Documentation Verification Report

Submodule

πŸ“ Source: Mathlib/RepresentationTheory/Submodule.lean

Statistics

MetricCount
DefinitionsinvtSubmodule, instBoundedOrderSubtypeSubmoduleMemSublattice, mapSubmodule
3
TheoremsasAlgebraHom_mem_of_forall_mem, bot_mem, coe_bot, coe_top, instNontrivialSubtypeSubmoduleMemSublattice, nontrivial_iff, top_mem, mem_invtSubmodule
8
Total11

Representation

Definitions

NameCategoryTheorems
invtSubmodule πŸ“–CompOp
7 mathmath: invtSubmodule.nontrivial_iff, invtSubmodule.coe_top, invtSubmodule.top_mem, invtSubmodule.coe_bot, invtSubmodule.instNontrivialSubtypeSubmoduleMemSublattice, mem_invtSubmodule, invtSubmodule.bot_mem
mapSubmodule πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
asAlgebraHom_mem_of_forall_mem πŸ“–mathematicalSubmodule
CommSemiring.toSemiring
SetLike.instMembership
Submodule.setLike
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
Representation
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
Module.End
AlgHom
MonoidAlgebra
MonoidAlgebra.semiring
MonoidAlgebra.algebra
Algebra.id
Module.End.instAlgebra
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Algebra.toSMul
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AlgHom.funLike
asAlgebraHom
β€”MonoidAlgebra.induction_on
smulCommClass_self
IsScalarTower.left
asAlgebraHom_single
one_smul
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
Submodule.addSubmonoidClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
SMulMemClass.smul_mem
Submodule.smulMemClass
mem_invtSubmodule πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
invtSubmodule
Module.End.invtSubmodule
DFunLike.coe
Representation
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
MonoidHom.instFunLike
MulOneClass.toMulOne
Monoid.toMulOneClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Module.End.instSemiring
β€”invtSubmodule.eq_1
Sublattice.mem_iInf

Representation.invtSubmodule

Definitions

NameCategoryTheorems
instBoundedOrderSubtypeSubmoduleMemSublattice πŸ“–CompOp
2 mathmath: coe_top, coe_bot

Theorems

NameKindAssumesProvesValidatesDepends On
bot_mem πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
Representation.invtSubmodule
Bot.bot
Submodule.instBot
β€”β€”
coe_bot πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
Representation.invtSubmodule
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
BoundedOrder.toOrderBot
instBoundedOrderSubtypeSubmoduleMemSublattice
Submodule.instBot
β€”β€”
coe_top πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
Representation.invtSubmodule
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
BoundedOrder.toOrderTop
instBoundedOrderSubtypeSubmoduleMemSublattice
Submodule.instTop
β€”β€”
instNontrivialSubtypeSubmoduleMemSublattice πŸ“–mathematicalβ€”Nontrivial
Submodule
CommSemiring.toSemiring
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
Representation.invtSubmodule
β€”nontrivial_iff
nontrivial_iff πŸ“–mathematicalβ€”Nontrivial
Submodule
CommSemiring.toSemiring
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
Representation.invtSubmodule
β€”Mathlib.Tactic.Contrapose.contrapose₁
instSubsingletonSubtype_mathlib
Unique.instSubsingleton
Subtype.coe_ne_coe
coe_top
coe_bot
bot_ne_top
Submodule.instNontrivial
top_mem πŸ“–mathematicalβ€”Submodule
CommSemiring.toSemiring
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
Representation.invtSubmodule
Top.top
Submodule.instTop
β€”β€”

---

← Back to Index