Documentation Verification Report

Rep

📁 Source: Mathlib/RepresentationTheory/Rep.lean

Statistics

MetricCount
DefinitionsRep, Rep, IsTrivial, linearHomEquiv, linearHomEquivComm, applyAsHom, counitIso, counitIsoAddEquiv, diagonal, diagonalHomEquiv, diagonalOneIsoLeftRegular, diagonalSuccIsoFree, diagonalSuccIsoTensorTrivial, equivalenceModuleMonoidAlgebra, finsupp, finsuppTensorLeft, finsuppTensorRight, free, freeLift, freeLiftLEquiv, homEquiv, ihom, instAddCommGroupCarrierVModuleCat, instCoeSortType, instModuleCarrierVModuleCat, instMonoidalActionTypeLinearization, instMonoidalClosed, leftRegular, leftRegularHom, leftRegularHomEquiv, leftRegularTensorTrivialIsoFree, linearization, linearizationOfMulActionIso, linearizationTrivialIso, mkQ, norm, normNatTrans, of, ofAlgebraAut, ofAlgebraAutOnUnits, ofDistribMulAction, ofModuleMonoidAlgebra, ofMulAction, ofMulActionSubsingletonIsoTrivial, ofMulDistribMulAction, ofQuotient, quotient, resOfQuotientIso, subrepresentation, subtype, toModuleMonoidAlgebra, toModuleMonoidAlgebraMap, trivial, trivialFunctor, unitIso, unitIsoAddEquiv, ρ, repOfTprodIso, instLinearRep
59
TheoremsAction_ρ_eq_ρ, linearHomEquivComm_hom, linearHomEquivComm_symm_hom, linearHomEquiv_hom, linearHomEquiv_symm_hom, applyAsHom_comm, applyAsHom_comm_apply, applyAsHom_comm_assoc, applyAsHom_hom, coe_linearization_obj, coe_linearization_obj_ρ, coe_of, coe_res_obj_ρ, diagonalHomEquiv_apply, diagonalHomEquiv_symm_apply, diagonalOneIsoLeftRegular_hom_hom, diagonalOneIsoLeftRegular_inv_hom, diagonalSuccIsoFree_hom_hom_single, diagonalSuccIsoFree_inv_hom_single, diagonalSuccIsoFree_inv_hom_single_single, diagonalSuccIsoTensorTrivial_hom_hom_single, diagonalSuccIsoTensorTrivial_inv_hom_single_left, diagonalSuccIsoTensorTrivial_inv_hom_single_right, diagonalSuccIsoTensorTrivial_inv_hom_single_single, diagonal_succ_projective, epi_iff_surjective, finsuppTensorLeft_hom_hom, finsuppTensorLeft_inv_hom, finsuppTensorRight_hom_hom, finsuppTensorRight_inv_hom, freeLiftLEquiv_apply, freeLiftLEquiv_symm_apply, freeLift_hom, freeLift_hom_single_single, free_ext, free_ext_iff, free_projective, homEquiv_apply_hom, homEquiv_def, homEquiv_symm_apply_hom, hom_comm_apply, ihom_coev_app_hom, ihom_ev_app_hom, ihom_map_hom, ihom_obj_V_carrier, ihom_obj_V_isAddCommGroup, ihom_obj_V_isModule, ihom_obj_ρ, ihom_obj_ρ_apply, ihom_obj_ρ_def, instEnoughProjectives, instEpiModuleCatHom, instIsTrivialCarrierVModuleCatOfCompLinearMapIdρ, instIsTrivialObjModuleCatTrivialFunctor, instIsTrivialOfOfIsTrivial, instIsTrivialTrivial, instMonoModuleCatHom, instPreservesColimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV, instPreservesLimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV, leftRegularHomEquiv_apply, leftRegularHomEquiv_symm_apply, leftRegularHomEquiv_symm_single, leftRegularHom_hom, leftRegularHom_hom_single, leftRegularTensorTrivialIsoFree_hom_hom, leftRegularTensorTrivialIsoFree_hom_hom_single_tmul_single, leftRegularTensorTrivialIsoFree_inv_hom, leftRegularTensorTrivialIsoFree_inv_hom_single_single, leftRegular_projective, linearizationTrivialIso_hom_hom, linearizationTrivialIso_inv_hom, linearization_map_hom, linearization_map_hom_single, linearization_obj_ρ, linearization_single, linearization_ÎŽ_hom, linearization_Δ_hom, linearization_η_hom_apply, linearization_ÎŒ_hom, mkQ_hom, mono_iff_injective, normNatTrans_app, norm_comm, norm_comm_apply, norm_comm_assoc, norm_hom, ofDistribMulAction_ρ_apply_apply, ofHom_ρ, ofModuleMonoidAlgebra_obj_coe, ofModuleMonoidAlgebra_obj_ρ, ofMulActionSubsingletonIsoTrivial_hom_hom, ofMulActionSubsingletonIsoTrivial_inv_hom, ofMulDistribMulAction_ρ_apply_apply, of_ρ, res_obj_ρ, subtype_hom, tensor_ρ, toAdditive_apply, toAdditive_symm_apply, to_Module_monoidAlgebra_map_aux, trivialFunctor_map_hom, trivialFunctor_obj_V, trivial_def, trivial_projective_of_subsingleton, unit_iso_comm, ρ_hom, repOfTprodIso_apply, repOfTprodIso_inv_apply
108
Total167

GromovHausdorff.GHSpace

Definitions

NameCategoryTheorems
Rep 📖CompOp
4 mathmath: GromovHausdorff.dist_ghDist, GromovHausdorff.rep_gHSpace_compactSpace, GromovHausdorff.rep_gHSpace_nonempty, toGHSpace_rep

Rep

Definitions

NameCategoryTheorems
IsTrivial 📖MathDef
3 mathmath: instIsTrivialObjModuleCatTrivialFunctor, instIsTrivialTrivial, instIsTrivialOfOfIsTrivial
applyAsHom 📖CompOp
18 mathmath: FiniteCyclicGroup.chainComplexFunctor_obj, FiniteCyclicGroup.groupHomologyπOdd_eq_zero_iff, FiniteCyclicGroup.groupCohomologyπOdd_eq_iff, applyAsHom_comm_apply, FiniteCyclicGroup.groupCohomologyπEven_eq_zero_iff, FiniteCyclicGroup.groupHomologyπEven_eq_iff, applyAsHom_comm_assoc, FiniteCyclicGroup.chainComplexFunctor_map_f, FiniteCyclicGroup.groupHomologyπEven_eq_zero_iff, applyAsHom_comm, FiniteCyclicGroup.groupCohomologyπEven_eq_iff, FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_norm, FiniteCyclicGroup.groupHomologyπOdd_eq_iff, FiniteCyclicGroup.leftRegular.range_norm_eq_ker_applyAsHom_sub, applyAsHom_hom, FiniteCyclicGroup.resolution.π_f, FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_linearCombination, FiniteCyclicGroup.groupCohomologyπOdd_eq_zero_iff
counitIso 📖CompOp—
counitIsoAddEquiv 📖CompOp—
diagonal 📖CompOp
13 mathmath: diagonalSuccIsoFree_inv_hom_single, diagonalSuccIsoTensorTrivial_inv_hom_single_left, diagonalHomEquiv_symm_apply, diagonalSuccIsoTensorTrivial_inv_hom_single_right, diagonalSuccIsoTensorTrivial_inv_hom_single_single, diagonalSuccIsoFree_inv_hom_single_single, diagonal_succ_projective, diagonalOneIsoLeftRegular_inv_hom, diagonalSuccIsoTensorTrivial_hom_hom_single, diagonalOneIsoLeftRegular_hom_hom, diagonalHomEquiv_apply, diagonalSuccIsoFree_hom_hom_single, barComplex.d_comp_diagonalSuccIsoFree_inv_eq
diagonalHomEquiv 📖CompOp
2 mathmath: diagonalHomEquiv_symm_apply, diagonalHomEquiv_apply
diagonalOneIsoLeftRegular 📖CompOp
2 mathmath: diagonalOneIsoLeftRegular_inv_hom, diagonalOneIsoLeftRegular_hom_hom
diagonalSuccIsoFree 📖CompOp
4 mathmath: diagonalSuccIsoFree_inv_hom_single, diagonalSuccIsoFree_inv_hom_single_single, diagonalSuccIsoFree_hom_hom_single, barComplex.d_comp_diagonalSuccIsoFree_inv_eq
diagonalSuccIsoTensorTrivial 📖CompOp
4 mathmath: diagonalSuccIsoTensorTrivial_inv_hom_single_left, diagonalSuccIsoTensorTrivial_inv_hom_single_right, diagonalSuccIsoTensorTrivial_inv_hom_single_single, diagonalSuccIsoTensorTrivial_hom_hom_single
equivalenceModuleMonoidAlgebra 📖CompOp—
finsupp 📖CompOp
4 mathmath: finsuppTensorRight_hom_hom, finsuppTensorRight_inv_hom, finsuppTensorLeft_inv_hom, finsuppTensorLeft_hom_hom
finsuppTensorLeft 📖CompOp
2 mathmath: finsuppTensorLeft_inv_hom, finsuppTensorLeft_hom_hom
finsuppTensorRight 📖CompOp
2 mathmath: finsuppTensorRight_hom_hom, finsuppTensorRight_inv_hom
free 📖CompOp
19 mathmath: diagonalSuccIsoFree_inv_hom_single, coinvariantsTensorFreeLEquiv_symm_apply, free_projective, diagonalSuccIsoFree_inv_hom_single_single, coinvariantsTensorFreeLEquiv_apply, freeLiftLEquiv_apply, inhomogeneousCochains.d_eq, leftRegularTensorTrivialIsoFree_inv_hom, freeLift_hom, freeLift_hom_single_single, leftRegularTensorTrivialIsoFree_hom_hom_single_tmul_single, freeLiftLEquiv_symm_apply, groupHomology.inhomogeneousChains.d_eq, diagonalSuccIsoFree_hom_hom_single, free_ext_iff, barComplex.d_comp_diagonalSuccIsoFree_inv_eq, leftRegularTensorTrivialIsoFree_hom_hom, barComplex.d_single, leftRegularTensorTrivialIsoFree_inv_hom_single_single
freeLift 📖CompOp
3 mathmath: freeLift_hom, freeLift_hom_single_single, freeLiftLEquiv_symm_apply
freeLiftLEquiv 📖CompOp
3 mathmath: freeLiftLEquiv_apply, inhomogeneousCochains.d_eq, freeLiftLEquiv_symm_apply
homEquiv 📖CompOp
3 mathmath: homEquiv_apply_hom, homEquiv_def, homEquiv_symm_apply_hom
ihom 📖CompOp
9 mathmath: homEquiv_apply_hom, ihom_obj_ρ_apply, ihom_obj_V_isAddCommGroup, ihom_map_hom, homEquiv_symm_apply_hom, ihom_obj_V_isModule, ihom_obj_ρ, ihom_obj_ρ_def, ihom_obj_V_carrier
instAddCommGroupCarrierVModuleCat 📖CompOp
422 mathmath: resCoindHomEquiv_symm_apply_hom, resCoindHomEquiv_apply_hom, groupCohomology.instEpiModuleCatH2π, groupHomology.π_comp_H2Iso_hom_assoc, invariantsAdjunction_homEquiv_symm_apply_hom, groupHomology.mapCycles₂_comp_assoc, groupCohomology.toCocycles_comp_isoCocycles₁_hom, MonoidalClosed.linearHomEquiv_symm_hom, groupCohomology.isoCocycles₁_hom_comp_i_apply, groupCohomology.mem_cocycles₂_def, groupCohomology.d₂₃_hom_apply, groupHomology.d₁₀_single_one, groupHomology.boundaries₂_le_cycles₂, groupCohomology.d₀₁_comp_d₁₂, groupCohomology.toCocycles_comp_isoCocycles₂_hom_apply, groupHomology.chainsMap_f_3_comp_chainsIso₃_apply, groupCohomology.cocyclesIso₀_hom_comp_f, resCoindAdjunction_counit_app_hom_hom, groupHomology.d₃₂_single, groupCohomology.eq_d₀₁_comp_inv, groupCohomology.H1π_comp_map_assoc, groupHomology.mapCycles₁_comp_apply, groupHomology.cyclesIso₀_inv_comp_iCycles_apply, leftRegularHom_hom, groupCohomology.π_comp_H0Iso_hom, groupCohomology.π_comp_H1Iso_hom_assoc, groupCohomology.eq_d₁₂_comp_inv, indToCoindAux_self, groupCohomology.mapCocycles₂_comp_i, groupHomology.eq_d₃₂_comp_inv, coe_res_obj_ρ, diagonalHomEquiv_symm_apply, groupCohomology.H0IsoOfIsTrivial_hom, groupCohomology.coe_mapCocycles₁, groupHomology.mem_cycles₂_iff, groupHomology.cyclesMap_comp_isoCycles₂_hom, groupCohomology.d₁₂_hom_apply, groupHomology.comp_d₂₁_eq, groupCohomology.coboundariesToCocycles₁_apply, groupHomology.mapCycles₁_comp_assoc, groupCohomology.cochainsMap_f_3_comp_cochainsIso₃_assoc, groupHomology.toCycles_comp_isoCycles₂_hom_assoc, groupCohomology.cochainsMap_f_2_comp_cochainsIso₂, groupCohomology.comp_d₁₂_eq, groupCohomology.mem_cocycles₁_of_addMonoidHom, groupCohomology.cocycles₂.d₂₃_apply, groupCohomology.d₀₁_hom_apply, linearization_single, groupHomology.d₃₂_single_one_thd, groupHomology.isoCycles₁_inv_comp_iCycles_apply, groupCohomology.dArrowIso₀₁_inv_right, groupCohomology.map_H0Iso_hom_f_apply, groupCohomology.d₁₂_comp_d₂₃_apply, groupCohomology.H0IsoOfIsTrivial_inv_apply, groupCohomology.eq_d₂₃_comp_inv_assoc, finsuppToCoinvariantsTensorFree_single, groupCohomology.eq_d₂₃_comp_inv_apply, groupCohomology.eq_d₁₂_comp_inv_apply, groupHomology.chains₁ToCoinvariantsKer_surjective, coinvariantsTensorFreeLEquiv_symm_apply, groupHomology.cycles₁_eq_top_of_isTrivial, resCoindAdjunction_unit_app_hom_hom, groupHomology.d₃₂_comp_d₂₁_assoc, groupCohomology.mem_cocycles₁_def, homEquiv_apply_hom, FiniteCyclicGroup.groupHomologyπOdd_eq_zero_iff, groupCohomology.cochainsMap_f_1_comp_cochainsIso₁_apply, coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply, groupCohomology.mapCocycles₂_comp_i_apply, groupCohomology.cocyclesMap_comp_isoCocycles₂_hom_apply, groupHomology.single_one_snd_sub_single_one_fst_mem_boundaries₂, groupCohomology.cochainsMap_f_3_comp_cochainsIso₃_apply, groupHomology.d₁₀ArrowIso_hom_left, groupHomology.cycles₁IsoOfIsTrivial_hom_apply, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f_apply, groupCohomology.coboundaries₁_eq_bot_of_isTrivial, groupHomology.d₂₁_single_inv_mul_ρ_add_single, groupCohomology.cocyclesIso₀_inv_comp_iCocycles, groupCohomology.cocycles₂_map_one_fst, groupCohomology.mapCocycles₂_comp_i_assoc, groupHomology.d₁₀_comp_coinvariantsMk_apply, ρ_hom, groupCohomology.H1IsoOfIsTrivial_inv_apply, groupHomology.chainsMap_f_3_comp_chainsIso₃, groupHomology.mapCycles₁_id_comp_assoc, groupHomology.eq_d₂₁_comp_inv, groupCohomology.cocycles₁IsoOfIsTrivial_hom_hom_apply_apply, groupCohomology.H2π_comp_map_apply, groupHomology.mapCycles₁_comp, ihom_ev_app_hom, groupCohomology.dArrowIso₀₁_hom_right, groupCohomology.toCocycles_comp_isoCocycles₂_hom, groupCohomology.cochainsMap_f_1_comp_cochainsIso₁_assoc, groupHomology.mapCycles₁_comp_i, groupCohomology.shortComplexH0_f, groupCohomology.cocyclesOfIsCocycle₁_coe, groupCohomology.coboundaries₂_le_cocycles₂, coindVEquiv_symm_apply_coe, groupCohomology.H1IsoOfIsTrivial_H1π_apply_apply, groupCohomology.comp_d₂₃_eq, groupCohomology.coboundaries₂.val_eq_coe, groupHomology.single_one_fst_sub_single_one_snd_mem_boundaries₂, FiniteCyclicGroup.groupCohomologyπOdd_eq_iff, groupCohomology.infNatTrans_app, groupCohomology.d₁₂_apply_mem_cocycles₂, invariantsAdjunction_unit_app, groupHomology.mapCycles₂_id_comp, groupCohomology.d₀₁_apply_mem_cocycles₁, indToCoindAux_fst_mul_inv, groupHomology.d₂₁_single_inv_self_ρ_sub_self_inv, groupHomology.chainsMap_f_single, groupCohomology.subtype_comp_d₀₁_apply, groupCohomology.H2π_eq_iff, groupCohomology.comp_d₀₁_eq, groupCohomology.cocycles₂_map_one_snd, coinvariantsTensorFreeLEquiv_apply, groupHomology.toCycles_comp_isoCycles₁_hom_apply, groupHomology.mapCycles₂_comp_i, groupCohomology.map_H0Iso_hom_f, groupHomology.boundariesOfIsBoundary₁_coe, indToCoindAux_comm, groupCohomology.dArrowIso₀₁_inv_left, groupCohomology.π_comp_H1Iso_hom, groupHomology.eq_d₃₂_comp_inv_apply, groupCohomology.cocycles₂_ρ_map_inv_sub_map_inv, toAdditive_symm_apply, groupHomology.single_one_fst_sub_single_one_fst_mem_boundaries₂, groupHomology.mapCycles₁_id_comp_apply, groupCohomology.cocyclesMap_comp_isoCocycles₁_hom_assoc, ofMulDistribMulAction_ρ_apply_apply, instIsTrivialCarrierVModuleCatOfCompLinearMapIdρ, groupCohomology.instEpiModuleCatH1π, groupCohomology.H2π_comp_map, groupHomology.π_comp_H2Iso_hom, indResAdjunction_counit_app_hom_hom, groupHomology.pOpcycles_comp_opcyclesIso_hom_apply, coindToInd_apply, groupHomology.mapCycles₁_comp_i_apply, FiniteCyclicGroup.groupHomologyπEven_eq_iff, groupHomology.mapCycles₂_comp, groupCohomology.isoCocycles₂_hom_comp_i, groupCohomology.π_comp_H0Iso_hom_apply, groupHomology.coe_mapCycles₂, groupCohomology.isoCocycles₁_inv_comp_iCocycles_apply, groupHomology.comp_d₁₀_eq, groupHomology.H1π_comp_map_apply, groupCohomology.dArrowIso₀₁_hom_left, groupCohomology.cocyclesMap_comp_isoCocycles₁_hom, groupHomology.toCycles_comp_isoCycles₁_hom_assoc, groupCohomology.eq_d₀₁_comp_inv_apply, groupCohomology.cocyclesIso₀_inv_comp_iCocycles_assoc, groupCohomology.cocycles₁_map_inv, freeLiftLEquiv_apply, groupCohomology.mapCocycles₁_one, groupHomology.H2π_comp_map_assoc, indToCoindAux_mul_fst, ihom_obj_ρ_apply, groupHomology.d₁₀ArrowIso_inv_right, finsuppTensorRight_hom_hom, groupCohomology.norm_ofAlgebraAutOnUnits_eq, groupCohomology.π_comp_H0Iso_hom_assoc, groupCohomology.mem_cocycles₂_iff, tensor_ρ, toAdditive_apply, groupCohomology.H2π_comp_map_assoc, groupHomology.d₁₀_comp_coinvariantsMk, groupHomology.d₂₁_comp_d₁₀_apply, groupHomology.mapCycles₂_comp_apply, coindFunctorIso_inv_app_hom_hom_apply_coe, ofDistribMulAction_ρ_apply_apply, groupCohomology.d₀₁_ker_eq_invariants, leftRegularHomEquiv_symm_apply, groupHomology.H2π_eq_iff, groupHomology.H1AddEquivOfIsTrivial_single, groupCohomology.mem_cocycles₁_iff, groupHomology.range_d₁₀_eq_coinvariantsKer, groupCohomology.inhomogeneousCochains.d_comp_d, groupHomology.isoCycles₂_hom_comp_i_apply, groupCohomology.π_comp_H0IsoOfIsTrivial_hom_apply, groupCohomology.toCocycles_comp_isoCocycles₁_hom_assoc, groupCohomology.isoCocycles₂_inv_comp_iCocycles_apply, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f_assoc, groupCohomology.isoCocycles₁_inv_comp_iCocycles, groupHomology.eq_d₂₁_comp_inv_assoc, groupCohomology.cochainsMap_f_0_comp_cochainsIso₀_apply, groupHomology.cyclesMap_comp_isoCycles₂_hom_assoc, groupCohomology.cocyclesMap_comp_isoCocycles₂_hom, groupHomology.inhomogeneousChains.d_single, groupCohomology.coboundariesOfIsCoboundary₁_coe, Representation.coind'_apply_apply, groupCohomology.d₁₂_comp_d₂₃_assoc, groupCohomology.cochainsMap_f_2_comp_cochainsIso₂_apply, groupHomology.mapCycles₂_id_comp_assoc, groupHomology.π_comp_H1Iso_hom_apply, coindIso_inv_hom_hom, groupCohomology.map_id_comp_H0Iso_hom_apply, groupCohomology.cocycles₁_map_mul_of_isTrivial, groupCohomology.subtype_comp_d₀₁_assoc, groupHomology.toCycles_comp_isoCycles₂_hom, groupCohomology.map_id_comp_H0Iso_hom, groupHomology.cyclesMap_comp_isoCycles₂_hom_apply, groupHomology.mapCycles₁_id_comp, indToCoindAux_mul_snd, groupCohomology.cocycles₁IsoOfIsTrivial_inv_hom_apply_coe, groupCohomology.cocyclesOfIsMulCocycle₂_coe, groupHomology.eq_d₁₀_comp_inv, groupHomology.isoShortComplexH1_inv, groupCohomology.coboundariesOfIsMulCoboundary₁_coe, groupHomology.eq_d₁₀_comp_inv_assoc, groupCohomology.d₁₂_comp_d₂₃, Representation.linHom.invariantsEquivRepHom_symm_apply_coe, linearization_obj_ρ, toCoinvariantsMkQ_hom, groupHomology.chainsMap_f_1_comp_chainsIso₁_assoc, groupHomology.isoCycles₁_hom_comp_i_apply, groupCohomology.cocyclesIso₀_hom_comp_f_assoc, groupHomology.lsingle_comp_chainsMap_f, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv_apply, groupCohomology.H1π_eq_zero_iff, groupHomology.H1AddEquivOfIsTrivial_symm_apply, invariantsAdjunction_counit_app_hom, groupCohomology.cochainsMap_f, groupCohomology.coboundaries₁.val_eq_coe, groupHomology.d₃₂_single_one_fst, inhomogeneousCochains.d_hom_apply, groupCohomology.cocyclesMap_comp_isoCocycles₁_hom_apply, groupHomology.d₂₁_comp_d₁₀, groupHomology.d₂₁_single_self_inv_ρ_sub_inv_self, groupHomology.chainsMap_f_3_comp_chainsIso₃_assoc, groupHomology.single_ρ_self_add_single_inv_mem_boundaries₁, groupHomology.H1ToTensorOfIsTrivial_H1π_single, FiniteCyclicGroup.groupHomologyπEven_eq_zero_iff, groupCohomology.cocyclesMk₁_eq, groupHomology.cyclesOfIsCycle₁_coe, quotientToInvariantsFunctor_obj_V, groupHomology.inhomogeneousChains.ext_iff, groupHomology.d₂₁_apply_mem_cycles₁, groupCohomology.coboundariesToCocycles₂_apply, groupCohomology.H1π_comp_H1IsoOfIsTrivial_hom_apply, groupHomology.cyclesMap_comp_isoCycles₁_hom_apply, groupHomology.toCycles_comp_isoCycles₂_hom_apply, groupCohomology.cocyclesOfIsMulCocycle₁_coe, groupCohomology.H2π_eq_zero_iff, groupCohomology.mapCocycles₁_comp_i_assoc, groupCohomology.cocycles₁.val_eq_coe, groupCohomology.H1π_comp_map_apply, leftRegularHom_hom_single, groupCohomology.cocycles₁_map_one, groupHomology.eq_d₃₂_comp_inv_assoc, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f, groupCohomology.π_comp_H2Iso_hom_assoc, groupCohomology.toCocycles_comp_isoCocycles₂_hom_assoc, finsuppTensorRight_inv_hom, ihom_obj_V_isAddCommGroup, groupHomology.mapCycles₂_hom, groupHomology.isoCycles₂_inv_comp_iCycles_apply, groupHomology.isoCycles₂_inv_comp_iCycles_assoc, groupHomology.cyclesMk₂_eq, groupHomology.chainsMap_f_1_comp_chainsIso₁, coindVEquiv_apply_hom, groupCohomology.cocyclesMap_comp_isoCocycles₂_hom_assoc, groupHomology.H1π_eq_zero_iff, groupHomology.isoCycles₁_inv_comp_iCycles_assoc, groupHomology.π_comp_H1Iso_hom_assoc, groupHomology.chainsMap_f_2_comp_chainsIso₂, groupHomology.d₂₁_single_one_fst, groupHomology.H2π_comp_map, groupCohomology.cocycles₂.val_eq_coe, groupCohomology.eq_d₂₃_comp_inv, FiniteCyclicGroup.groupCohomologyπEven_eq_iff, groupHomology.H1π_comp_map_assoc, ihom_map_hom, groupHomology.instEpiModuleCatH1π, groupHomology.H1AddEquivOfIsTrivial_apply, groupCohomology.isoCocycles₂_inv_comp_iCocycles, coinvariantsTensor_hom_ext_iff, finsuppTensorLeft_inv_hom, groupHomology.single_one_snd_sub_single_one_snd_mem_boundaries₂, unit_iso_comm, leftRegularHomEquiv_symm_single, inhomogeneousCochains.d_eq, groupHomology.instEpiModuleCatH2π, groupCohomology.cocyclesMk₂_eq, groupHomology.H1π_comp_map, groupHomology.chainsMap_f_hom, groupHomology.d₃₂_apply_mem_cycles₂, ofHom_ρ, groupCohomology.toCocycles_comp_isoCocycles₁_hom_apply, groupHomology.boundariesOfIsBoundary₂_coe, groupHomology.cyclesMk₁_eq, groupHomology.mapCycles₂_comp_i_assoc, groupCohomology.isoCocycles₁_hom_comp_i, groupCohomology.mapCocycles₁_comp_i_apply, coindMap_hom, groupHomology.mapCycles₂_id_comp_apply, trivial_def, groupCohomology.cocycles₂_ext_iff, groupCohomology.cochainsMap_f_3_comp_cochainsIso₃, invariantsAdjunction_homEquiv_apply_hom, hom_comm_apply, groupHomology.H2π_comp_map_apply, FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, groupCohomology.cochainsMap_f_hom, groupCohomology.coboundaries₁_ext_iff, finsuppTensorLeft_hom_hom, FiniteCyclicGroup.groupHomologyπOdd_eq_iff, groupHomology.inhomogeneousChains.d_comp_d, groupCohomology.π_comp_H2Iso_hom_apply, coinvariantsTensorMk_apply, groupHomology.isoCycles₁_hom_comp_i_assoc, homEquiv_symm_apply_hom, invariantsFunctor_map_hom, groupHomology.d₁₀_eq_zero_of_isTrivial, groupCohomology.π_comp_H1Iso_hom_apply, groupCohomology.d₀₁_comp_d₁₂_assoc, groupHomology.d₂₁_single_one_snd, groupHomology.d₃₂_comp_d₂₁, groupHomology.d₃₂_single_one_snd, groupHomology.π_comp_H2Iso_hom_apply, coinvariantsTensorIndHom_mk_tmul_indVMk, ihom_coev_app_hom, groupHomology.mapCycles₁_hom, leftRegularHomEquiv_apply, groupHomology.isoCycles₁_inv_comp_iCycles, groupHomology.cyclesMap_comp_isoCycles₁_hom_assoc, groupHomology.isoShortComplexH2_inv, groupHomology.coe_mapCycles₁, groupHomology.toCycles_comp_isoCycles₁_hom, groupCohomology.d₀₁_comp_d₁₂_apply, groupHomology.chainsMap_f_2_comp_chainsIso₂_assoc, Representation.linHom.mem_invariants_iff_comm, groupHomology.mapCycles₂_comp_i_apply, groupCohomology.cocyclesIso₀_hom_comp_f_apply, groupHomology.boundariesToCycles₂_apply, groupCohomology.subtype_comp_d₀₁, groupHomology.cyclesOfIsCycle₂_coe, freeLift_hom, groupHomology.isoCycles₂_hom_comp_i, groupHomology.π_comp_H1Iso_hom, groupHomology.isoCycles₂_inv_comp_iCycles, groupHomology.d₁₀_single_inv, groupHomology.mkH1OfIsTrivial_apply, indToCoindAux_snd_mul_inv, groupCohomology.isoCocycles₁_inv_comp_iCocycles_assoc, res_obj_ρ, groupCohomology.H1π_comp_H1IsoOfIsTrivial_hom, groupCohomology.coboundaries₁_le_cocycles₁, ihom_obj_V_isModule, groupHomology.d₁₀ArrowIso_hom_right, freeLift_hom_single_single, groupHomology.single_one_mem_boundaries₁, groupCohomology.cochainsMap_f_2_comp_cochainsIso₂_assoc, groupCohomology.isoCocycles₂_hom_comp_i_apply, diagonalHomEquiv_apply, groupHomology.d₂₁_single, freeLiftLEquiv_symm_apply, groupHomology.inhomogeneousChains.d_eq, groupHomology.cycles₁IsoOfIsTrivial_inv_apply, groupHomology.eq_d₂₁_comp_inv_apply, groupCohomology.coboundaries₂_ext_iff, groupHomology.d₁₀_comp_coinvariantsMk_assoc, MonoidalClosed.linearHomEquivComm_symm_hom, indToCoindAux_of_not_rel, groupCohomology.cocyclesOfIsCocycle₂_coe, groupHomology.isoCycles₁_hom_comp_i, groupCohomology.cocyclesIso₀_inv_comp_iCocycles_apply, applyAsHom_hom, groupHomology.chainsMap_f_0_comp_chainsIso₀_apply, groupCohomology.H1π_comp_map, groupHomology.single_inv_ρ_self_add_single_mem_boundaries₁, groupCohomology.cocyclesMk₀_eq, groupHomology.lsingle_comp_chainsMap_f_assoc, groupHomology.single_mem_cycles₂_iff, groupCohomology.isoShortComplexH1_inv, groupHomology.boundaries₁_le_cycles₁, ihom_obj_ρ, groupCohomology.cochainsMap_f_1_comp_cochainsIso₁, groupCohomology.cocycles₁_ext_iff, groupCohomology.map_H0Iso_hom_f_assoc, coinvariantsTensorIndInv_mk_tmul_indMk, groupCohomology.eq_d₁₂_comp_inv_assoc, Representation.linHom.invariantsEquivRepHom_apply_hom, groupCohomology.H1InfRes_f, groupHomology.d₁₀ArrowIso_inv_left, groupHomology.H1AddEquivOfIsTrivial_symm_tmul, groupHomology.single_mem_cycles₁_iff, groupHomology.d₂₁_single_ρ_add_single_inv_mul, groupCohomology.isoShortComplexH2_inv, groupCohomology.map_id_comp_H0Iso_hom_assoc, groupCohomology.isoCocycles₂_hom_comp_i_assoc, groupHomology.eq_d₁₀_comp_inv_apply, ihom_obj_V_carrier, coindIso_hom_hom_hom, groupHomology.d₂₁_comp_d₁₀_assoc, groupCohomology.coe_mapCocycles₂, groupCohomology.eq_d₀₁_comp_inv_assoc, groupCohomology.H1π_comp_H1IsoOfIsTrivial_hom_assoc, groupCohomology.H1π_eq_iff, groupHomology.chainsMap_f_1_comp_chainsIso₁_apply, groupCohomology.isoCocycles₁_hom_comp_i_assoc, groupHomology.mapCycles₁_quotientGroupMk'_epi, groupHomology.mapCycles₁_comp_i_assoc, coinvariantsTensorFreeToFinsupp_mk_tmul_single, groupCohomology.coboundariesOfIsCoboundary₂_coe, groupHomology.mem_cycles₁_iff, groupCohomology.mapCocycles₁_comp_i, groupHomology.boundariesToCycles₁_apply, groupHomology.single_mem_cycles₂_iff_inv, groupHomology.d₁₀_single, groupCohomology.cocycles₁.d₁₂_apply, indResHomEquiv_symm_apply_hom, groupHomology.isoCycles₂_hom_comp_i_assoc, groupHomology.comp_d₃₂_eq, groupCohomology.π_comp_H2Iso_hom, groupHomology.H2π_eq_zero_iff, groupCohomology.isoCocycles₂_inv_comp_iCocycles_assoc, groupHomology.H1π_eq_iff, groupHomology.d₃₂_comp_d₂₁_apply, groupHomology.chainsMap_f, groupHomology.chainsMap_f_2_comp_chainsIso₂_apply, groupHomology.cyclesMap_comp_isoCycles₁_hom, groupCohomology.d₀₁_eq_zero
instCoeSortType 📖CompOp—
instModuleCarrierVModuleCat 📖CompOp—
instMonoidalActionTypeLinearization 📖CompOp
4 mathmath: linearization_η_hom_apply, linearization_Ύ_hom, linearization_Δ_hom, linearization_Ό_hom
instMonoidalClosed 📖CompOp
8 mathmath: MonoidalClosed.linearHomEquiv_symm_hom, ihom_ev_app_hom, MonoidalClosed.linearHomEquivComm_hom, homEquiv_def, MonoidalClosed.linearHomEquiv_hom, ihom_coev_app_hom, MonoidalClosed.linearHomEquivComm_symm_hom, ihom_obj_ρ_def
leftRegular 📖CompOp
33 mathmath: leftRegularHom_hom, diagonalSuccIsoTensorTrivial_inv_hom_single_left, diagonalSuccIsoTensorTrivial_inv_hom_single_right, diagonalSuccIsoTensorTrivial_inv_hom_single_single, coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply, coindVEquiv_symm_apply_coe, coindMap'_hom, coindFunctorIso_inv_app_hom_hom_apply_coe, leftRegularHomEquiv_symm_apply, Representation.coind'_apply_apply, diagonalOneIsoLeftRegular_inv_hom, coindIso_inv_hom_hom, diagonalSuccIsoTensorTrivial_hom_hom_single, coind'_ext_iff, leftRegularHom_hom_single, coindVEquiv_apply_hom, leftRegularHomEquiv_symm_single, FiniteCyclicGroup.resolution_complex, leftRegularTensorTrivialIsoFree_inv_hom, FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_norm, FiniteCyclicGroup.resolution_quasiIso, FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, FiniteCyclicGroup.leftRegular.range_norm_eq_ker_applyAsHom_sub, diagonalOneIsoLeftRegular_hom_hom, leftRegularHomEquiv_apply, leftRegular_projective, leftRegularTensorTrivialIsoFree_hom_hom_single_tmul_single, coindIso_hom_hom_hom, leftRegularTensorTrivialIsoFree_hom_hom, FiniteCyclicGroup.resolution.π_f, FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_linearCombination, leftRegularTensorTrivialIsoFree_inv_hom_single_single
leftRegularHom 📖CompOp
4 mathmath: leftRegularHom_hom, leftRegularHomEquiv_symm_apply, leftRegularHom_hom_single, FiniteCyclicGroup.resolution.π_f
leftRegularHomEquiv 📖CompOp
4 mathmath: leftRegularHomEquiv_symm_apply, Representation.coind'_apply_apply, leftRegularHomEquiv_symm_single, leftRegularHomEquiv_apply
leftRegularTensorTrivialIsoFree 📖CompOp
4 mathmath: leftRegularTensorTrivialIsoFree_inv_hom, leftRegularTensorTrivialIsoFree_hom_hom_single_tmul_single, leftRegularTensorTrivialIsoFree_hom_hom, leftRegularTensorTrivialIsoFree_inv_hom_single_single
linearization 📖CompOp
12 mathmath: coe_linearization_obj_ρ, linearization_single, coe_linearization_obj, linearization_η_hom_apply, linearization_obj_ρ, linearizationTrivialIso_inv_hom, linearization_Ύ_hom, linearizationTrivialIso_hom_hom, linearization_map_hom_single, linearization_Δ_hom, linearization_map_hom, linearization_Ό_hom
linearizationOfMulActionIso 📖CompOp—
linearizationTrivialIso 📖CompOp
2 mathmath: linearizationTrivialIso_inv_hom, linearizationTrivialIso_hom_hom
mkQ 📖CompOp
2 mathmath: groupHomology.coinfNatTrans_app, mkQ_hom
norm 📖CompOp
15 mathmath: FiniteCyclicGroup.chainComplexFunctor_obj, norm_comm_apply, FiniteCyclicGroup.groupCohomologyπOdd_eq_iff, FiniteCyclicGroup.groupCohomologyπEven_eq_zero_iff, normNatTrans_app, FiniteCyclicGroup.chainComplexFunctor_map_f, groupCohomology.norm_ofAlgebraAutOnUnits_eq, FiniteCyclicGroup.groupCohomologyπEven_eq_iff, FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_norm, norm_hom, FiniteCyclicGroup.leftRegular.range_norm_eq_ker_applyAsHom_sub, norm_comm_assoc, FiniteCyclicGroup.resolution.π_f, FiniteCyclicGroup.groupCohomologyπOdd_eq_zero_iff, norm_comm
normNatTrans 📖CompOp
1 mathmath: normNatTrans_app
of 📖CompOp
7 mathmath: Representation.repOfTprodIso_inv_apply, Representation.repOfTprodIso_apply, instIsTrivialCarrierVModuleCatOfCompLinearMapIdρ, coe_of, of_ρ, ihom_map_hom, instIsTrivialOfOfIsTrivial
ofAlgebraAut 📖CompOp—
ofAlgebraAutOnUnits 📖CompOp
1 mathmath: groupCohomology.norm_ofAlgebraAutOnUnits_eq
ofDistribMulAction 📖CompOp
9 mathmath: groupCohomology.cocyclesOfIsCocycle₁_coe, groupHomology.boundariesOfIsBoundary₁_coe, ofDistribMulAction_ρ_apply_apply, groupCohomology.coboundariesOfIsCoboundary₁_coe, groupHomology.cyclesOfIsCycle₁_coe, groupHomology.boundariesOfIsBoundary₂_coe, groupHomology.cyclesOfIsCycle₂_coe, groupCohomology.cocyclesOfIsCocycle₂_coe, groupCohomology.coboundariesOfIsCoboundary₂_coe
ofModuleMonoidAlgebra 📖CompOp
3 mathmath: ofModuleMonoidAlgebra_obj_coe, ofModuleMonoidAlgebra_obj_ρ, unit_iso_comm
ofMulAction 📖CompOp
3 mathmath: ofMulActionSubsingletonIsoTrivial_inv_hom, ofMulActionSubsingletonIsoTrivial_hom_hom, standardComplex.forget₂ToModuleCatHomotopyEquiv_f_0_eq
ofMulActionSubsingletonIsoTrivial 📖CompOp
2 mathmath: ofMulActionSubsingletonIsoTrivial_inv_hom, ofMulActionSubsingletonIsoTrivial_hom_hom
ofMulDistribMulAction 📖CompOp
7 mathmath: toAdditive_symm_apply, ofMulDistribMulAction_ρ_apply_apply, groupCohomology.norm_ofAlgebraAutOnUnits_eq, toAdditive_apply, groupCohomology.cocyclesOfIsMulCocycle₂_coe, groupCohomology.coboundariesOfIsMulCoboundary₁_coe, groupCohomology.cocyclesOfIsMulCocycle₁_coe
ofQuotient 📖CompOp
4 mathmath: groupHomology.map₁_quotientGroupMk'_epi, groupHomology.H1CoresCoinfOfTrivial_g, groupHomology.H1CoresCoinfOfTrivial_X₃, groupHomology.mapCycles₁_quotientGroupMk'_epi
quotient 📖CompOp
1 mathmath: mkQ_hom
resOfQuotientIso 📖CompOp
3 mathmath: groupHomology.map₁_quotientGroupMk'_epi, groupHomology.H1CoresCoinfOfTrivial_g, groupHomology.mapCycles₁_quotientGroupMk'_epi
subrepresentation 📖CompOp
1 mathmath: subtype_hom
subtype 📖CompOp
4 mathmath: subtype_hom, groupCohomology.infNatTrans_app, coinvariantsShortComplex_f, groupCohomology.H1InfRes_f
toModuleMonoidAlgebra 📖CompOp
1 mathmath: unit_iso_comm
toModuleMonoidAlgebraMap 📖CompOp—
trivial 📖CompOp
31 mathmath: diagonalSuccIsoTensorTrivial_inv_hom_single_left, coinvariantsAdjunction_counit_app, diagonalSuccIsoTensorTrivial_inv_hom_single_right, diagonalSuccIsoTensorTrivial_inv_hom_single_single, trivial_projective_of_subsingleton, instIsTrivialTrivial, standardComplex.ΔToSingle₀_comp_eq, barResolution_complex, ofMulActionSubsingletonIsoTrivial_inv_hom, diagonalSuccIsoTensorTrivial_hom_hom_single, ofMulActionSubsingletonIsoTrivial_hom_hom, linearizationTrivialIso_inv_hom, standardComplex.quasiIso_forget₂_ΔToSingle₀, standardComplex.d_comp_Δ, trivialFunctor_map_hom, FiniteCyclicGroup.resolution_complex, leftRegularTensorTrivialIsoFree_inv_hom, standardComplex.instQuasiIsoNatΔToSingle₀, trivial_def, FiniteCyclicGroup.resolution_quasiIso, FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, standardComplex.forget₂ToModuleCatHomotopyEquiv_f_0_eq, leftRegularTensorTrivialIsoFree_hom_hom_single_tmul_single, linearizationTrivialIso_hom_hom, FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, leftRegularTensorTrivialIsoFree_hom_hom, FiniteCyclicGroup.resolution_π, FiniteCyclicGroup.resolution.π_f, leftRegularTensorTrivialIsoFree_inv_hom_single_single, FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply
trivialFunctor 📖CompOp
11 mathmath: invariantsAdjunction_homEquiv_symm_apply_hom, instIsTrivialObjModuleCatTrivialFunctor, coinvariantsAdjunction_counit_app, coinvariantsAdjunction_homEquiv_symm_apply_hom, invariantsAdjunction_unit_app, trivialFunctor_obj_V, invariantsAdjunction_counit_app_hom, trivialFunctor_map_hom, invariantsAdjunction_homEquiv_apply_hom, coinvariantsAdjunction_unit_app_hom, coinvariantsAdjunction_homEquiv_apply_hom
unitIso 📖CompOp—
unitIsoAddEquiv 📖CompOp
1 mathmath: unit_iso_comm
ρ 📖CompOp
149 mathmath: resCoindHomEquiv_symm_apply_hom, resCoindHomEquiv_apply_hom, invariantsAdjunction_homEquiv_symm_apply_hom, coe_linearization_obj_ρ, groupCohomology.mem_cocycles₂_def, groupHomology.coinfNatTrans_app, groupCohomology.d₂₃_hom_apply, groupHomology.coinvariantsMk_comp_H0Iso_inv_apply, groupCohomology.cocyclesIso₀_hom_comp_f, resCoindAdjunction_counit_app_hom_hom, groupHomology.d₃₂_single, leftRegularHom_hom, groupCohomology.π_comp_H0Iso_hom, coe_res_obj_ρ, diagonalHomEquiv_symm_apply, groupCohomology.H0IsoOfIsTrivial_hom, groupHomology.mem_cycles₂_iff, groupCohomology.d₁₂_hom_apply, groupCohomology.d₀₁_hom_apply, linearization_single, groupHomology.d₃₂_single_one_thd, groupCohomology.map_H0Iso_hom_f_apply, groupCohomology.H0IsoOfIsTrivial_inv_apply, finsuppToCoinvariantsTensorFree_single, groupHomology.chains₁ToCoinvariantsKer_surjective, coinvariantsTensorFreeLEquiv_symm_apply, resCoindAdjunction_unit_app_hom_hom, groupCohomology.mem_cocycles₁_def, FiniteCyclicGroup.groupHomologyπOdd_eq_zero_iff, coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply, groupHomology.single_one_snd_sub_single_one_fst_mem_boundaries₂, groupHomology.d₂₁_single_inv_mul_ρ_add_single, groupCohomology.cocyclesIso₀_inv_comp_iCocycles, groupHomology.d₁₀_comp_coinvariantsMk_apply, ρ_hom, groupCohomology.shortComplexH0_f, coindVEquiv_symm_apply_coe, groupHomology.single_one_fst_sub_single_one_snd_mem_boundaries₂, groupCohomology.infNatTrans_app, invariantsAdjunction_unit_app, coinvariantsFunctor_obj_carrier, groupHomology.d₂₁_single_inv_self_ρ_sub_self_inv, groupCohomology.subtype_comp_d₀₁_apply, groupCohomology.cocycles₂_map_one_snd, coinvariantsTensorFreeLEquiv_apply, groupCohomology.map_H0Iso_hom_f, groupCohomology.cocycles₂_ρ_map_inv_sub_map_inv, ofMulDistribMulAction_ρ_apply_apply, instIsTrivialCarrierVModuleCatOfCompLinearMapIdρ, indResAdjunction_counit_app_hom_hom, groupHomology.pOpcycles_comp_opcyclesIso_hom_apply, coindToInd_apply, FiniteCyclicGroup.groupHomologyπEven_eq_iff, groupCohomology.π_comp_H0Iso_hom_apply, groupHomology.π_comp_H0Iso_hom_apply, groupCohomology.cocyclesIso₀_inv_comp_iCocycles_assoc, groupCohomology.cocycles₁_map_inv, indToCoindAux_mul_fst, ihom_obj_ρ_apply, groupCohomology.π_comp_H0Iso_hom_assoc, groupCohomology.mem_cocycles₂_iff, tensor_ρ, coindFunctorIso_inv_app_hom_hom_apply_coe, ofDistribMulAction_ρ_apply_apply, groupCohomology.d₀₁_ker_eq_invariants, groupCohomology.mem_cocycles₁_iff, groupHomology.range_d₁₀_eq_coinvariantsKer, ofModuleMonoidAlgebra_obj_ρ, groupCohomology.π_comp_H0IsoOfIsTrivial_hom_apply, coinvariantsShortComplex_f, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f_assoc, groupHomology.inhomogeneousChains.d_single, coindIso_inv_hom_hom, groupCohomology.map_id_comp_H0Iso_hom_apply, groupCohomology.subtype_comp_d₀₁_assoc, groupCohomology.map_id_comp_H0Iso_hom, indToCoindAux_mul_snd, Representation.linHom.invariantsEquivRepHom_symm_apply_coe, linearization_obj_ρ, toCoinvariantsMkQ_hom, groupCohomology.cocyclesIso₀_hom_comp_f_assoc, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv_apply, of_ρ, invariantsAdjunction_counit_app_hom, inhomogeneousCochains.d_hom_apply, groupHomology.d₂₁_single_self_inv_ρ_sub_inv_self, groupHomology.single_ρ_self_add_single_inv_mem_boundaries₁, FiniteCyclicGroup.groupHomologyπEven_eq_zero_iff, quotientToInvariantsFunctor_obj_V, leftRegularHom_hom_single, groupCohomology.cocyclesMap_cocyclesIso₀_hom_f, coinvariantsMk_app_hom, coindVEquiv_apply_hom, ihom_map_hom, groupHomology.single_one_snd_sub_single_one_snd_mem_boundaries₂, unit_iso_comm, leftRegularHomEquiv_symm_single, norm_hom, indResAdjunction_unit_app_hom_hom, ofHom_ρ, groupHomology.map_id_comp_H0Iso_hom_apply, Action_ρ_eq_ρ, coindMap_hom, trivial_def, invariantsAdjunction_homEquiv_apply_hom, hom_comm_apply, FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, FiniteCyclicGroup.groupHomologyπOdd_eq_iff, coinvariantsTensorMk_apply, indMap_hom, FDRep.forget₂_ρ, invariantsFunctor_map_hom, groupHomology.d₂₁_single_one_snd, groupHomology.d₃₂_single_one_snd, coinvariantsTensorIndHom_mk_tmul_indVMk, Representation.linHom.mem_invariants_iff_comm, groupCohomology.cocyclesIso₀_hom_comp_f_apply, groupCohomology.subtype_comp_d₀₁, freeLift_hom, groupHomology.d₁₀_single_inv, res_obj_ρ, freeLift_hom_single_single, groupHomology.d₂₁_single, groupHomology.inhomogeneousChains.d_eq, groupCohomology.cocyclesIso₀_inv_comp_iCocycles_apply, applyAsHom_hom, groupHomology.single_inv_ρ_self_add_single_mem_boundaries₁, indResHomEquiv_apply_hom, groupCohomology.cocyclesMk₀_eq, groupHomology.single_mem_cycles₂_iff, FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, ihom_obj_ρ, groupCohomology.map_H0Iso_hom_f_assoc, coinvariantsTensorIndInv_mk_tmul_indMk, Representation.linHom.invariantsEquivRepHom_apply_hom, groupCohomology.H1InfRes_f, groupHomology.single_mem_cycles₁_iff, coinvariantsFunctor_map_hom, groupHomology.d₂₁_single_ρ_add_single_inv_mul, groupCohomology.map_id_comp_H0Iso_hom_assoc, ihom_obj_ρ_def, coindIso_hom_hom_hom, groupHomology.H0π_comp_H0Iso_hom_apply, coinvariantsTensorFreeToFinsupp_mk_tmul_single, groupHomology.mem_cycles₁_iff, groupHomology.single_mem_cycles₂_iff_inv, groupHomology.d₁₀_single, indResHomEquiv_symm_apply_hom, FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply

Theorems

NameKindAssumesProvesValidatesDepends On
Action_ρ_eq_ρ 📖mathematical—Action.ρ
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
MonoidHom.comp
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
Action.V
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
CategoryTheory.Preadditive.instSemiringEnd
ModuleCat.instPreadditive
RingEquiv.toMonoidHom
RingEquiv.symm
CategoryTheory.End.mul
Module.End.instMul
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
CategoryTheory.Preadditive.instRingEnd
LinearMap.instAdd
ModuleCat.endRingEquiv
ρ
——
applyAsHom_comm 📖mathematical—CategoryTheory.CategoryStruct.comp
Rep
CommRing.toRing
CommMonoid.toMonoid
CategoryTheory.Category.toCategoryStruct
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
applyAsHom
—Action.hom_ext
ModuleCat.hom_ext
LinearMap.ext
hom_comm_apply
applyAsHom_comm_apply 📖mathematical—DFunLike.coe
Action.HomSubtype
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
CommMonoid.toMonoid
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.V
Action.instFunLikeHomSubtypeV
CategoryTheory.ConcreteCategory.hom
Rep
Action.instCategory
Action.instConcreteCategoryHomSubtypeV
applyAsHom
—CategoryTheory.comp_apply
Mathlib.Tactic.Elementwise.hom_elementwise
applyAsHom_comm
applyAsHom_comm_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
Rep
CommRing.toRing
CommMonoid.toMonoid
CategoryTheory.Category.toCategoryStruct
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
applyAsHom
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
applyAsHom_comm
applyAsHom_hom 📖mathematical—Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
CommMonoid.toMonoid
applyAsHom
ModuleCat.ofHom
ModuleCat.carrier
ModuleCat.isAddCommGroup
ModuleCat.isModule
DFunLike.coe
Representation
Action.V
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
ρ
——
coe_linearization_obj 📖mathematical—ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Functor.obj
Action
CategoryTheory.types
Action.instCategory
Rep
linearization
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
——
coe_linearization_obj_ρ 📖mathematical—DFunLike.coe
MonoidHom
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
Action.V
CategoryTheory.types
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
MonoidHom.instFunLike
ρ
CategoryTheory.Functor.obj
Action
Action.instCategory
Rep
CommRing.toRing
ModuleCat
ModuleCat.moduleCategory
linearization
Finsupp.lmapDomain
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
CategoryTheory.End.monoid
Action.ρ
——
coe_of 📖mathematical—ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
of
——
coe_res_obj_ρ 📖mathematical—DFunLike.coe
MonoidHom
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
ModuleCat.isModule
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
MonoidHom.instFunLike
ρ
CategoryTheory.Functor.obj
Action
Action.instCategory
Action.res
Representation
——
diagonalHomEquiv_apply 📖mathematical—DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Quiver.Hom
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
diagonal
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
Action.instPreadditive
ModuleCat.instPreadditive
Pi.addCommMonoid
ModuleCat.carrier
Action.V
instAddCommGroupCarrierVModuleCat
CategoryTheory.Linear.homModule
instLinearRep
Pi.Function.module
ModuleCat.isModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
diagonalHomEquiv
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
ModuleCat.isAddCommGroup
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.Hom.hom
Finsupp.single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Fin.partialProd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
—RingHomInvPair.ids
CategoryTheory.Category.comp_id
diagonalSuccIsoFree_inv_hom_single_single
one_smul
diagonalHomEquiv_symm_apply 📖mathematical—DFunLike.coe
Action.V
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
diagonal
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.Hom.hom
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHomInvPair.ids
Quiver.Hom
Rep
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Action.instCategory
Pi.addCommMonoid
instAddCommGroupCarrierVModuleCat
CategoryTheory.Preadditive.homGroup
Action.instPreadditive
ModuleCat.instPreadditive
Pi.Function.module
CategoryTheory.Linear.homModule
instLinearRep
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
LinearEquiv.symm
diagonalHomEquiv
Finsupp.single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Representation
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
ρ
MulOne.toMul
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
—RingHomInvPair.ids
RingHomCompTriple.ids
CategoryTheory.Category.comp_id
diagonalSuccIsoFree_hom_hom_single
Finsupp.uncurry_single
Finsupp.linearCombination_single
one_smul
diagonalOneIsoLeftRegular_hom_hom 📖mathematical—Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
diagonal
leftRegular
CategoryTheory.Iso.hom
Rep
Action.instCategory
diagonalOneIsoLeftRegular
ModuleCat.ofHom
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Finsupp.instAddCommGroup
Ring.toAddCommGroup
Finsupp.module
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toModule
LinearEquiv.toLinearMap
Ring.toSemiring
RingHom.id
AddCommGroup.toAddCommMonoid
Finsupp.domLCongr
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Equiv.funUnique
Fin.instUnique
——
diagonalOneIsoLeftRegular_inv_hom 📖mathematical—Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
leftRegular
diagonal
CategoryTheory.Iso.inv
Rep
Action.instCategory
diagonalOneIsoLeftRegular
ModuleCat.ofHom
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Finsupp.instAddCommGroup
Ring.toAddCommGroup
Finsupp.module
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toModule
LinearEquiv.toLinearMap
Ring.toSemiring
RingHom.id
AddCommGroup.toAddCommMonoid
Finsupp.domLCongr
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Equiv.symm
Equiv.funUnique
Fin.instUnique
—Finsupp.domLCongr_symm
diagonalSuccIsoFree_hom_hom_single 📖mathematical—DFunLike.coe
Action.V
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
diagonal
free
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.Hom.hom
CategoryTheory.Iso.hom
Rep
Action.instCategory
diagonalSuccIsoFree
Finsupp.single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Finsupp
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finsupp.instZero
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
—diagonalSuccIsoTensorTrivial_hom_hom_single
leftRegularTensorTrivialIsoFree_hom_hom_single_tmul_single
one_mul
diagonalSuccIsoFree_inv_hom_single 📖mathematical—DFunLike.coe
Action.V
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
free
diagonal
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.Hom.hom
CategoryTheory.Iso.inv
Rep
Action.instCategory
diagonalSuccIsoFree
Finsupp.single
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finsupp.instZero
CommSemiring.toSemiring
CommRing.toCommSemiring
NonAssocSemiring.toNonUnitalNonAssocSemiring
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
AddEquiv
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
LinearMap.instAdd
EquivLike.toFunLike
AddEquiv.instEquivLike
Finsupp.lift
Function.hasSMul
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Monoid.toMulAction
Fin.partialProd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
—Finsupp.induction
Finsupp.single_zero
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Finsupp.smul_single
mul_one
Finsupp.single_add
map_add
SemilinearMapClass.toAddHomClass
diagonalSuccIsoFree_inv_hom_single_single
Finsupp.sum_add_index'
Finsupp.sum_single_index
diagonalSuccIsoFree_inv_hom_single_single 📖mathematical—DFunLike.coe
Action.V
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
free
diagonal
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.Hom.hom
CategoryTheory.Iso.inv
Rep
Action.instCategory
diagonalSuccIsoFree
Finsupp.single
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finsupp.instZero
Function.hasSMul
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Monoid.toMulAction
Fin.partialProd
—diagonalSuccIsoTensorTrivial_inv_hom_single_single
leftRegularTensorTrivialIsoFree_inv_hom_single_single
mul_one
diagonalSuccIsoTensorTrivial_hom_hom_single 📖mathematical—DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ModuleCat.carrier
CommRing.toRing
CategoryTheory.MonoidalCategoryStruct.tensorObj
ModuleCat
ModuleCat.moduleCategory
ModuleCat.MonoidalCategory.instMonoidalCategoryStruct
ModuleCat.of
Finsupp.instAddCommGroup
Ring.toAddCommGroup
Finsupp.module
Ring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toModule
Finsupp.instAddCommMonoid
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.Hom.hom
Action.V
DivInvMonoid.toMonoid
Group.toDivInvMonoid
diagonal
Rep
Action.instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Action.instMonoidalCategory
ModuleCat.monoidalCategory
leftRegular
trivial
Action.Hom.hom
CategoryTheory.Iso.hom
diagonalSuccIsoTensorTrivial
Finsupp.single
TensorProduct.tmul
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
—RingHomCompTriple.ids
RingHomInvPair.ids
CategoryTheory.MonoidalCategory.id_tensorHom
ModuleCat.hom_id
LinearMap.lTensor_id
LinearMap.comp.congr_simp
Finsupp.mapDomain_single
Action.diagonalSuccIsoTensorTrivial_hom_hom_apply
finsuppTensorFinsupp'_symm_single_eq_single_one_tmul
diagonalSuccIsoTensorTrivial_inv_hom_single_left 📖mathematical—DFunLike.coe
Action.V
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.MonoidalCategoryStruct.tensorObj
Rep
Action.instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Action.instMonoidalCategory
ModuleCat.monoidalCategory
leftRegular
trivial
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finsupp.instAddCommGroup
Ring.toAddCommGroup
Finsupp.module
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toModule
diagonal
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.Hom.hom
CategoryTheory.Iso.inv
diagonalSuccIsoTensorTrivial
TensorProduct.tmul
CategoryTheory.Functor.obj
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
Action
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.inverse
CategoryTheory.Equivalence.symm
Action.functorCategoryEquivalence
Finsupp.single
NonAssocSemiring.toNonUnitalNonAssocSemiring
Finsupp.instAddCommMonoid
AddEquiv
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
LinearMap.instAdd
EquivLike.toFunLike
AddEquiv.instEquivLike
Finsupp.lift
Function.hasSMul
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Monoid.toMulAction
Fin.partialProd
—Finsupp.induction
TensorProduct.tmul_zero
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
TensorProduct.tmul_add
map_add
SemilinearMapClass.toAddHomClass
Finsupp.smul_single
Finsupp.sum_single_index
MulZeroClass.zero_mul
Finsupp.single_zero
mul_comm
Finsupp.instIsRightCancelAdd
AddRightCancelSemigroup.toIsRightCancelAdd
diagonalSuccIsoTensorTrivial_inv_hom_single_single
diagonalSuccIsoTensorTrivial_inv_hom_single_right 📖mathematical—DFunLike.coe
Action.V
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.MonoidalCategoryStruct.tensorObj
Rep
Action.instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Action.instMonoidalCategory
ModuleCat.monoidalCategory
leftRegular
trivial
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finsupp.instAddCommGroup
Ring.toAddCommGroup
Finsupp.module
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toModule
diagonal
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.Hom.hom
CategoryTheory.Iso.inv
diagonalSuccIsoTensorTrivial
TensorProduct.tmul
CategoryTheory.Functor.obj
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
Action
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.inverse
CategoryTheory.Equivalence.symm
Action.functorCategoryEquivalence
Finsupp.single
NonAssocSemiring.toNonUnitalNonAssocSemiring
Finsupp.instAddCommMonoid
AddEquiv
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
LinearMap.instAdd
EquivLike.toFunLike
AddEquiv.instEquivLike
Finsupp.lift
Function.hasSMul
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Monoid.toMulAction
Fin.partialProd
—Finsupp.induction
TensorProduct.zero_tmul
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
TensorProduct.add_tmul
map_add
SemilinearMapClass.toAddHomClass
Finsupp.smul_single
Finsupp.sum_single_index
MulZeroClass.zero_mul
Finsupp.single_zero
Finsupp.instIsRightCancelAdd
AddRightCancelSemigroup.toIsRightCancelAdd
diagonalSuccIsoTensorTrivial_inv_hom_single_single
diagonalSuccIsoTensorTrivial_inv_hom_single_single 📖mathematical—DFunLike.coe
Action.V
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.MonoidalCategoryStruct.tensorObj
Rep
Action.instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Action.instMonoidalCategory
ModuleCat.monoidalCategory
leftRegular
trivial
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finsupp.instAddCommGroup
Ring.toAddCommGroup
Finsupp.module
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toModule
diagonal
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.Hom.hom
CategoryTheory.Iso.inv
diagonalSuccIsoTensorTrivial
TensorProduct.tmul
CategoryTheory.Functor.obj
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
Action
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.inverse
CategoryTheory.Equivalence.symm
Action.functorCategoryEquivalence
Finsupp.single
NonAssocSemiring.toNonUnitalNonAssocSemiring
Function.hasSMul
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
Monoid.toMulAction
Fin.partialProd
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
—Action.diagonalSuccIsoTensorTrivial_inv_hom_apply
RingHomCompTriple.ids
RingHomInvPair.ids
CategoryTheory.Category.assoc
ModuleCat.hom_id
TensorProduct.map_id
LinearMap.comp.congr_simp
finsuppTensorFinsupp'_single_tmul_single
Finsupp.mapDomain_single
diagonal_succ_projective 📖mathematical—CategoryTheory.Projective
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
diagonal
—CategoryTheory.Projective.of_iso
free_projective
epi_iff_surjective 📖mathematical—CategoryTheory.Epi
Rep
CommRing.toRing
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
ModuleCat.carrier
Action.V
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.Hom.hom
—ModuleCat.epi_iff_surjective
CategoryTheory.Functor.map_epi
CategoryTheory.preservesEpimorphisms_of_preservesColimitsOfShape
CategoryTheory.Limits.PreservesFiniteColimits.preservesFiniteColimits
CategoryTheory.Limits.PreservesColimits.preservesFiniteColimits
instPreservesColimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV
CategoryTheory.Functor.epi_of_epi_map
CategoryTheory.Functor.reflectsEpimorphisms_of_faithful
CategoryTheory.forget₂_faithful
finsuppTensorLeft_hom_hom 📖mathematical—Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
Rep
Action.instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Action.instMonoidalCategory
ModuleCat.monoidalCategory
finsupp
CategoryTheory.Iso.hom
finsuppTensorLeft
ModuleCat.ofHom
TensorProduct
CommRing.toCommSemiring
Finsupp
ModuleCat.carrier
Action.V
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
Finsupp.instAddCommMonoid
Finsupp.module
CommSemiring.toSemiring
ModuleCat.isModule
TensorProduct.zero
TensorProduct.addCommGroup
Finsupp.instAddCommGroup
TensorProduct.leftModule
Ring.toSemiring
ModuleCat.isAddCommGroup
TensorProduct.addCommMonoid
LinearEquiv.toLinearMap
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.finsuppLeft
Algebra.id
——
finsuppTensorLeft_inv_hom 📖mathematical—Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
finsupp
CategoryTheory.MonoidalCategoryStruct.tensorObj
Rep
Action.instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Action.instMonoidalCategory
ModuleCat.monoidalCategory
CategoryTheory.Iso.inv
finsuppTensorLeft
ModuleCat.ofHom
Finsupp
TensorProduct
CommRing.toCommSemiring
ModuleCat.carrier
Action.V
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
ModuleCat.isModule
TensorProduct.zero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finsupp.instAddCommMonoid
Finsupp.module
CommSemiring.toSemiring
Finsupp.instAddCommGroup
TensorProduct.addCommGroup
ModuleCat.isAddCommGroup
Ring.toSemiring
TensorProduct.addCommMonoid
TensorProduct.leftModule
LinearEquiv.toLinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearEquiv.symm
TensorProduct.finsuppLeft
Algebra.id
——
finsuppTensorRight_hom_hom 📖mathematical—Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
Rep
Action.instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Action.instMonoidalCategory
ModuleCat.monoidalCategory
finsupp
CategoryTheory.Iso.hom
finsuppTensorRight
ModuleCat.ofHom
TensorProduct
CommRing.toCommSemiring
ModuleCat.carrier
Action.V
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
Finsupp.instAddCommMonoid
ModuleCat.isModule
Finsupp.module
CommSemiring.toSemiring
TensorProduct.zero
TensorProduct.addCommGroup
ModuleCat.isAddCommGroup
TensorProduct.leftModule
Ring.toSemiring
Finsupp.instAddCommGroup
TensorProduct.addCommMonoid
LinearEquiv.toLinearMap
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct.finsuppRight
Algebra.id
——
finsuppTensorRight_inv_hom 📖mathematical—Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
finsupp
CategoryTheory.MonoidalCategoryStruct.tensorObj
Rep
Action.instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Action.instMonoidalCategory
ModuleCat.monoidalCategory
CategoryTheory.Iso.inv
finsuppTensorRight
ModuleCat.ofHom
Finsupp
TensorProduct
CommRing.toCommSemiring
ModuleCat.carrier
Action.V
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
ModuleCat.isModule
TensorProduct.zero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finsupp.instAddCommMonoid
Finsupp.module
CommSemiring.toSemiring
Finsupp.instAddCommGroup
TensorProduct.addCommGroup
ModuleCat.isAddCommGroup
Ring.toSemiring
TensorProduct.addCommMonoid
TensorProduct.leftModule
LinearEquiv.toLinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearEquiv.symm
TensorProduct.finsuppRight
Algebra.id
——
freeLiftLEquiv_apply 📖mathematical—DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Quiver.Hom
Rep
CommRing.toRing
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
free
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
Action.instPreadditive
ModuleCat.instPreadditive
Pi.addCommMonoid
ModuleCat.carrier
Action.V
instAddCommGroupCarrierVModuleCat
CategoryTheory.Linear.homModule
instLinearRep
Pi.Function.module
ModuleCat.isModule
EquivLike.toFunLike
LinearEquiv.instEquivLike
freeLiftLEquiv
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
ModuleCat.isAddCommGroup
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.Hom.hom
Finsupp.single
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finsupp.instZero
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
—RingHomInvPair.ids
freeLiftLEquiv_symm_apply 📖mathematical—DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Quiver.Hom
Rep
CommRing.toRing
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
free
Pi.addCommMonoid
ModuleCat.carrier
Action.V
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
CategoryTheory.Preadditive.homGroup
Action.instPreadditive
ModuleCat.instPreadditive
Pi.Function.module
ModuleCat.isModule
CategoryTheory.Linear.homModule
instLinearRep
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
freeLiftLEquiv
freeLift
—RingHomInvPair.ids
freeLift_hom 📖mathematical—Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
free
freeLift
ModuleCat.ofHom
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finsupp.instZero
ModuleCat.carrier
Finsupp.instAddCommGroup
Ring.toAddCommGroup
Finsupp.module
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toModule
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.comp
Ring.toSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Finsupp.linearCombination
DFunLike.coe
LinearMap
Action.V
instAddCommGroupCarrierVModuleCat
LinearMap.instFunLike
Representation
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
ρ
LinearEquiv.toLinearMap
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
LinearEquiv.symm
Finsupp.curryLinearEquiv
——
freeLift_hom_single_single 📖mathematical—DFunLike.coe
Action.V
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
free
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.Hom.hom
freeLift
Finsupp.single
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finsupp.instZero
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
instAddCommGroupCarrierVModuleCat
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
Representation
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
ρ
—Finsupp.uncurry_single
Finsupp.linearCombination_single
free_ext 📖—DFunLike.coe
Action.V
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
free
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.Hom.hom
Finsupp.single
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finsupp.instZero
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
——LinearEquiv.injective
RingHomInvPair.ids
free_ext_iff 📖mathematical—DFunLike.coe
Action.V
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
free
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.Hom.hom
Finsupp.single
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finsupp.instZero
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
—free_ext
free_projective 📖mathematical—CategoryTheory.Projective
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
free
—CategoryTheory.Adjunction.projective_of_map_projective
CategoryTheory.Equivalence.full_functor
CategoryTheory.Equivalence.faithful_functor
ModuleCat.projective_of_free
homEquiv_apply_hom 📖mathematical—Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Functor.obj
Rep
Action.instCategory
ihom
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Action.instMonoidalCategory
ModuleCat.monoidalCategory
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
ModuleCat.ofHom
ModuleCat.carrier
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Action.V
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
ModuleCat.isModule
ModuleCat.isAddCommGroup
LinearMap.addCommGroup
LinearMap.module
LinearMap.flip
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
Action
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.inverse
CategoryTheory.Equivalence.symm
Action.functorCategoryEquivalence
Ring.toSemiring
TensorProduct.curry
ModuleCat.Hom.hom
——
homEquiv_def 📖mathematical—CategoryTheory.Adjunction.homEquiv
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.MonoidalCategory.tensorLeft
Action.instMonoidalCategory
ModuleCat.monoidalCategory
CategoryTheory.ihom
CategoryTheory.MonoidalClosed.closed
instMonoidalClosed
CategoryTheory.ihom.adjunction
homEquiv
—CategoryTheory.Adjunction.mkOfHomEquiv_homEquiv
homEquiv_symm_apply_hom 📖mathematical—Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.MonoidalCategoryStruct.tensorObj
Rep
Action.instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Action.instMonoidalCategory
ModuleCat.monoidalCategory
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
ihom
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
ModuleCat.ofHom
TensorProduct
CommRing.toCommSemiring
ModuleCat.carrier
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
Action
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.inverse
CategoryTheory.Equivalence.symm
Action.functorCategoryEquivalence
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
TensorProduct.addCommGroup
TensorProduct.instModule
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.addCommMonoid
LinearMap.module
TensorProduct.addCommMonoid
LinearMap.instFunLike
TensorProduct.uncurry
LinearMap.flip
Ring.toSemiring
Action.V
instAddCommGroupCarrierVModuleCat
ModuleCat.Hom.hom
——
hom_comm_apply 📖mathematical—DFunLike.coe
Action.V
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.Hom.hom
CommSemiring.toSemiring
CommRing.toCommSemiring
instAddCommGroupCarrierVModuleCat
Representation
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
ρ
—LinearMap.ext_iff
ModuleCat.hom_ext_iff
Action.Hom.comm
ihom_coev_app_hom 📖mathematical—Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Functor.obj
Rep
Action.instCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.MonoidalCategory.tensorLeft
Action.instMonoidalCategory
ModuleCat.monoidalCategory
CategoryTheory.ihom
CategoryTheory.MonoidalClosed.closed
instMonoidalClosed
CategoryTheory.NatTrans.app
CategoryTheory.ihom.coev
ModuleCat.ofHom
ModuleCat.carrier
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Action.V
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
ModuleCat.isModule
ModuleCat.isAddCommGroup
LinearMap.addCommGroup
LinearMap.module
LinearMap.flip
TensorProduct
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
Action
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.inverse
CategoryTheory.Equivalence.symm
Action.functorCategoryEquivalence
TensorProduct.addCommMonoid
TensorProduct.instModule
TensorProduct.smulCommClass_left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
—ModuleCat.hom_ext
TensorProduct.smulCommClass_left
smulCommClass_self
LinearMap.ext
ihom_ev_app_hom 📖mathematical—Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Functor.obj
Rep
Action.instCategory
CategoryTheory.Functor.comp
CategoryTheory.ihom
Action.instMonoidalCategory
ModuleCat.monoidalCategory
CategoryTheory.MonoidalClosed.closed
instMonoidalClosed
CategoryTheory.MonoidalCategory.tensorLeft
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.ihom.ev
ModuleCat.ofHom
TensorProduct
CommRing.toCommSemiring
ModuleCat.carrier
Action.V
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
ModuleCat.isModule
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
TensorProduct.addCommGroup
ModuleCat.isAddCommGroup
TensorProduct.instModule
DFunLike.coe
CommSemiring.toCommMonoid
TensorProduct.addCommMonoid
LinearMap.instSMulCommClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
LinearMap.instFunLike
TensorProduct.uncurry
LinearMap.flip
LinearMap.id
—ModuleCat.hom_ext
smulCommClass_self
LinearMap.instSMulCommClass
LinearMap.ext
ihom_map_hom 📖mathematical—Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
of
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
Action.V
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
ModuleCat.isModule
LinearMap.addCommGroup
ModuleCat.isAddCommGroup
LinearMap.module
Representation.linHom
ρ
CategoryTheory.Functor.map
Rep
Action.instCategory
ihom
ModuleCat.ofHom
DFunLike.coe
Ring.toSemiring
LinearMap.addCommMonoid
LinearMap.instFunLike
LinearMap.llcomp
ModuleCat.Hom.hom
——
ihom_obj_V_carrier 📖mathematical—ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Functor.obj
Rep
Action.instCategory
ihom
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
ModuleCat.isModule
——
ihom_obj_V_isAddCommGroup 📖mathematical—ModuleCat.isAddCommGroup
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Functor.obj
Rep
Action.instCategory
ihom
LinearMap.addCommGroup
ModuleCat.carrier
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
ModuleCat.isModule
RingHom.id
Semiring.toNonAssocSemiring
——
ihom_obj_V_isModule 📖mathematical—ModuleCat.isModule
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Functor.obj
Rep
Action.instCategory
ihom
LinearMap.module
ModuleCat.carrier
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
RingHom.id
Semiring.toNonAssocSemiring
——
ihom_obj_ρ 📖mathematical—Action.ρ
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Functor.obj
Rep
Action.instCategory
ihom
MonoidHom.comp
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
ModuleCat.of
CommSemiring.toSemiring
CommRing.toCommSemiring
Action.V
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
ModuleCat.isModule
LinearMap.addCommGroup
ModuleCat.isAddCommGroup
LinearMap.module
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
CategoryTheory.Preadditive.instSemiringEnd
ModuleCat.instPreadditive
RingEquiv.toMonoidHom
RingEquiv.symm
CategoryTheory.End.mul
Module.End.instMul
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
CategoryTheory.Preadditive.instRingEnd
LinearMap.instAdd
ModuleCat.endRingEquiv
Representation.linHom
ρ
——
ihom_obj_ρ_apply 📖mathematical—DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
ModuleCat.isModule
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
LinearMap.instFunLike
Representation
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
ρ
CategoryTheory.Functor.obj
Rep
Action.instCategory
ihom
LinearMap.comp
RingHomCompTriple.ids
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
—smulCommClass_self
ihom_obj_ρ_def 📖mathematical—ρ
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Functor.obj
Rep
CommRing.toRing
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.ihom
Action.instMonoidalCategory
ModuleCat.monoidalCategory
CategoryTheory.MonoidalClosed.closed
instMonoidalClosed
ihom
——
instEnoughProjectives 📖mathematical—CategoryTheory.EnoughProjectives
Rep
CommRing.toRing
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
—CategoryTheory.Equivalence.enoughProjectives_iff
ModuleCat.enoughProjectives
UnivLE.small
UnivLE.self
instEpiModuleCatHom 📖mathematical—CategoryTheory.Epi
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
Action.V
Action.Hom.hom
—CategoryTheory.Functor.map_epi
CategoryTheory.preservesEpimorphisms_of_preservesColimitsOfShape
CategoryTheory.Limits.PreservesFiniteColimits.preservesFiniteColimits
CategoryTheory.Limits.PreservesColimits.preservesFiniteColimits
instPreservesColimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV
instIsTrivialCarrierVModuleCatOfCompLinearMapIdρ 📖mathematical—Representation.IsTrivial
ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
of
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
ModuleCat.isModule
MonoidHom.comp
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
ρ
——
instIsTrivialObjModuleCatTrivialFunctor 📖mathematical—IsTrivial
CategoryTheory.Functor.obj
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
Rep
Action.instCategory
trivialFunctor
——
instIsTrivialOfOfIsTrivial 📖mathematical—IsTrivial
of
—Representation.isTrivial_def
instIsTrivialTrivial 📖mathematical—IsTrivial
trivial
—Representation.isTrivial_def
Representation.instIsTrivialTrivial
instMonoModuleCatHom 📖mathematical—CategoryTheory.Mono
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
Action.V
Action.Hom.hom
—CategoryTheory.Functor.map_mono
CategoryTheory.preservesMonomorphisms_of_preservesLimitsOfShape
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
CategoryTheory.Limits.PreservesLimits.preservesFiniteLimits
instPreservesLimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV
instPreservesColimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV 📖mathematical—CategoryTheory.Limits.PreservesColimits
Rep
CommRing.toRing
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.forget₂
Action.HomSubtype
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.V
Action.instFunLikeHomSubtypeV
Action.instConcreteCategoryHomSubtypeV
Action.hasForgetToV
—Action.preservesColimits_forget
ModuleCat.hasColimitsOfSize
AddCommGrpCat.hasColimitsOfSize
UnivLE.self
instPreservesLimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV 📖mathematical—CategoryTheory.Limits.PreservesLimits
Rep
CommRing.toRing
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.forget₂
Action.HomSubtype
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.V
Action.instFunLikeHomSubtypeV
Action.instConcreteCategoryHomSubtypeV
Action.hasForgetToV
—Action.preservesLimits_forget
ModuleCat.hasLimits'
leftRegularHomEquiv_apply 📖mathematical—DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Quiver.Hom
Rep
CommRing.toRing
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
leftRegular
ModuleCat.carrier
Action.V
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
Action.instPreadditive
ModuleCat.instPreadditive
instAddCommGroupCarrierVModuleCat
CategoryTheory.Linear.homModule
instLinearRep
ModuleCat.isModule
EquivLike.toFunLike
LinearEquiv.instEquivLike
leftRegularHomEquiv
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
ModuleCat.isAddCommGroup
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.Hom.hom
Finsupp.single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
—RingHomInvPair.ids
leftRegularHomEquiv_symm_apply 📖mathematical—DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
Quiver.Hom
Rep
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Action.instCategory
leftRegular
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
CategoryTheory.Preadditive.homGroup
Action.instPreadditive
ModuleCat.instPreadditive
ModuleCat.isModule
CategoryTheory.Linear.homModule
instLinearRep
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
leftRegularHomEquiv
leftRegularHom
—RingHomInvPair.ids
leftRegularHomEquiv_symm_single 📖mathematical—DFunLike.coe
Action.V
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
leftRegular
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.Hom.hom
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHomInvPair.ids
Quiver.Hom
Rep
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Action.instCategory
instAddCommGroupCarrierVModuleCat
CategoryTheory.Preadditive.homGroup
Action.instPreadditive
ModuleCat.instPreadditive
CategoryTheory.Linear.homModule
instLinearRep
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
LinearEquiv.symm
leftRegularHomEquiv
Finsupp.single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Representation
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
ρ
—RingHomInvPair.ids
Finsupp.sum_single_index
zero_smul
one_smul
leftRegularHom_hom 📖mathematical—Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
leftRegular
leftRegularHom
ModuleCat.ofHom
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
ModuleCat.carrier
Finsupp.instAddCommGroup
Ring.toAddCommGroup
Finsupp.module
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toModule
ModuleCat.isAddCommGroup
ModuleCat.isModule
DFunLike.coe
AddEquiv
LinearMap
RingHom.id
Action.V
Finsupp.instAddCommMonoid
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
LinearMap.instAdd
EquivLike.toFunLike
AddEquiv.instEquivLike
Finsupp.lift
LinearMap.instFunLike
Representation
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
ρ
——
leftRegularHom_hom_single 📖mathematical—DFunLike.coe
Action.V
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
leftRegular
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.Hom.hom
leftRegularHom
Finsupp.single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
instAddCommGroupCarrierVModuleCat
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Representation
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
ρ
—Finsupp.sum_single_index
zero_smul
leftRegularTensorTrivialIsoFree_hom_hom 📖mathematical—Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
Rep
Action.instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Action.instMonoidalCategory
ModuleCat.monoidalCategory
leftRegular
trivial
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finsupp.instAddCommGroup
Ring.toAddCommGroup
Finsupp.module
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toModule
free
CategoryTheory.Iso.hom
leftRegularTensorTrivialIsoFree
ModuleCat.ofHom
TensorProduct
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instAddCommMonoid
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finsupp.instZero
TensorProduct.addCommGroup
TensorProduct.instModule
LinearEquiv.toLinearMap
Ring.toSemiring
RingHom.id
AddCommGroup.toAddCommMonoid
LinearEquiv.trans
TensorProduct.addCommMonoid
finsuppTensorFinsupp'
Finsupp.domLCongr
Equiv.prodComm
Finsupp.curryLinearEquiv
——
leftRegularTensorTrivialIsoFree_hom_hom_single_tmul_single 📖mathematical—DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
CommRing.toRing
CategoryTheory.MonoidalCategoryStruct.tensorObj
ModuleCat
ModuleCat.moduleCategory
ModuleCat.MonoidalCategory.instMonoidalCategoryStruct
ModuleCat.of
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finsupp.instAddCommGroup
Ring.toAddCommGroup
Finsupp.module
Ring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toModule
Finsupp.instZero
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
Finsupp.instAddCommMonoid
ModuleCat.isModule
TensorProduct
LinearMap.instFunLike
ModuleCat.Hom.hom
Action.V
Rep
Action.instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Action.instMonoidalCategory
ModuleCat.monoidalCategory
leftRegular
trivial
free
Action.Hom.hom
CategoryTheory.Iso.hom
leftRegularTensorTrivialIsoFree
TensorProduct.tmul
Finsupp.single
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
—finsuppTensorFinsupp'_single_tmul_single
Finsupp.equivMapDomain_single
Finsupp.curry_single
leftRegularTensorTrivialIsoFree_inv_hom 📖mathematical—Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
free
CategoryTheory.MonoidalCategoryStruct.tensorObj
Rep
Action.instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Action.instMonoidalCategory
ModuleCat.monoidalCategory
leftRegular
trivial
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finsupp.instAddCommGroup
Ring.toAddCommGroup
Finsupp.module
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toModule
CategoryTheory.Iso.inv
leftRegularTensorTrivialIsoFree
ModuleCat.ofHom
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Finsupp.instZero
TensorProduct
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instAddCommMonoid
TensorProduct.addCommGroup
TensorProduct.instModule
LinearEquiv.toLinearMap
Ring.toSemiring
RingHom.id
AddCommGroup.toAddCommMonoid
LinearEquiv.trans
LinearEquiv.symm
Finsupp.curryLinearEquiv
Finsupp.domLCongr
Equiv.prodComm
finsuppTensorFinsupp'
—LinearEquiv.trans.congr_simp
Finsupp.domLCongr_symm
leftRegularTensorTrivialIsoFree_inv_hom_single_single 📖mathematical—DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finsupp.instZero
ModuleCat.carrier
CommRing.toRing
CategoryTheory.MonoidalCategoryStruct.tensorObj
ModuleCat
ModuleCat.moduleCategory
ModuleCat.MonoidalCategory.instMonoidalCategoryStruct
ModuleCat.of
Finsupp.instAddCommGroup
Ring.toAddCommGroup
Finsupp.module
Ring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toModule
Finsupp.instAddCommMonoid
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.Hom.hom
Action.V
free
Rep
Action.instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Action.instMonoidalCategory
ModuleCat.monoidalCategory
leftRegular
trivial
Action.Hom.hom
CategoryTheory.Iso.inv
leftRegularTensorTrivialIsoFree
Finsupp.single
TensorProduct.tmul
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
—LinearEquiv.trans.congr_simp
Finsupp.domLCongr_symm
Finsupp.uncurry_single
Finsupp.equivMapDomain_single
finsuppTensorFinsupp'_symm_single_eq_tmul_single_one
leftRegular_projective 📖mathematical—CategoryTheory.Projective
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
leftRegular
—CategoryTheory.Projective.of_iso
diagonal_succ_projective
linearizationTrivialIso_hom_hom 📖mathematical—Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
CategoryTheory.Functor.obj
Action
CategoryTheory.types
Action.instCategory
Rep
linearization
MonoidHom
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.End.monoid
instOneMonoidHom
trivial
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finsupp.instAddCommGroup
Ring.toAddCommGroup
Finsupp.module
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toModule
CategoryTheory.Iso.hom
linearizationTrivialIso
CategoryTheory.CategoryStruct.id
Action.V
——
linearizationTrivialIso_inv_hom 📖mathematical—Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
trivial
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finsupp.instAddCommGroup
Ring.toAddCommGroup
Finsupp.module
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Semiring.toModule
CategoryTheory.Functor.obj
Action
CategoryTheory.types
Action.instCategory
Rep
linearization
MonoidHom
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.End.monoid
instOneMonoidHom
CategoryTheory.Iso.inv
linearizationTrivialIso
CategoryTheory.CategoryStruct.id
Action.V
——
linearization_map_hom 📖mathematical—Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
CategoryTheory.Functor.obj
Action
CategoryTheory.types
Action.instCategory
Rep
linearization
CategoryTheory.Functor.map
ModuleCat.ofHom
Finsupp
Action.V
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finsupp.instAddCommGroup
Ring.toAddCommGroup
Finsupp.module
CommSemiring.toSemiring
CommRing.toCommSemiring
Semiring.toModule
Finsupp.lmapDomain
——
linearization_map_hom_single 📖mathematical—DFunLike.coe
Action.V
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
CategoryTheory.Functor.obj
Action
CategoryTheory.types
Action.instCategory
Rep
linearization
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.Hom.hom
CategoryTheory.Functor.map
Finsupp.single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
—Finsupp.mapDomain_single
linearization_obj_ρ 📖mathematical—DFunLike.coe
Representation
ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Functor.obj
Action
CategoryTheory.types
Action.instCategory
Rep
linearization
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
ModuleCat.isModule
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
ρ
Finsupp.lmapDomain
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Semiring.toModule
MonoidHom
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
CategoryTheory.End.monoid
Action.ρ
——
linearization_single 📖mathematical—DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Functor.obj
Action
CategoryTheory.types
Action.instCategory
Rep
linearization
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
ModuleCat.isModule
LinearMap.instFunLike
Representation
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
ρ
Finsupp.single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MonoidHom
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
CategoryTheory.End.monoid
Action.ρ
—Finsupp.mapDomain_single
linearization_ή_hom 📖mathematical—Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
CategoryTheory.Functor.obj
Action
CategoryTheory.types
Action.instCategory
Rep
linearization
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Action.instMonoidalCategory
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.typesCartesianMonoidalCategory
ModuleCat.monoidalCategory
CategoryTheory.Functor.OplaxMonoidal.ÎŽ
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
instMonoidalActionTypeLinearization
ModuleCat.ofHom
Finsupp
Action.V
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
TensorProduct
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
Finsupp.instAddCommGroup
Ring.toAddCommGroup
TensorProduct.addCommGroup
TensorProduct.instModule
LinearEquiv.toLinearMap
RingHom.id
RingHomInvPair.ids
TensorProduct.addCommMonoid
LinearEquiv.symm
finsuppTensorFinsupp'
——
linearization_Δ_hom 📖mathematical—Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
CategoryTheory.MonoidalCategoryStruct.tensorUnit
Rep
Action.instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Action.instMonoidalCategory
ModuleCat.monoidalCategory
CategoryTheory.Functor.obj
Action
CategoryTheory.types
linearization
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.typesCartesianMonoidalCategory
CategoryTheory.Functor.LaxMonoidal.Δ
CategoryTheory.Functor.Monoidal.toLaxMonoidal
instMonoidalActionTypeLinearization
ModuleCat.ofHom
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
Ring.toAddCommGroup
Semiring.toModule
Ring.toSemiring
Finsupp.instAddCommGroup
Finsupp.module
Finsupp.lsingle
——
linearization_η_hom_apply 📖mathematical—DFunLike.coe
Action.V
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
CategoryTheory.Functor.obj
Action
CategoryTheory.types
Action.instCategory
Rep
linearization
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Action.instMonoidalCategory
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.typesCartesianMonoidalCategory
ModuleCat.monoidalCategory
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.Hom.hom
CategoryTheory.Functor.OplaxMonoidal.η
CategoryTheory.Functor.Monoidal.toOplaxMonoidal
instMonoidalActionTypeLinearization
Finsupp.single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
—CategoryTheory.Iso.hom_inv_id_apply
linearization_ÎŒ_hom 📖mathematical—Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
Rep
Action.instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Action.instMonoidalCategory
ModuleCat.monoidalCategory
CategoryTheory.Functor.obj
Action
CategoryTheory.types
linearization
CategoryTheory.SemiCartesianMonoidalCategory.toMonoidalCategory
CategoryTheory.CartesianMonoidalCategory.toSemiCartesianMonoidalCategory
CategoryTheory.typesCartesianMonoidalCategory
CategoryTheory.Functor.LaxMonoidal.Ό
CategoryTheory.Functor.Monoidal.toLaxMonoidal
instMonoidalActionTypeLinearization
ModuleCat.ofHom
TensorProduct
CommRing.toCommSemiring
Finsupp
Action.V
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Finsupp.module
Semiring.toModule
TensorProduct.addCommGroup
Finsupp.instAddCommGroup
Ring.toAddCommGroup
TensorProduct.instModule
LinearEquiv.toLinearMap
RingHom.id
RingHomInvPair.ids
TensorProduct.addCommMonoid
finsuppTensorFinsupp'
——
mkQ_hom 📖mathematicalSubmodule
ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
ModuleCat.isModule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.comap
RingHom.id
Semiring.toNonAssocSemiring
DFunLike.coe
Representation
LinearMap
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
ρ
Action.Hom.hom
quotient
mkQ
ModuleCat.ofHom
HasQuotient.Quotient
ModuleCat.isAddCommGroup
Submodule.hasQuotient
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
Submodule.mkQ
——
mono_iff_injective 📖mathematical—CategoryTheory.Mono
Rep
CommRing.toRing
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
ModuleCat.carrier
Action.V
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.Hom.hom
—ModuleCat.mono_iff_injective
CategoryTheory.Functor.map_mono
CategoryTheory.preservesMonomorphisms_of_preservesLimitsOfShape
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
CategoryTheory.Limits.PreservesLimits.preservesFiniteLimits
instPreservesLimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV
CategoryTheory.Functor.mono_of_mono_map
CategoryTheory.Functor.reflectsMonomorphisms_of_faithful
CategoryTheory.forget₂_faithful
normNatTrans_app 📖mathematical—CategoryTheory.NatTrans.app
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Functor.id
normNatTrans
norm
——
norm_comm 📖mathematical—CategoryTheory.CategoryStruct.comp
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Category.toCategoryStruct
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
norm
—Action.hom_ext
ModuleCat.hom_ext
LinearMap.ext
LinearMap.coe_sum
Finset.sum_apply
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Finset.sum_congr
hom_comm_apply
norm_comm_apply 📖mathematical—DFunLike.coe
Action.HomSubtype
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.V
Action.instFunLikeHomSubtypeV
CategoryTheory.ConcreteCategory.hom
Rep
Action.instCategory
Action.instConcreteCategoryHomSubtypeV
norm
—CategoryTheory.comp_apply
Mathlib.Tactic.Elementwise.hom_elementwise
norm_comm
norm_comm_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Category.toCategoryStruct
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
norm
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
norm_comm
norm_hom 📖mathematical—Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
norm
ModuleCat.ofHom
ModuleCat.carrier
ModuleCat.isAddCommGroup
ModuleCat.isModule
Representation.norm
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
ρ
——
ofDistribMulAction_ρ_apply_apply 📖mathematical—DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
ofDistribMulAction
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
ModuleCat.isModule
LinearMap.instFunLike
Representation
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
ρ
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
——
ofHom_ρ 📖mathematical—ModuleCat.ofHom
CommRing.toRing
ModuleCat.carrier
Action.V
ModuleCat
ModuleCat.moduleCategory
ModuleCat.isAddCommGroup
ModuleCat.isModule
DFunLike.coe
Representation
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
ρ
MonoidHom
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
CategoryTheory.End.monoid
Action.ρ
——
ofModuleMonoidAlgebra_obj_coe 📖mathematical—ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Functor.obj
MonoidAlgebra
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidAlgebra.ring
Rep
Action.instCategory
ofModuleMonoidAlgebra
RestrictScalars
——
ofModuleMonoidAlgebra_obj_ρ 📖mathematical—ρ
CategoryTheory.Functor.obj
ModuleCat
MonoidAlgebra
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidAlgebra.ring
CommRing.toRing
ModuleCat.moduleCategory
Rep
Action.instCategory
ofModuleMonoidAlgebra
Representation.ofModule
ModuleCat.carrier
AddCommGroup.toAddCommMonoid
ModuleCat.isAddCommGroup
ModuleCat.isModule
——
ofMulActionSubsingletonIsoTrivial_hom_hom 📖mathematical—Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
ofMulAction
trivial
Ring.toAddCommGroup
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
CategoryTheory.Iso.hom
Rep
Action.instCategory
ofMulActionSubsingletonIsoTrivial
ModuleCat.ofHom
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
Finsupp.instAddCommGroup
Finsupp.module
Ring.toSemiring
LinearEquiv.toLinearMap
RingHom.id
Semiring.toNonAssocSemiring
Finsupp.LinearEquiv.finsuppUnique
uniqueOfSubsingleton
MulOne.toOne
MulOneClass.toMulOne
——
ofMulActionSubsingletonIsoTrivial_inv_hom 📖mathematical—Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
trivial
Ring.toAddCommGroup
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
ofMulAction
CategoryTheory.Iso.inv
Rep
Action.instCategory
ofMulActionSubsingletonIsoTrivial
ModuleCat.ofHom
Finsupp
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
Finsupp.instAddCommGroup
Finsupp.module
Ring.toSemiring
LinearEquiv.toLinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearEquiv.symm
Finsupp.LinearEquiv.finsuppUnique
uniqueOfSubsingleton
MulOne.toOne
MulOneClass.toMulOne
——
ofMulDistribMulAction_ρ_apply_apply 📖mathematical—DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
Int.instCommRing
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
ofMulDistribMulAction
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
ModuleCat.isModule
LinearMap.instFunLike
Representation
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
ρ
Equiv
Additive
EquivLike.toFunLike
Equiv.instEquivLike
Additive.ofMul
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
MulDistribMulAction.toMulAction
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Additive.toMul
——
of_ρ 📖mathematical—ρ
of
——
res_obj_ρ 📖mathematical—ρ
CategoryTheory.Functor.obj
Action
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
Action.instCategory
Action.res
MonoidHom.comp
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.carrier
Action.V
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
ModuleCat.isModule
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
——
subtype_hom 📖mathematicalSubmodule
ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
ModuleCat.isModule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
Submodule.comap
RingHom.id
Semiring.toNonAssocSemiring
DFunLike.coe
Representation
LinearMap
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
ρ
Action.Hom.hom
subrepresentation
subtype
ModuleCat.ofHom
SetLike.instMembership
Submodule.setLike
Submodule.addCommGroup
ModuleCat.isAddCommGroup
Submodule.module
Submodule.subtype
——
tensor_ρ 📖mathematical—ρ
CategoryTheory.MonoidalCategoryStruct.tensorObj
Rep
CommRing.toRing
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Action.instMonoidalCategory
ModuleCat.monoidalCategory
Representation.tprod
ModuleCat.carrier
Action.V
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
ModuleCat.isModule
——
toAdditive_apply 📖mathematical—DFunLike.coe
AddEquiv
ModuleCat.carrier
CommRing.toRing
Int.instCommRing
Action.V
ModuleCat
ModuleCat.moduleCategory
ofMulDistribMulAction
Additive
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
Additive.add
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
EquivLike.toFunLike
AddEquiv.instEquivLike
toAdditive
——
toAdditive_symm_apply 📖mathematical—DFunLike.coe
AddEquiv
Additive
ModuleCat.carrier
CommRing.toRing
Int.instCommRing
Action.V
ModuleCat
ModuleCat.moduleCategory
ofMulDistribMulAction
Additive.add
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
EquivLike.toFunLike
AddEquiv.instEquivLike
AddEquiv.symm
toAdditive
——
to_Module_monoidAlgebra_map_aux 📖mathematicalLinearMap.comp
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
DFunLike.coe
MonoidHom
LinearMap
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
MonoidHom.instFunLike
LinearMap.instFunLike
AlgHom
MonoidAlgebra
MonoidAlgebra.semiring
MonoidAlgebra.algebra
Algebra.id
Module.End.instAlgebra
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Algebra.toSMul
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AlgHom.funLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
MonoidAlgebra.lift
—RingHomCompTriple.ids
MonoidAlgebra.induction_on
smulCommClass_self
IsScalarTower.left
MonoidAlgebra.lift_single
one_smul
LinearMap.congr_fun
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
LinearMap.semilinearMapClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
trivialFunctor_map_hom 📖mathematical—Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
trivial
ModuleCat.carrier
ModuleCat.isAddCommGroup
ModuleCat.isModule
CategoryTheory.Functor.map
Rep
Action.instCategory
trivialFunctor
——
trivialFunctor_obj_V 📖mathematical—Action.V
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
CategoryTheory.Functor.obj
Rep
Action.instCategory
trivialFunctor
——
trivial_def 📖mathematical—DFunLike.coe
Representation
ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
trivial
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
ModuleCat.isModule
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
ρ
LinearMap.id
——
trivial_projective_of_subsingleton 📖mathematical—CategoryTheory.Projective
Rep
CommRing.toRing
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Action.instCategory
ModuleCat
ModuleCat.moduleCategory
trivial
Ring.toAddCommGroup
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
—CategoryTheory.Projective.of_iso
diagonal_succ_projective
unit_iso_comm 📖mathematical—DFunLike.coe
AddEquiv
ModuleCat.carrier
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
CategoryTheory.Functor.obj
Rep
Action.instCategory
CategoryTheory.Functor.comp
MonoidAlgebra
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidAlgebra.ring
toModuleMonoidAlgebra
ofModuleMonoidAlgebra
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
EquivLike.toFunLike
AddEquiv.instEquivLike
unitIsoAddEquiv
AddHom.toFun
LinearMap.toAddHom
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.isModule
Representation
LinearMap
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
ρ
—RingHomInvPair.ids
Representation.asModuleEquiv_symm_map_rho
Representation.single_smul
LinearEquiv.apply_symm_apply
one_smul
Representation.ofModule_asModule_act
AddEquiv.apply_symm_apply
ρ_hom 📖mathematical—ModuleCat.Hom.hom
CommRing.toRing
Action.V
ModuleCat
ModuleCat.moduleCategory
DFunLike.coe
MonoidHom
CategoryTheory.End
CategoryTheory.Category.toCategoryStruct
MulOneClass.toMulOne
Monoid.toMulOneClass
CategoryTheory.End.monoid
MonoidHom.instFunLike
Action.ρ
Representation
ModuleCat.carrier
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroupCarrierVModuleCat
ModuleCat.isModule
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
ρ
——

Rep.MonoidalClosed

Definitions

NameCategoryTheorems
linearHomEquiv 📖CompOp
2 mathmath: linearHomEquiv_symm_hom, linearHomEquiv_hom
linearHomEquivComm 📖CompOp
2 mathmath: linearHomEquivComm_hom, linearHomEquivComm_symm_hom

Theorems

NameKindAssumesProvesValidatesDepends On
linearHomEquivComm_hom 📖mathematical—Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Functor.obj
Rep
Action.instCategory
CategoryTheory.ihom
Action.instMonoidalCategory
ModuleCat.monoidalCategory
CategoryTheory.MonoidalClosed.closed
Rep.instMonoidalClosed
DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
Action.instPreadditive
ModuleCat.instPreadditive
CategoryTheory.Linear.homModule
instLinearRep
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
linearHomEquivComm
ModuleCat.ofHom
ModuleCat.carrier
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
Action
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.inverse
CategoryTheory.Equivalence.symm
Action.functorCategoryEquivalence
LinearMap
Ring.toSemiring
Action.V
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.addCommGroup
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
TensorProduct.curry
ModuleCat.Hom.hom
—RingHomInvPair.ids
linearHomEquivComm_symm_hom 📖mathematical—Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.MonoidalCategoryStruct.tensorObj
Rep
Action.instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Action.instMonoidalCategory
ModuleCat.monoidalCategory
DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalClosed.closed
Rep.instMonoidalClosed
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
Action.instPreadditive
ModuleCat.instPreadditive
CategoryTheory.Linear.homModule
instLinearRep
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
LinearEquiv.symm
linearHomEquivComm
ModuleCat.ofHom
TensorProduct
ModuleCat.carrier
Action.V
Rep.instAddCommGroupCarrierVModuleCat
ModuleCat.isModule
TensorProduct.addCommGroup
ModuleCat.isAddCommGroup
TensorProduct.instModule
LinearMap
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
TensorProduct.addCommMonoid
LinearMap.instSMulCommClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
LinearMap.instFunLike
TensorProduct.uncurry
ModuleCat.Hom.hom
—ModuleCat.hom_ext
RingHomInvPair.ids
smulCommClass_self
LinearMap.instSMulCommClass
TensorProduct.ext'
linearHomEquiv_hom 📖mathematical—Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.Functor.obj
Rep
Action.instCategory
CategoryTheory.ihom
Action.instMonoidalCategory
ModuleCat.monoidalCategory
CategoryTheory.MonoidalClosed.closed
Rep.instMonoidalClosed
DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
Action.instPreadditive
ModuleCat.instPreadditive
CategoryTheory.Linear.homModule
instLinearRep
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
linearHomEquiv
ModuleCat.ofHom
ModuleCat.carrier
CategoryTheory.SingleObj
CategoryTheory.SingleObj.category
Action
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Equivalence.inverse
CategoryTheory.Equivalence.symm
Action.functorCategoryEquivalence
LinearMap
Ring.toSemiring
Action.V
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.addCommGroup
LinearMap.module
SMulCommClass.symm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
LinearMap.flip
TensorProduct.curry
ModuleCat.Hom.hom
—RingHomInvPair.ids
linearHomEquiv_symm_hom 📖mathematical—Action.Hom.hom
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CategoryTheory.MonoidalCategoryStruct.tensorObj
Rep
Action.instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Action.instMonoidalCategory
ModuleCat.monoidalCategory
DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ihom
CategoryTheory.MonoidalClosed.closed
Rep.instMonoidalClosed
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
Action.instPreadditive
ModuleCat.instPreadditive
CategoryTheory.Linear.homModule
instLinearRep
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
LinearEquiv.symm
linearHomEquiv
ModuleCat.ofHom
TensorProduct
ModuleCat.carrier
Action.V
Rep.instAddCommGroupCarrierVModuleCat
ModuleCat.isModule
TensorProduct.addCommGroup
ModuleCat.isAddCommGroup
TensorProduct.instModule
LinearMap
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
TensorProduct.addCommMonoid
LinearMap.instSMulCommClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
LinearMap.instFunLike
TensorProduct.uncurry
LinearMap.flip
Ring.toSemiring
ModuleCat.Hom.hom
—RingHomInvPair.ids
smulCommClass_self
LinearMap.instSMulCommClass
Rep.homEquiv_def

Representation

Definitions

NameCategoryTheorems
repOfTprodIso 📖CompOp
2 mathmath: repOfTprodIso_inv_apply, repOfTprodIso_apply

Theorems

NameKindAssumesProvesValidatesDepends On
repOfTprodIso_apply 📖mathematical—DFunLike.coe
Action.V
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
Rep.of
TensorProduct
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
TensorProduct.addCommGroup
TensorProduct.instModule
tprod
CategoryTheory.MonoidalCategoryStruct.tensorObj
Rep
Action.instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Action.instMonoidalCategory
ModuleCat.monoidalCategory
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.Hom.hom
CategoryTheory.Iso.hom
repOfTprodIso
——
repOfTprodIso_inv_apply 📖mathematical—DFunLike.coe
Action.V
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
CategoryTheory.MonoidalCategoryStruct.tensorObj
Rep
Action.instCategory
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
Action.instMonoidalCategory
ModuleCat.monoidalCategory
Rep.of
TensorProduct
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
TensorProduct.addCommGroup
TensorProduct.instModule
tprod
ModuleCat.carrier
CategoryTheory.ConcreteCategory.hom
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ModuleCat.isAddCommGroup
ModuleCat.isModule
LinearMap.instFunLike
ModuleCat.instConcreteCategoryLinearMapIdCarrier
Action.Hom.hom
CategoryTheory.Iso.inv
repOfTprodIso
——

(root)

Definitions

NameCategoryTheorems
Rep 📖CompOp
279 mathmath: Rep.resCoindHomEquiv_symm_apply_hom, Representation.repOfTprodIso_inv_apply, Rep.resCoindHomEquiv_apply_hom, Rep.invariantsAdjunction_homEquiv_symm_apply_hom, Rep.coe_linearization_obj_ρ, groupHomology.mapCycles₂_comp_assoc, Rep.MonoidalClosed.linearHomEquiv_symm_hom, groupHomology.coinfNatTrans_app, groupHomology.mapShortComplexH2_id, groupHomology.coinvariantsMk_comp_H0Iso_inv_apply, Rep.diagonalSuccIsoFree_inv_hom_single, Representation.repOfTprodIso_apply, Rep.coindResAdjunction_counit_app, groupHomology.mapCycles₁_comp_apply, groupHomology.mapShortComplexH1_zero, groupHomology.cyclesMap_id_comp, Rep.indFunctor_obj, groupHomology.mapShortComplexH2_zero, groupCohomology.instPreservesZeroMorphismsRepCochainComplexModuleCatNatCochainsFunctor, Rep.indCoindNatIso_hom_app, groupHomology.chainsMap_id, Rep.invariantsFunctor_obj_carrier, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_left, Rep.barComplex.d_def, Rep.diagonalHomEquiv_symm_apply, Rep.coindFunctor_map, groupHomology.comap_coinvariantsKer_pOpcycles_range_subtype_pOpcycles_eq_top, Rep.instIsLeftAdjointSubtypeMemSubgroupCoindFunctorSubtype, Rep.instIsRightAdjointCoindFunctor, groupHomology.mapCycles₁_comp_assoc, Rep.instIsTrivialObjModuleCatTrivialFunctor, Rep.coinvariantsAdjunction_counit_app, groupHomology.map_id, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_right, Rep.linearization_single, groupHomology.coresNatTrans_app, groupHomology.instPreservesZeroMorphismsRepModuleCatFunctor, Rep.coinvariantsTensorFreeLEquiv_symm_apply, Rep.standardComplex.d_eq, Rep.diagonalSuccIsoTensorTrivial_inv_hom_single_single, groupHomology.π_comp_H0Iso_hom_assoc, Rep.trivial_projective_of_subsingleton, Rep.homEquiv_apply_hom, Rep.FiniteCyclicGroup.chainComplexFunctor_obj, Rep.FiniteCyclicGroup.groupHomologyπOdd_eq_zero_iff, Rep.coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply, Rep.norm_comm_apply, Rep.coinvariantsAdjunction_homEquiv_symm_apply_hom, Rep.indCoindIso_inv_hom_hom, Rep.free_projective, Rep.diagonalSuccIsoFree_inv_hom_single_single, groupHomology.mapCycles₁_id_comp_assoc, Rep.instLinearModuleCatObjFunctorCoinvariantsTensor, groupHomology.mapCycles₁_comp, groupHomology.map_comp, FDRep.instPreservesFiniteColimitsRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Rep.ihom_ev_app_hom, Rep.MonoidalClosed.linearHomEquivComm_hom, Rep.coe_linearization_obj, Rep.instIsRightAdjointModuleCatInvariantsFunctor, groupHomology.map_id_comp, Rep.coinvariantsTensorIndIso_inv, groupHomology.functor_obj, Rep.standardComplex.ΔToSingle₀_comp_eq, Rep.homEquiv_def, Rep.indCoindIso_hom_hom_hom, Rep.ofModuleMonoidAlgebra_obj_coe, Rep.FiniteCyclicGroup.groupCohomologyπOdd_eq_iff, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv_assoc, groupCohomology.infNatTrans_app, Rep.invariantsAdjunction_unit_app, groupHomology.mapCycles₂_id_comp, Rep.diagonal_succ_projective, groupHomology.cyclesMap_comp_assoc, Rep.coinvariantsFunctor_obj_carrier, Rep.applyAsHom_comm_apply, Rep.instProjective, Rep.coinvariantsTensorFreeLEquiv_apply, groupHomology.coinvariantsMk_comp_H0Iso_inv, Rep.coinvariantsTensorIndIso_hom, Rep.barResolution_complex, Rep.FiniteCyclicGroup.groupCohomologyπEven_eq_zero_iff, groupHomology.map_comp_assoc, Rep.coinvariantsTensorIndNatIso_inv_app, Rep.instAdditiveModuleCatObjFunctorCoinvariantsTensor, Rep.coindResAdjunction_unit_app, groupHomology.mapCycles₁_id_comp_apply, groupCohomology.map_id, Rep.indResAdjunction_counit_app_hom_hom, groupHomology.pOpcycles_comp_opcyclesIso_hom_apply, Rep.FiniteCyclicGroup.groupHomologyπEven_eq_iff, groupHomology.mapCycles₂_comp, Rep.resIndAdjunction_homEquiv_symm_apply, Rep.instLinearModuleCatCoinvariantsFunctor, Rep.normNatTrans_app, groupHomology.π_comp_H0Iso_hom_apply, Rep.applyAsHom_comm_assoc, Rep.freeLiftLEquiv_apply, groupHomology.chainsFunctor_obj, Rep.instEnoughProjectives, groupCohomology.functor_obj, Rep.ihom_obj_ρ_apply, Rep.instPreservesZeroMorphismsModuleCatInvariantsFunctor, Rep.FiniteCyclicGroup.chainComplexFunctor_map_f, FDRep.instFaithfulRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Rep.finsuppTensorRight_hom_hom, groupCohomology.resNatTrans_app, Rep.tensor_ρ, Rep.resIndAdjunction_homEquiv_apply, groupHomology.mapCycles₂_comp_apply, Rep.coindFunctorIso_inv_app_hom_hom_apply_coe, Rep.linearization_η_hom_apply, Rep.quotientToInvariantsFunctor_map_hom, groupHomology.chainsMap_id_comp, Rep.leftRegularHomEquiv_symm_apply, Rep.quotientToCoinvariantsFunctor_map_hom, groupCohomology.mapShortComplexH1_id, Rep.coinvariantsShortComplex_g, groupHomology.mapShortComplexH1_id_comp, groupHomology.mapShortComplexH1_comp, Rep.coindResAdjunction_homEquiv_apply, Rep.Tor_map, Rep.ofModuleMonoidAlgebra_obj_ρ, Rep.coinvariantsShortComplex_f, Rep.resIndAdjunction_counit_app, Rep.ofMulActionSubsingletonIsoTrivial_inv_hom, Rep.instIsLeftAdjointModuleCatCoinvariantsFunctor, Representation.coind'_apply_apply, Rep.diagonalOneIsoLeftRegular_inv_hom, groupHomology.map_id_comp_H0Iso_hom_assoc, groupHomology.mapCycles₂_id_comp_assoc, Rep.coindIso_inv_hom_hom, groupHomology.mapShortComplexH2_comp, groupCohomology.map_id_comp_H0Iso_hom, groupHomology.mapCycles₁_id_comp, Rep.trivialFunctor_obj_V, Rep.diagonalSuccIsoTensorTrivial_hom_hom_single, Representation.linHom.invariantsEquivRepHom_symm_apply_coe, Rep.linearization_obj_ρ, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv_apply, Rep.invariantsAdjunction_counit_app_hom, groupHomology.chainsMap_comp, Rep.instLinearModuleCatInvariantsFunctor, Rep.FiniteCyclicGroup.groupHomologyπEven_eq_zero_iff, Rep.ofMulActionSubsingletonIsoTrivial_hom_hom, Rep.linearizationTrivialIso_inv_hom, Rep.isZero_Tor_succ_of_projective, Rep.quotientToInvariantsFunctor_obj_V, Rep.coinvariantsTensorIndNatIso_hom_app, groupHomology.congr, Rep.standardComplex.quasiIso_forget₂_ΔToSingle₀, Rep.applyAsHom_comm, Rep.standardComplex.d_comp_Δ, Rep.finsuppTensorRight_inv_hom, Rep.ihom_obj_V_isAddCommGroup, Rep.indCoindNatIso_inv_app, groupCohomology.instPreservesZeroMorphismsRepModuleCatFunctor, Rep.coindResAdjunction_homEquiv_symm_apply, groupHomology.pOpcycles_comp_opcyclesIso_hom, Rep.trivialFunctor_map_hom, Rep.FiniteCyclicGroup.groupCohomologyπEven_eq_iff, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv, groupHomology.mapShortComplexH1_id, Rep.ihom_map_hom, Rep.coinvariantsTensor_hom_ext_iff, Rep.finsuppTensorLeft_inv_hom, Rep.unit_iso_comm, Rep.leftRegularHomEquiv_symm_single, inhomogeneousCochains.d_eq, Rep.FiniteCyclicGroup.resolution_complex, groupHomology.chainsFunctor_map, Rep.leftRegularTensorTrivialIsoFree_inv_hom, groupHomology.instPreservesZeroMorphismsRepChainComplexModuleCatNatChainsFunctor, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_norm, groupHomology.pOpcycles_comp_opcyclesIso_hom_assoc, Rep.indResAdjunction_unit_app_hom_hom, groupHomology.map_id_comp_H0Iso_hom_apply, groupHomology.H1CoresCoinfOfTrivial_f, Rep.coindFunctor'_obj, Rep.linearization_ÎŽ_hom, groupHomology.functor_map, groupHomology.mapCycles₂_id_comp_apply, Rep.standardComplex.instQuasiIsoNatΔToSingle₀, Rep.standardComplex.x_projective, groupCohomology.instAdditiveRepCochainComplexModuleCatNatCochainsFunctor, Rep.MonoidalClosed.linearHomEquiv_hom, Rep.invariantsAdjunction_homEquiv_apply_hom, Rep.instPreservesEpimorphismsSubtypeMemSubgroupCoindFunctorSubtype, Rep.FiniteCyclicGroup.resolution_quasiIso, Rep.FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, groupCohomology.H1Map_id, Rep.FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, Rep.finsuppTensorLeft_hom_hom, Rep.indFunctor_map, Rep.FiniteCyclicGroup.groupHomologyπOdd_eq_iff, groupHomology.π_comp_H0Iso_hom, Rep.coinvariantsTensorMk_apply, groupHomology.H0π_comp_H0Iso_hom, Rep.coinvariantsShortComplex_X₁, Rep.homEquiv_symm_apply_hom, Rep.FiniteCyclicGroup.leftRegular.range_norm_eq_ker_applyAsHom_sub, FDRep.forget₂_ρ, Rep.invariantsFunctor_map_hom, groupHomology.map_id_comp_H0Iso_hom, Rep.standardComplex.forget₂ToModuleCatHomotopyEquiv_f_0_eq, groupCohomology.cocyclesMap_id, FDRep.instPreservesFiniteLimitsRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGVOfIsNoetherianRing, Rep.norm_comm_assoc, Rep.resIndAdjunction_unit_app, Rep.diagonalOneIsoLeftRegular_hom_hom, Rep.coinvariantsTensorIndHom_mk_tmul_indVMk, Rep.ihom_coev_app_hom, Rep.leftRegularHomEquiv_apply, Rep.leftRegular_projective, groupHomology.chainsMap_zero, groupHomology.mapShortComplexH2_id_comp, Rep.ihom_obj_V_isModule, groupCohomology.mapShortComplexH2_id, Rep.leftRegularTensorTrivialIsoFree_hom_hom_single_tmul_single, Rep.diagonalHomEquiv_apply, Rep.coinvariantsAdjunction_unit_app_hom, Rep.freeLiftLEquiv_symm_apply, groupHomology.inhomogeneousChains.d_eq, Rep.epi_iff_surjective, groupCohomology.cochainsFunctor_map, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, Rep.coinvariantsShortComplex_X₂, groupHomology.H0π_comp_H0Iso_hom_assoc, groupHomology.cyclesMap_comp, Rep.indResHomEquiv_apply_hom, Rep.linearizationTrivialIso_hom_hom, Rep.instIsRightAdjointSubtypeMemSubgroupIndFunctorSubtype, Rep.coinvariantsAdjunction_homEquiv_apply_hom, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, groupHomology.H1CoresCoinf_f, Rep.diagonalSuccIsoFree_hom_hom_single, Rep.ihom_obj_ρ, Rep.instPreservesLimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV, Rep.coinvariantsTensorIndInv_mk_tmul_indMk, Rep.instIsLeftAdjointIndFunctor, Rep.instPreservesZeroMorphismsModuleCatCoinvariantsFunctor, Representation.linHom.invariantsEquivRepHom_apply_hom, groupHomology.cyclesMap_id, Rep.instAdditiveModuleCatInvariantsFunctor, Rep.barComplex.d_comp_diagonalSuccIsoFree_inv_eq, Rep.coindFunctor'_map, Rep.coinvariantsFunctor_map_hom, Rep.coindFunctor_obj, Rep.linearization_map_hom_single, groupCohomology.map_id_comp_H0Iso_hom_assoc, Rep.ihom_obj_ρ_def, Rep.ihom_obj_V_carrier, Rep.coinvariantsShortComplex_X₃, Rep.coindIso_hom_hom_hom, Rep.leftRegularTensorTrivialIsoFree_hom_hom, groupHomology.H0π_comp_H0Iso_hom_apply, Rep.mono_iff_injective, groupHomology.coinvariantsMk_comp_H0Iso_inv_assoc, groupCohomology.functor_map, Rep.linearization_Δ_hom, Rep.Tor_obj, Rep.coinvariantsShortComplex_shortExact, Rep.FiniteCyclicGroup.resolution_π, Rep.instPreservesColimitsModuleCatForget₂HomSubtypeLinearMapIdCarrierV, FDRep.instFullRepForget₂HomSubtypeFGModuleCatLinearMapIdCarrierObjModuleCatIsFGV, Rep.FiniteCyclicGroup.resolution.π_f, Rep.FiniteCyclicGroup.leftRegular.range_applyAsHom_sub_eq_ker_linearCombination, Rep.instAdditiveModuleCatCoinvariantsFunctor, groupCohomology.cochainsFunctor_obj, Rep.linearization_map_hom, Rep.FiniteCyclicGroup.groupCohomologyπOdd_eq_zero_iff, Rep.indResHomEquiv_symm_apply_hom, Rep.leftRegularTensorTrivialIsoFree_inv_hom_single_single, Rep.norm_comm, Rep.linearization_ÎŒ_hom, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply, Rep.quotientToCoinvariantsFunctor_obj_V, groupCohomology.cochainsMap_id, Rep.instInjective
instLinearRep 📖CompOp
35 mathmath: Rep.resCoindHomEquiv_symm_apply_hom, Rep.resCoindHomEquiv_apply_hom, Rep.MonoidalClosed.linearHomEquiv_symm_hom, Rep.diagonalHomEquiv_symm_apply, Rep.coindFunctorIso_hom_app_hom_hom_apply_hom_hom_apply, Rep.instLinearModuleCatObjFunctorCoinvariantsTensor, Rep.MonoidalClosed.linearHomEquivComm_hom, Rep.coindVEquiv_symm_apply_coe, Rep.resIndAdjunction_homEquiv_symm_apply, Rep.instLinearModuleCatCoinvariantsFunctor, Rep.coindMap'_hom, Rep.freeLiftLEquiv_apply, Rep.resIndAdjunction_homEquiv_apply, Rep.coindFunctorIso_inv_app_hom_hom_apply_coe, Rep.leftRegularHomEquiv_symm_apply, Rep.coindResAdjunction_homEquiv_apply, Representation.coind'_apply_apply, Rep.coindIso_inv_hom_hom, Representation.linHom.invariantsEquivRepHom_symm_apply_coe, Rep.instLinearModuleCatInvariantsFunctor, Rep.coindResAdjunction_homEquiv_symm_apply, Rep.coindVEquiv_apply_hom, Rep.leftRegularHomEquiv_symm_single, inhomogeneousCochains.d_eq, Rep.MonoidalClosed.linearHomEquiv_hom, Rep.FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, Rep.FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, Rep.leftRegularHomEquiv_apply, Rep.diagonalHomEquiv_apply, Rep.freeLiftLEquiv_symm_apply, Rep.MonoidalClosed.linearHomEquivComm_symm_hom, Rep.indResHomEquiv_apply_hom, Representation.linHom.invariantsEquivRepHom_apply_hom, Rep.coindIso_hom_hom_hom, Rep.indResHomEquiv_symm_apply_hom

---

← Back to Index