_inv_left, groupCohomology.Ï_comp_H1Iso_hom, groupHomology.eq_dââ_comp_inv_apply, groupCohomology.cocyclesâ_Ï_map_inv_sub_map_inv, toAdditive_symm_apply, groupHomology.single_one_fst_sub_single_one_fst_mem_boundariesâ, groupHomology.mapCyclesâ_id_comp_apply, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom_assoc, ofMulDistribMulAction_Ï_apply_apply, instIsTrivialCarrierVModuleCatOfCompLinearMapIdÏ, groupCohomology.instEpiModuleCatH1Ï, groupCohomology.H2Ï_comp_map, groupHomology.Ï_comp_H2Iso_hom, indResAdjunction_counit_app_hom_hom, groupHomology.pOpcycles_comp_opcyclesIso_hom_apply, coindToInd_apply, groupHomology.mapCyclesâ_comp_i_apply, FiniteCyclicGroup.groupHomologyÏEven_eq_iff, groupHomology.mapCyclesâ_comp, groupCohomology.isoCocyclesâ_hom_comp_i, groupCohomology.Ï_comp_H0Iso_hom_apply, groupHomology.coe_mapCyclesâ, groupCohomology.isoCocyclesâ_inv_comp_iCocycles_apply, groupHomology.comp_dââ_eq, groupHomology.H1Ï_comp_map_apply, groupCohomology.dArrowIsoââ_hom_left, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom, groupHomology.toCycles_comp_isoCyclesâ_hom_assoc, groupCohomology.eq_dââ_comp_inv_apply, groupCohomology.cocyclesIsoâ_inv_comp_iCocycles_assoc, groupCohomology.cocyclesâ_map_inv, freeLiftLEquiv_apply, groupCohomology.mapCocyclesâ_one, groupHomology.H2Ï_comp_map_assoc, indToCoindAux_mul_fst, ihom_obj_Ï_apply, groupHomology.dââArrowIso_inv_right, finsuppTensorRight_hom_hom, groupCohomology.norm_ofAlgebraAutOnUnits_eq, groupCohomology.Ï_comp_H0Iso_hom_assoc, groupCohomology.mem_cocyclesâ_iff, tensor_Ï, toAdditive_apply, groupCohomology.H2Ï_comp_map_assoc, groupHomology.dââ_comp_coinvariantsMk, groupHomology.dââ_comp_dââ_apply, groupHomology.mapCyclesâ_comp_apply, coindFunctorIso_inv_app_hom_hom_apply_coe, ofDistribMulAction_Ï_apply_apply, groupCohomology.dââ_ker_eq_invariants, leftRegularHomEquiv_symm_apply, groupHomology.H2Ï_eq_iff, groupHomology.H1AddEquivOfIsTrivial_single, groupCohomology.mem_cocyclesâ_iff, groupHomology.range_dââ_eq_coinvariantsKer, groupCohomology.inhomogeneousCochains.d_comp_d, groupHomology.isoCyclesâ_hom_comp_i_apply, groupCohomology.Ï_comp_H0IsoOfIsTrivial_hom_apply, groupCohomology.toCocycles_comp_isoCocyclesâ_hom_assoc, groupCohomology.isoCocyclesâ_inv_comp_iCocycles_apply, groupCohomology.cocyclesMap_cocyclesIsoâ_hom_f_assoc, groupCohomology.isoCocyclesâ_inv_comp_iCocycles, groupHomology.eq_dââ_comp_inv_assoc, groupCohomology.cochainsMap_f_0_comp_cochainsIsoâ_apply, groupHomology.cyclesMap_comp_isoCyclesâ_hom_assoc, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom, groupHomology.inhomogeneousChains.d_single, groupCohomology.coboundariesOfIsCoboundaryâ_coe, Representation.coind'_apply_apply, groupCohomology.dââ_comp_dââ_assoc, groupCohomology.cochainsMap_f_2_comp_cochainsIsoâ_apply, groupHomology.mapCyclesâ_id_comp_assoc, groupHomology.Ï_comp_H1Iso_hom_apply, coindIso_inv_hom_hom, groupCohomology.map_id_comp_H0Iso_hom_apply, groupCohomology.cocyclesâ_map_mul_of_isTrivial, groupCohomology.subtype_comp_dââ_assoc, groupHomology.toCycles_comp_isoCyclesâ_hom, groupCohomology.map_id_comp_H0Iso_hom, groupHomology.cyclesMap_comp_isoCyclesâ_hom_apply, groupHomology.mapCyclesâ_id_comp, indToCoindAux_mul_snd, groupCohomology.cocyclesâIsoOfIsTrivial_inv_hom_apply_coe, groupCohomology.cocyclesOfIsMulCocycleâ_coe, groupHomology.eq_dââ_comp_inv, groupHomology.isoShortComplexH1_inv, groupCohomology.coboundariesOfIsMulCoboundaryâ_coe, groupHomology.eq_dââ_comp_inv_assoc, groupCohomology.dââ_comp_dââ, Representation.linHom.invariantsEquivRepHom_symm_apply_coe, linearization_obj_Ï, toCoinvariantsMkQ_hom, groupHomology.chainsMap_f_1_comp_chainsIsoâ_assoc, groupHomology.isoCyclesâ_hom_comp_i_apply, groupCohomology.cocyclesIsoâ_hom_comp_f_assoc, groupHomology.lsingle_comp_chainsMap_f, groupHomology.coinvariantsMk_comp_opcyclesIsoâ_inv_apply, groupCohomology.H1Ï_eq_zero_iff, groupHomology.H1AddEquivOfIsTrivial_symm_apply, invariantsAdjunction_counit_app_hom, groupCohomology.cochainsMap_f, groupCohomology.coboundariesâ.val_eq_coe, groupHomology.dââ_single_one_fst, inhomogeneousCochains.d_hom_apply, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom_apply, groupHomology.dââ_comp_dââ, groupHomology.dââ_single_self_inv_Ï_sub_inv_self, groupHomology.chainsMap_f_3_comp_chainsIsoâ_assoc, groupHomology.single_Ï_self_add_single_inv_mem_boundariesâ, groupHomology.H1ToTensorOfIsTrivial_H1Ï_single, FiniteCyclicGroup.groupHomologyÏEven_eq_zero_iff, groupCohomology.cocyclesMkâ_eq, groupHomology.cyclesOfIsCycleâ_coe, quotientToInvariantsFunctor_obj_V, groupHomology.inhomogeneousChains.ext_iff, groupHomology.dââ_apply_mem_cyclesâ, groupCohomology.coboundariesToCocyclesâ_apply, groupCohomology.H1Ï_comp_H1IsoOfIsTrivial_hom_apply, groupHomology.cyclesMap_comp_isoCyclesâ_hom_apply, groupHomology.toCycles_comp_isoCyclesâ_hom_apply, groupCohomology.cocyclesOfIsMulCocycleâ_coe, groupCohomology.H2Ï_eq_zero_iff, groupCohomology.mapCocyclesâ_comp_i_assoc, groupCohomology.cocyclesâ.val_eq_coe, groupCohomology.H1Ï_comp_map_apply, leftRegularHom_hom_single, groupCohomology.cocyclesâ_map_one, groupHomology.eq_dââ_comp_inv_assoc, groupCohomology.cocyclesMap_cocyclesIsoâ_hom_f, groupCohomology.Ï_comp_H2Iso_hom_assoc, groupCohomology.toCocycles_comp_isoCocyclesâ_hom_assoc, finsuppTensorRight_inv_hom, ihom_obj_V_isAddCommGroup, groupHomology.mapCyclesâ_hom, groupHomology.isoCyclesâ_inv_comp_iCycles_apply, groupHomology.isoCyclesâ_inv_comp_iCycles_assoc, groupHomology.cyclesMkâ_eq, groupHomology.chainsMap_f_1_comp_chainsIsoâ, coindVEquiv_apply_hom, groupCohomology.cocyclesMap_comp_isoCocyclesâ_hom_assoc, groupHomology.H1Ï_eq_zero_iff, groupHomology.isoCyclesâ_inv_comp_iCycles_assoc, groupHomology.Ï_comp_H1Iso_hom_assoc, groupHomology.chainsMap_f_2_comp_chainsIsoâ, groupHomology.dââ_single_one_fst, groupHomology.H2Ï_comp_map, groupCohomology.cocyclesâ.val_eq_coe, groupCohomology.eq_dââ_comp_inv, FiniteCyclicGroup.groupCohomologyÏEven_eq_iff, groupHomology.H1Ï_comp_map_assoc, ihom_map_hom, groupHomology.instEpiModuleCatH1Ï, groupHomology.H1AddEquivOfIsTrivial_apply, groupCohomology.isoCocyclesâ_inv_comp_iCocycles, coinvariantsTensor_hom_ext_iff, finsuppTensorLeft_inv_hom, groupHomology.single_one_snd_sub_single_one_snd_mem_boundariesâ, unit_iso_comm, leftRegularHomEquiv_symm_single, inhomogeneousCochains.d_eq, groupHomology.instEpiModuleCatH2Ï, groupCohomology.cocyclesMkâ_eq, groupHomology.H1Ï_comp_map, groupHomology.chainsMap_f_hom, groupHomology.dââ_apply_mem_cyclesâ, ofHom_Ï, groupCohomology.toCocycles_comp_isoCocyclesâ_hom_apply, groupHomology.boundariesOfIsBoundaryâ_coe, groupHomology.cyclesMkâ_eq, groupHomology.mapCyclesâ_comp_i_assoc, groupCohomology.isoCocyclesâ_hom_comp_i, groupCohomology.mapCocyclesâ_comp_i_apply, coindMap_hom, groupHomology.mapCyclesâ_id_comp_apply, trivial_def, groupCohomology.cocyclesâ_ext_iff, groupCohomology.cochainsMap_f_3_comp_cochainsIsoâ, invariantsAdjunction_homEquiv_apply_hom, hom_comm_apply, groupHomology.H2Ï_comp_map_apply, FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, groupCohomology.cochainsMap_f_hom, groupCohomology.coboundariesâ_ext_iff, finsuppTensorLeft_hom_hom, FiniteCyclicGroup.groupHomologyÏOdd_eq_iff, groupHomology.inhomogeneousChains.d_comp_d, groupCohomology.Ï_comp_H2Iso_hom_apply, coinvariantsTensorMk_apply, groupHomology.isoCyclesâ_hom_comp_i_assoc, homEquiv_symm_apply_hom, invariantsFunctor_map_hom, groupHomology.dââ_eq_zero_of_isTrivial, groupCohomology.Ï_comp_H1Iso_hom_apply, groupCohomology.dââ_comp_dââ_assoc, groupHomology.dââ_single_one_snd, groupHomology.dââ_comp_dââ, groupHomology.dââ_single_one_snd, groupHomology.Ï_comp_H2Iso_hom_apply, coinvariantsTensorIndHom_mk_tmul_indVMk, ihom_coev_app_hom, groupHomology.mapCyclesâ_hom, leftRegularHomEquiv_apply, groupHomology.isoCyclesâ_inv_comp_iCycles, groupHomology.cyclesMap_comp_isoCyclesâ_hom_assoc, groupHomology.isoShortComplexH2_inv, groupHomology.coe_mapCyclesâ, groupHomology.toCycles_comp_isoCyclesâ_hom, groupCohomology.dââ_comp_dââ_apply, groupHomology.chainsMap_f_2_comp_chainsIsoâ_assoc, Representation.linHom.mem_invariants_iff_comm, groupHomology.mapCyclesâ_comp_i_apply, groupCohomology.cocyclesIsoâ_hom_comp_f_apply, groupHomology.boundariesToCyclesâ_apply, groupCohomology.subtype_comp_dââ, groupHomology.cyclesOfIsCycleâ_coe, freeLift_hom, groupHomology.isoCyclesâ_hom_comp_i, groupHomology.Ï_comp_H1Iso_hom, groupHomology.isoCyclesâ_inv_comp_iCycles, groupHomology.dââ_single_inv, groupHomology.mkH1OfIsTrivial_apply, indToCoindAux_snd_mul_inv, groupCohomology.isoCocyclesâ_inv_comp_iCocycles_assoc, res_obj_Ï, groupCohomology.H1Ï_comp_H1IsoOfIsTrivial_hom, groupCohomology.coboundariesâ_le_cocyclesâ, ihom_obj_V_isModule, groupHomology.dââArrowIso_hom_right, freeLift_hom_single_single, groupHomology.single_one_mem_boundariesâ, groupCohomology.cochainsMap_f_2_comp_cochainsIsoâ_assoc, groupCohomology.isoCocyclesâ_hom_comp_i_apply, diagonalHomEquiv_apply, groupHomology.dââ_single, freeLiftLEquiv_symm_apply, groupHomology.inhomogeneousChains.d_eq, groupHomology.cyclesâIsoOfIsTrivial_inv_apply, groupHomology.eq_dââ_comp_inv_apply, groupCohomology.coboundariesâ_ext_iff, groupHomology.dââ_comp_coinvariantsMk_assoc, MonoidalClosed.linearHomEquivComm_symm_hom, indToCoindAux_of_not_rel, groupCohomology.cocyclesOfIsCocycleâ_coe, groupHomology.isoCyclesâ_hom_comp_i, groupCohomology.cocyclesIsoâ_inv_comp_iCocycles_apply, applyAsHom_hom, groupHomology.chainsMap_f_0_comp_chainsIsoâ_apply, groupCohomology.H1Ï_comp_map, groupHomology.single_inv_Ï_self_add_single_mem_boundariesâ, groupCohomology.cocyclesMkâ_eq, groupHomology.lsingle_comp_chainsMap_f_assoc, groupHomology.single_mem_cyclesâ_iff, groupCohomology.isoShortComplexH1_inv, groupHomology.boundariesâ_le_cyclesâ, ihom_obj_Ï, groupCohomology.cochainsMap_f_1_comp_cochainsIsoâ, groupCohomology.cocyclesâ_ext_iff, groupCohomology.map_H0Iso_hom_f_assoc, coinvariantsTensorIndInv_mk_tmul_indMk, groupCohomology.eq_dââ_comp_inv_assoc, Representation.linHom.invariantsEquivRepHom_apply_hom, groupCohomology.H1InfRes_f, groupHomology.dââArrowIso_inv_left, groupHomology.H1AddEquivOfIsTrivial_symm_tmul, groupHomology.single_mem_cyclesâ_iff, groupHomology.dââ_single_Ï_add_single_inv_mul, groupCohomology.isoShortComplexH2_inv, groupCohomology.map_id_comp_H0Iso_hom_assoc, groupCohomology.isoCocyclesâ_hom_comp_i_assoc, groupHomology.eq_dââ_comp_inv_apply, ihom_obj_V_carrier, coindIso_hom_hom_hom, groupHomology.dââ_comp_dââ_assoc, groupCohomology.coe_mapCocyclesâ, groupCohomology.eq_dââ_comp_inv_assoc, groupCohomology.H1Ï_comp_H1IsoOfIsTrivial_hom_assoc, groupCohomology.H1Ï_eq_iff, groupHomology.chainsMap_f_1_comp_chainsIsoâ_apply, groupCohomology.isoCocyclesâ_hom_comp_i_assoc, groupHomology.mapCyclesâ_quotientGroupMk'_epi, groupHomology.mapCyclesâ_comp_i_assoc, coinvariantsTensorFreeToFinsupp_mk_tmul_single, groupCohomology.coboundariesOfIsCoboundaryâ_coe, groupHomology.mem_cyclesâ_iff, groupCohomology.mapCocyclesâ_comp_i, groupHomology.boundariesToCyclesâ_apply, groupHomology.single_mem_cyclesâ_iff_inv, groupHomology.dââ_single, groupCohomology.cocyclesâ.dââ_apply, indResHomEquiv_symm_apply_hom, groupHomology.isoCyclesâ_hom_comp_i_assoc, groupHomology.comp_dââ_eq, groupCohomology.Ï_comp_H2Iso_hom, groupHomology.H2Ï_eq_zero_iff, groupCohomology.isoCocyclesâ_inv_comp_iCocycles_assoc, groupHomology.H1Ï_eq_iff, groupHomology.dââ_comp_dââ_apply, groupHomology.chainsMap_f, groupHomology.chainsMap_f_2_comp_chainsIsoâ_apply, groupHomology.cyclesMap_comp_isoCyclesâ_hom, groupCohomology.dââ_eq_zero
|
instCoeSortType đ | CompOp | â |
instModuleCarrierVModuleCat đ | CompOp | â |
instMonoidalActionTypeLinearization đ | CompOp | 4 mathmath: linearization_η_hom_apply, linearization_ÎŽ_hom, linearization_Δ_hom, linearization_ÎŒ_hom
|
instMonoidalClosed đ | CompOp | 8 mathmath: MonoidalClosed.linearHomEquiv_symm_hom, ihom_ev_app_hom, MonoidalClosed.linearHomEquivComm_hom, homEquiv_def, MonoidalClosed.linearHomEquiv_hom, ihom_coev_app_hom, MonoidalClosed.linearHomEquivComm_symm_hom, ihom_obj_Ï_def
|
leftRegular đ | CompOp | 33 mathmath: leftRegularHom_hom, diagonalSuccIsoTensorTrivial_inv_hom_single_left, diagonalSuccIsoTensorTrivial_inv_hom_single_right, diagonalSuccIsoTensorTrivial_inv_hom_single_single, coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply, coindVEquiv_symm_apply_coe, coindMap'_hom, coindFunctorIso_inv_app_hom_hom_apply_coe, leftRegularHomEquiv_symm_apply, Representation.coind'_apply_apply, diagonalOneIsoLeftRegular_inv_hom, coindIso_inv_hom_hom, diagonalSuccIsoTensorTrivial_hom_hom_single, coind'_ext_iff, leftRegularHom_hom_single, coindVEquiv_apply_hom, leftRegularHomEquiv_symm_single, FiniteCyclicGroup.resolution_complex, leftRegularTensorTrivialIsoFree_inv_hom, FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_norm, FiniteCyclicGroup.resolution_quasiIso, FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, FiniteCyclicGroup.leftRegular.range_norm_eq_ker_applyAsHom_sub, diagonalOneIsoLeftRegular_hom_hom, leftRegularHomEquiv_apply, leftRegular_projective, leftRegularTensorTrivialIsoFree_hom_hom_single_tmul_single, coindIso_hom_hom_hom, leftRegularTensorTrivialIsoFree_hom_hom, FiniteCyclicGroup.resolution.Ï_f, FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_linearCombination, leftRegularTensorTrivialIsoFree_inv_hom_single_single
|
leftRegularHom đ | CompOp | 4 mathmath: leftRegularHom_hom, leftRegularHomEquiv_symm_apply, leftRegularHom_hom_single, FiniteCyclicGroup.resolution.Ï_f
|
leftRegularHomEquiv đ | CompOp | 4 mathmath: leftRegularHomEquiv_symm_apply, Representation.coind'_apply_apply, leftRegularHomEquiv_symm_single, leftRegularHomEquiv_apply
|
leftRegularTensorTrivialIsoFree đ | CompOp | 4 mathmath: leftRegularTensorTrivialIsoFree_inv_hom, leftRegularTensorTrivialIsoFree_hom_hom_single_tmul_single, leftRegularTensorTrivialIsoFree_hom_hom, leftRegularTensorTrivialIsoFree_inv_hom_single_single
|
linearization đ | CompOp | 12 mathmath: coe_linearization_obj_Ï, linearization_single, coe_linearization_obj, linearization_η_hom_apply, linearization_obj_Ï, linearizationTrivialIso_inv_hom, linearization_ÎŽ_hom, linearizationTrivialIso_hom_hom, linearization_map_hom_single, linearization_Δ_hom, linearization_map_hom, linearization_ÎŒ_hom
|
linearizationOfMulActionIso đ | CompOp | â |
linearizationTrivialIso đ | CompOp | 2 mathmath: linearizationTrivialIso_inv_hom, linearizationTrivialIso_hom_hom
|
mkQ đ | CompOp | 2 mathmath: groupHomology.coinfNatTrans_app, mkQ_hom
|
norm đ | CompOp | 15 mathmath: FiniteCyclicGroup.chainComplexFunctor_obj, norm_comm_apply, FiniteCyclicGroup.groupCohomologyÏOdd_eq_iff, FiniteCyclicGroup.groupCohomologyÏEven_eq_zero_iff, normNatTrans_app, FiniteCyclicGroup.chainComplexFunctor_map_f, groupCohomology.norm_ofAlgebraAutOnUnits_eq, FiniteCyclicGroup.groupCohomologyÏEven_eq_iff, FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_norm, norm_hom, FiniteCyclicGroup.leftRegular.range_norm_eq_ker_applyAsHom_sub, norm_comm_assoc, FiniteCyclicGroup.resolution.Ï_f, FiniteCyclicGroup.groupCohomologyÏOdd_eq_zero_iff, norm_comm
|
normNatTrans đ | CompOp | 1 mathmath: normNatTrans_app
|
of đ | CompOp | 7 mathmath: Representation.repOfTprodIso_inv_apply, Representation.repOfTprodIso_apply, instIsTrivialCarrierVModuleCatOfCompLinearMapIdÏ, coe_of, of_Ï, ihom_map_hom, instIsTrivialOfOfIsTrivial
|
ofAlgebraAut đ | CompOp | â |
ofAlgebraAutOnUnits đ | CompOp | 1 mathmath: groupCohomology.norm_ofAlgebraAutOnUnits_eq
|
ofDistribMulAction đ | CompOp | 9 mathmath: groupCohomology.cocyclesOfIsCocycleâ_coe, groupHomology.boundariesOfIsBoundaryâ_coe, ofDistribMulAction_Ï_apply_apply, groupCohomology.coboundariesOfIsCoboundaryâ_coe, groupHomology.cyclesOfIsCycleâ_coe, groupHomology.boundariesOfIsBoundaryâ_coe, groupHomology.cyclesOfIsCycleâ_coe, groupCohomology.cocyclesOfIsCocycleâ_coe, groupCohomology.coboundariesOfIsCoboundaryâ_coe
|
ofModuleMonoidAlgebra đ | CompOp | 3 mathmath: ofModuleMonoidAlgebra_obj_coe, ofModuleMonoidAlgebra_obj_Ï, unit_iso_comm
|
ofMulAction đ | CompOp | 3 mathmath: ofMulActionSubsingletonIsoTrivial_inv_hom, ofMulActionSubsingletonIsoTrivial_hom_hom, standardComplex.forgetâToModuleCatHomotopyEquiv_f_0_eq
|
ofMulActionSubsingletonIsoTrivial đ | CompOp | 2 mathmath: ofMulActionSubsingletonIsoTrivial_inv_hom, ofMulActionSubsingletonIsoTrivial_hom_hom
|
ofMulDistribMulAction đ | CompOp | 7 mathmath: toAdditive_symm_apply, ofMulDistribMulAction_Ï_apply_apply, groupCohomology.norm_ofAlgebraAutOnUnits_eq, toAdditive_apply, groupCohomology.cocyclesOfIsMulCocycleâ_coe, groupCohomology.coboundariesOfIsMulCoboundaryâ_coe, groupCohomology.cocyclesOfIsMulCocycleâ_coe
|
ofQuotient đ | CompOp | 4 mathmath: groupHomology.mapâ_quotientGroupMk'_epi, groupHomology.H1CoresCoinfOfTrivial_g, groupHomology.H1CoresCoinfOfTrivial_Xâ, groupHomology.mapCyclesâ_quotientGroupMk'_epi
|
quotient đ | CompOp | 1 mathmath: mkQ_hom
|
resOfQuotientIso đ | CompOp | 3 mathmath: groupHomology.mapâ_quotientGroupMk'_epi, groupHomology.H1CoresCoinfOfTrivial_g, groupHomology.mapCyclesâ_quotientGroupMk'_epi
|
subrepresentation đ | CompOp | 1 mathmath: subtype_hom
|
subtype đ | CompOp | 4 mathmath: subtype_hom, groupCohomology.infNatTrans_app, coinvariantsShortComplex_f, groupCohomology.H1InfRes_f
|
toModuleMonoidAlgebra đ | CompOp | 1 mathmath: unit_iso_comm
|
toModuleMonoidAlgebraMap đ | CompOp | â |
trivial đ | CompOp | 31 mathmath: diagonalSuccIsoTensorTrivial_inv_hom_single_left, coinvariantsAdjunction_counit_app, diagonalSuccIsoTensorTrivial_inv_hom_single_right, diagonalSuccIsoTensorTrivial_inv_hom_single_single, trivial_projective_of_subsingleton, instIsTrivialTrivial, standardComplex.ΔToSingleâ_comp_eq, barResolution_complex, ofMulActionSubsingletonIsoTrivial_inv_hom, diagonalSuccIsoTensorTrivial_hom_hom_single, ofMulActionSubsingletonIsoTrivial_hom_hom, linearizationTrivialIso_inv_hom, standardComplex.quasiIso_forgetâ_ΔToSingleâ, standardComplex.d_comp_Δ, trivialFunctor_map_hom, FiniteCyclicGroup.resolution_complex, leftRegularTensorTrivialIsoFree_inv_hom, standardComplex.instQuasiIsoNatΔToSingleâ, trivial_def, FiniteCyclicGroup.resolution_quasiIso, FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, standardComplex.forgetâToModuleCatHomotopyEquiv_f_0_eq, leftRegularTensorTrivialIsoFree_hom_hom_single_tmul_single, linearizationTrivialIso_hom_hom, FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, leftRegularTensorTrivialIsoFree_hom_hom, FiniteCyclicGroup.resolution_Ï, FiniteCyclicGroup.resolution.Ï_f, leftRegularTensorTrivialIsoFree_inv_hom_single_single, FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply
|
trivialFunctor đ | CompOp | 11 mathmath: invariantsAdjunction_homEquiv_symm_apply_hom, instIsTrivialObjModuleCatTrivialFunctor, coinvariantsAdjunction_counit_app, coinvariantsAdjunction_homEquiv_symm_apply_hom, invariantsAdjunction_unit_app, trivialFunctor_obj_V, invariantsAdjunction_counit_app_hom, trivialFunctor_map_hom, invariantsAdjunction_homEquiv_apply_hom, coinvariantsAdjunction_unit_app_hom, coinvariantsAdjunction_homEquiv_apply_hom
|
unitIso đ | CompOp | â |
unitIsoAddEquiv đ | CompOp | 1 mathmath: unit_iso_comm
|
Ï đ | CompOp | 149 mathmath: resCoindHomEquiv_symm_apply_hom, resCoindHomEquiv_apply_hom, invariantsAdjunction_homEquiv_symm_apply_hom, coe_linearization_obj_Ï, groupCohomology.mem_cocyclesâ_def, groupHomology.coinfNatTrans_app, groupCohomology.dââ_hom_apply, groupHomology.coinvariantsMk_comp_H0Iso_inv_apply, groupCohomology.cocyclesIsoâ_hom_comp_f, resCoindAdjunction_counit_app_hom_hom, groupHomology.dââ_single, leftRegularHom_hom, groupCohomology.Ï_comp_H0Iso_hom, coe_res_obj_Ï, diagonalHomEquiv_symm_apply, groupCohomology.H0IsoOfIsTrivial_hom, groupHomology.mem_cyclesâ_iff, groupCohomology.dââ_hom_apply, groupCohomology.dââ_hom_apply, linearization_single, groupHomology.dââ_single_one_thd, groupCohomology.map_H0Iso_hom_f_apply, groupCohomology.H0IsoOfIsTrivial_inv_apply, finsuppToCoinvariantsTensorFree_single, groupHomology.chainsâToCoinvariantsKer_surjective, coinvariantsTensorFreeLEquiv_symm_apply, resCoindAdjunction_unit_app_hom_hom, groupCohomology.mem_cocyclesâ_def, FiniteCyclicGroup.groupHomologyÏOdd_eq_zero_iff, coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply, groupHomology.single_one_snd_sub_single_one_fst_mem_boundariesâ, groupHomology.dââ_single_inv_mul_Ï_add_single, groupCohomology.cocyclesIsoâ_inv_comp_iCocycles, groupHomology.dââ_comp_coinvariantsMk_apply, Ï_hom, groupCohomology.shortComplexH0_f, coindVEquiv_symm_apply_coe, groupHomology.single_one_fst_sub_single_one_snd_mem_boundariesâ, groupCohomology.infNatTrans_app, invariantsAdjunction_unit_app, coinvariantsFunctor_obj_carrier, groupHomology.dââ_single_inv_self_Ï_sub_self_inv, groupCohomology.subtype_comp_dââ_apply, groupCohomology.cocyclesâ_map_one_snd, coinvariantsTensorFreeLEquiv_apply, groupCohomology.map_H0Iso_hom_f, groupCohomology.cocyclesâ_Ï_map_inv_sub_map_inv, ofMulDistribMulAction_Ï_apply_apply, instIsTrivialCarrierVModuleCatOfCompLinearMapIdÏ, indResAdjunction_counit_app_hom_hom, groupHomology.pOpcycles_comp_opcyclesIso_hom_apply, coindToInd_apply, FiniteCyclicGroup.groupHomologyÏEven_eq_iff, groupCohomology.Ï_comp_H0Iso_hom_apply, groupHomology.Ï_comp_H0Iso_hom_apply, groupCohomology.cocyclesIsoâ_inv_comp_iCocycles_assoc, groupCohomology.cocyclesâ_map_inv, indToCoindAux_mul_fst, ihom_obj_Ï_apply, groupCohomology.Ï_comp_H0Iso_hom_assoc, groupCohomology.mem_cocyclesâ_iff, tensor_Ï, coindFunctorIso_inv_app_hom_hom_apply_coe, ofDistribMulAction_Ï_apply_apply, groupCohomology.dââ_ker_eq_invariants, groupCohomology.mem_cocyclesâ_iff, groupHomology.range_dââ_eq_coinvariantsKer, ofModuleMonoidAlgebra_obj_Ï, groupCohomology.Ï_comp_H0IsoOfIsTrivial_hom_apply, coinvariantsShortComplex_f, groupCohomology.cocyclesMap_cocyclesIsoâ_hom_f_assoc, groupHomology.inhomogeneousChains.d_single, coindIso_inv_hom_hom, groupCohomology.map_id_comp_H0Iso_hom_apply, groupCohomology.subtype_comp_dââ_assoc, groupCohomology.map_id_comp_H0Iso_hom, indToCoindAux_mul_snd, Representation.linHom.invariantsEquivRepHom_symm_apply_coe, linearization_obj_Ï, toCoinvariantsMkQ_hom, groupCohomology.cocyclesIsoâ_hom_comp_f_assoc, groupHomology.coinvariantsMk_comp_opcyclesIsoâ_inv_apply, of_Ï, invariantsAdjunction_counit_app_hom, inhomogeneousCochains.d_hom_apply, groupHomology.dââ_single_self_inv_Ï_sub_inv_self, groupHomology.single_Ï_self_add_single_inv_mem_boundariesâ, FiniteCyclicGroup.groupHomologyÏEven_eq_zero_iff, quotientToInvariantsFunctor_obj_V, leftRegularHom_hom_single, groupCohomology.cocyclesMap_cocyclesIsoâ_hom_f, coinvariantsMk_app_hom, coindVEquiv_apply_hom, ihom_map_hom, groupHomology.single_one_snd_sub_single_one_snd_mem_boundariesâ, unit_iso_comm, leftRegularHomEquiv_symm_single, norm_hom, indResAdjunction_unit_app_hom_hom, ofHom_Ï, groupHomology.map_id_comp_H0Iso_hom_apply, Action_Ï_eq_Ï, coindMap_hom, trivial_def, invariantsAdjunction_homEquiv_apply_hom, hom_comm_apply, FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, FiniteCyclicGroup.groupHomologyÏOdd_eq_iff, coinvariantsTensorMk_apply, indMap_hom, FDRep.forgetâ_Ï, invariantsFunctor_map_hom, groupHomology.dââ_single_one_snd, groupHomology.dââ_single_one_snd, coinvariantsTensorIndHom_mk_tmul_indVMk, Representation.linHom.mem_invariants_iff_comm, groupCohomology.cocyclesIsoâ_hom_comp_f_apply, groupCohomology.subtype_comp_dââ, freeLift_hom, groupHomology.dââ_single_inv, res_obj_Ï, freeLift_hom_single_single, groupHomology.dââ_single, groupHomology.inhomogeneousChains.d_eq, groupCohomology.cocyclesIsoâ_inv_comp_iCocycles_apply, applyAsHom_hom, groupHomology.single_inv_Ï_self_add_single_mem_boundariesâ, indResHomEquiv_apply_hom, groupCohomology.cocyclesMkâ_eq, groupHomology.single_mem_cyclesâ_iff, FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, ihom_obj_Ï, groupCohomology.map_H0Iso_hom_f_assoc, coinvariantsTensorIndInv_mk_tmul_indMk, Representation.linHom.invariantsEquivRepHom_apply_hom, groupCohomology.H1InfRes_f, groupHomology.single_mem_cyclesâ_iff, coinvariantsFunctor_map_hom, groupHomology.dââ_single_Ï_add_single_inv_mul, groupCohomology.map_id_comp_H0Iso_hom_assoc, ihom_obj_Ï_def, coindIso_hom_hom_hom, groupHomology.H0Ï_comp_H0Iso_hom_apply, coinvariantsTensorFreeToFinsupp_mk_tmul_single, groupHomology.mem_cyclesâ_iff, groupHomology.single_mem_cyclesâ_iff_inv, groupHomology.dââ_single, indResHomEquiv_symm_apply_hom, FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply
|