Documentation Verification Report

Algebra

šŸ“ Source: Mathlib/RingTheory/AdicCompletion/Algebra.lean

Statistics

MetricCount
Definitionssubalgebra, subring, evalOneₐ, evalₐ, instAlgebra, instAlgebraAdicCauchySequence, instCommRing, instCommRingAdicCauchySequence, instIntCast, instIntCastAdicCauchySequence, instModuleQuotientIdealHSMulTopSubmodule, instMul, instMulAdicCauchySequence, instNatCast, instNatCastAdicCauchySequence, instOne, instOneAdicCauchySequence, instPowAdicCauchySequenceNat, instPowNat, instSMulQuotientIdealHSMulTopSubmodule, kerProj, liftAlgHom, liftRingHom, mkₐ, ofAlgEquiv, smul, subalgebra, subring, transitionMapₐ
29
Theoremsmk_eq_mk, evalOneₐ_liftAlgHom, evalOneₐ_of, evalOneₐ_surjective, evalₐ_comp_liftRingHom, evalₐ_liftAlgHom, evalₐ_liftRingHom, evalₐ_mk, evalₐ_mkₐ, evalₐ_of, ext_evalₐ, factor_eval_eq_evalₐ, factor_eval_liftRingHom, factor_evalₐ_eq_eval, factorₐ_evalₐ_one, instIsScalarTowerQuotientIdealHSMulTopSubmodule, instIsScalarTower_1, kerProj_of, kerProj_surjective, mk_ofAlgEquiv_symm, mk_ofAlgEquiv_symm_eq_evalOneₐ, mk_smul_mk, mk_smul_top_ofAlgEquiv_symm, mkₐ_apply_coe, mul_apply, ofAlgEquiv_apply, ofAlgEquiv_symm_of, of_ofAlgEquiv_symm, one_apply, smul_eval, smul_mk, surjective_evalₐ, transitionMap_ideal_mk, transitionMap_map_mul, transitionMap_map_one, transitionMap_map_pow, val_mul, val_one, val_smul_eq_evalₐ_smul
39
Total68

AdicCompletion

Definitions

NameCategoryTheorems
evalOneₐ šŸ“–CompOp
6 mathmath: factorₐ_evalₐ_one, evalOneₐ_of, mk_ofAlgEquiv_symm_eq_evalOneₐ, Algebra.FormallySmooth.exists_adicCompletionEvalOneₐ_comp_eq, evalOneₐ_surjective, evalOneₐ_liftAlgHom
evalₐ šŸ“–CompOp
12 mathmath: val_smul_eq_evalₐ_smul, factor_eval_eq_evalₐ, factorₐ_evalₐ_one, mk_ofAlgEquiv_symm, evalₐ_liftAlgHom, surjective_evalₐ, evalₐ_of, factor_evalₐ_eq_eval, evalₐ_comp_liftRingHom, evalₐ_mk, evalₐ_mkₐ, evalₐ_liftRingHom
instAlgebra šŸ“–CompOp
36 mathmath: of_ofAlgEquiv_symm, ofTensorProduct_surjective_of_finite, val_smul_eq_evalₐ_smul, factor_eval_eq_evalₐ, mkₐ_apply_coe, coe_ofTensorProductEquivOfFiniteNoetherian, factorₐ_evalₐ_one, ofTensorProductEquivOfFiniteNoetherian_symm_of, mk_ofAlgEquiv_symm, ofTensorProduct_bijective_of_finite_of_isNoetherian, kerProj_surjective, ofTensorProduct_bijective_of_pi_of_fintype, ofAlgEquiv_apply, IsAdicComplete.ofAlgEquiv_comp_liftRingHom, kerProj_of, evalOneₐ_of, mk_smul_top_ofAlgEquiv_symm, tensor_map_id_left_eq_map, ofTensorProduct_tmul, evalₐ_liftAlgHom, surjective_evalₐ, mk_ofAlgEquiv_symm_eq_evalOneₐ, ofTensorProductEquivOfFiniteNoetherian_apply, Algebra.FormallySmooth.exists_adicCompletionEvalOneₐ_comp_eq, evalₐ_of, evalOneₐ_surjective, factor_evalₐ_eq_eval, evalₐ_comp_liftRingHom, evalₐ_mk, evalₐ_mkₐ, ofTensorProduct_naturality, Algebra.FormallySmooth.exists_kerProj_comp_eq_id, tensor_map_id_left_injective_of_injective, evalOneₐ_liftAlgHom, evalₐ_liftRingHom, ofAlgEquiv_symm_of
instAlgebraAdicCauchySequence šŸ“–CompOp
2 mathmath: mkₐ_apply_coe, evalₐ_mkₐ
instCommRing šŸ“–CompOp
64 mathmath: map_val_apply, of_ofAlgEquiv_symm, map_ext'_iff, ofTensorProduct_surjective_of_finite, val_smul_eq_evalₐ_smul, pi_apply_coe, map_injective, factor_eval_eq_evalₐ, IsAdicComplete.of_liftRingHom, sumInv_apply, sum_lof, mkₐ_apply_coe, map_comp_apply, map_comp, map_id, sumInv_comp_sum, coe_ofTensorProductEquivOfFiniteNoetherian, factorₐ_evalₐ_one, ofTensorProductEquivOfFiniteNoetherian_symm_of, mk_ofAlgEquiv_symm, ofTensorProduct_bijective_of_finite_of_isNoetherian, kerProj_surjective, ofTensorProduct_bijective_of_pi_of_fintype, map_mk, ofAlgEquiv_apply, IsAdicComplete.ofAlgEquiv_comp_liftRingHom, sum_of, congr_symm_apply, kerProj_of, evalOneₐ_of, mk_smul_top_ofAlgEquiv_symm, tensor_map_id_left_eq_map, factor_eval_liftRingHom, ofTensorProduct_tmul, map_exact, evalₐ_liftAlgHom, surjective_evalₐ, mk_ofAlgEquiv_symm_eq_evalOneₐ, ofTensorProductEquivOfFiniteNoetherian_apply, sumEquivOfFintype_apply, Algebra.FormallySmooth.exists_adicCompletionEvalOneₐ_comp_eq, evalₐ_of, evalOneₐ_surjective, factor_evalₐ_eq_eval, evalₐ_comp_liftRingHom, map_zero, component_sumInv, evalₐ_mk, piEquivOfFintype_apply, evalₐ_mkₐ, ofTensorProduct_naturality, congr_apply, Algebra.FormallySmooth.exists_kerProj_comp_eq_id, tensor_map_id_left_injective_of_injective, sumEquivOfFintype_symm_apply, flat_of_isNoetherian, piEquivFin_apply, evalOneₐ_liftAlgHom, evalₐ_liftRingHom, map_of, map_surjective_of_mkQ_comp_surjective, map_surjective, sum_comp_sumInv, ofAlgEquiv_symm_of
instCommRingAdicCauchySequence šŸ“–CompOp
2 mathmath: mkₐ_apply_coe, evalₐ_mkₐ
instIntCast šŸ“–CompOp—
instIntCastAdicCauchySequence šŸ“–CompOp—
instModuleQuotientIdealHSMulTopSubmodule šŸ“–CompOp—
instMul šŸ“–CompOp
1 mathmath: val_mul
instMulAdicCauchySequence šŸ“–CompOp
1 mathmath: mul_apply
instNatCast šŸ“–CompOp—
instNatCastAdicCauchySequence šŸ“–CompOp—
instOne šŸ“–CompOp
2 mathmath: ofTensorProductEquivOfFiniteNoetherian_symm_of, val_one
instOneAdicCauchySequence šŸ“–CompOp
1 mathmath: one_apply
instPowAdicCauchySequenceNat šŸ“–CompOp—
instPowNat šŸ“–CompOp—
instSMulQuotientIdealHSMulTopSubmodule šŸ“–CompOp
4 mathmath: val_smul_eq_evalₐ_smul, smul_eval, mk_smul_mk, instIsScalarTowerQuotientIdealHSMulTopSubmodule
kerProj šŸ“–CompOp
3 mathmath: kerProj_surjective, kerProj_of, Algebra.FormallySmooth.exists_kerProj_comp_eq_id
liftAlgHom šŸ“–CompOp
2 mathmath: evalₐ_liftAlgHom, evalOneₐ_liftAlgHom
liftRingHom šŸ“–CompOp
5 mathmath: IsAdicComplete.of_liftRingHom, IsAdicComplete.ofAlgEquiv_comp_liftRingHom, factor_eval_liftRingHom, evalₐ_comp_liftRingHom, evalₐ_liftRingHom
mkₐ šŸ“–CompOp
2 mathmath: mkₐ_apply_coe, evalₐ_mkₐ
ofAlgEquiv šŸ“–CompOp
7 mathmath: of_ofAlgEquiv_symm, mk_ofAlgEquiv_symm, ofAlgEquiv_apply, IsAdicComplete.ofAlgEquiv_comp_liftRingHom, mk_smul_top_ofAlgEquiv_symm, mk_ofAlgEquiv_symm_eq_evalOneₐ, ofAlgEquiv_symm_of
smul šŸ“–CompOp
3 mathmath: instIsScalarTower_1, smul_eval, ofTensorProduct_tmul
subalgebra šŸ“–CompOp—
subring šŸ“–CompOp—
transitionMapₐ šŸ“–CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
evalOneₐ_liftAlgHom šŸ“–mathematicalAlgHom.comp
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Submodule.instPowNat
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Module.toDistribMulAction
CommRing.toCommSemiring
CommSemiring.toSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
IsScalarTower.right
Algebra.id
Ideal.Quotient.algebra
Ideal.Quotient.factorₐ
Ideal.pow_le_pow_right
DFunLike.coe
AlgHom
AdicCompletion
Ring.toAddCommGroup
Ideal.instHasQuotient_1
instCommRing
Ideal.Quotient.semiring
instAlgebra
Ideal.instAlgebraQuotient
AlgHom.funLike
evalOneₐ
liftAlgHom
—IsScalarTower.right
IsScalarTower.left
Ideal.instIsTwoSided_1
Ideal.pow_le_pow_right
evalₐ_liftAlgHom
evalOneₐ_of šŸ“–mathematical—DFunLike.coe
AlgHom
AdicCompletion
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
HasQuotient.Quotient
Ideal
Ideal.instHasQuotient_1
instCommRing
Ideal.Quotient.semiring
instAlgebra
Algebra.id
Ideal.instAlgebraQuotient
AlgHom.funLike
evalOneₐ
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroup
instModuleOfIsScalarTower
Algebra.toSMul
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
of
RingHom
Ring.toSemiring
Ideal.instHasQuotient
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
—IsScalarTower.left
evalOneₐ_surjective šŸ“–mathematical—AdicCompletion
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
HasQuotient.Quotient
Ideal
Ideal.instHasQuotient_1
DFunLike.coe
AlgHom
instCommRing
Ideal.Quotient.semiring
instAlgebra
Algebra.id
Ideal.instAlgebraQuotient
AlgHom.funLike
evalOneₐ
—Ideal.instIsTwoSided_1
pow_one
Ideal.Quotient.factor_surjective
surjective_evalₐ
evalₐ_comp_liftRingHom šŸ“–mathematicalRingHom.comp
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Submodule.instPowNat
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Module.toDistribMulAction
Semiring.toNonAssocSemiring
Ideal.Quotient.ring
Ideal.IsTwoSided.instHPowNat
Ideal.instIsTwoSided_1
Ideal.Quotient.factorPow
AdicCompletion
Ring.toAddCommGroup
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
IsScalarTower.right
Algebra.id
instCommRing
Ideal.Quotient.semiring
RingHomClass.toRingHom
AlgHom
instAlgebra
Ideal.instAlgebraQuotient
AlgHom.funLike
AlgHomClass.toRingHomClass
AlgHom.algHomClass
evalₐ
liftRingHom
—IsScalarTower.right
IsScalarTower.left
Ideal.IsTwoSided.instHPowNat
Ideal.instIsTwoSided_1
RingHom.ext
AlgHomClass.toRingHomClass
AlgHom.algHomClass
evalₐ_liftRingHom
evalₐ_liftAlgHom šŸ“–mathematicalAlgHom.comp
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Submodule.instPowNat
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Module.toDistribMulAction
CommRing.toCommSemiring
CommSemiring.toSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
IsScalarTower.right
Algebra.id
Ideal.Quotient.algebra
Ideal.Quotient.factorₐ
Ideal.pow_le_pow_right
DFunLike.coe
AlgHom
AdicCompletion
Ring.toAddCommGroup
Ideal.instHasQuotient_1
instCommRing
Ideal.Quotient.semiring
instAlgebra
Ideal.instAlgebraQuotient
AlgHom.funLike
evalₐ
liftAlgHom
—IsScalarTower.right
IsScalarTower.left
Ideal.instIsTwoSided_1
Ideal.pow_le_pow_right
evalₐ_liftRingHom
RingHom.ext
Ideal.IsTwoSided.instHPowNat
evalₐ_liftRingHom šŸ“–mathematicalRingHom.comp
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Submodule.instPowNat
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Module.toDistribMulAction
Semiring.toNonAssocSemiring
Ideal.Quotient.ring
Ideal.IsTwoSided.instHPowNat
Ideal.instIsTwoSided_1
Ideal.Quotient.factorPow
DFunLike.coe
AlgHom
AdicCompletion
Ring.toAddCommGroup
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
IsScalarTower.right
Algebra.id
instCommRing
Ideal.Quotient.semiring
instAlgebra
Ideal.instAlgebraQuotient
AlgHom.funLike
evalₐ
RingHom
RingHom.instFunLike
liftRingHom
—IsScalarTower.right
IsScalarTower.left
Ideal.IsTwoSided.instHPowNat
Ideal.instIsTwoSided_1
le_of_eq
Ideal.mul_top
factor_eval_eq_evalₐ
LE.le.trans
Ideal.Quotient.factor_comp_apply
Ideal.Quotient.factor_eq
evalₐ_mk šŸ“–mathematical—DFunLike.coe
AlgHom
AdicCompletion
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
HasQuotient.Quotient
Ideal
Ideal.instHasQuotient_1
Submodule.instPowNat
IsScalarTower.right
Algebra.id
instCommRing
Ideal.Quotient.semiring
instAlgebra
Ideal.instAlgebraQuotient
AlgHom.funLike
evalₐ
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
AdicCauchySequence
AddCommGroup.toAddCommMonoid
AdicCauchySequence.instAddCommGroup
instAddCommGroup
AdicCauchySequence.instModule
instModuleOfIsScalarTower
Algebra.toSMul
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
RingHom
Ring.toSemiring
Ideal.instHasQuotient
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
IsAdicCauchy
—IsScalarTower.right
evalₐ_mkₐ šŸ“–mathematical—DFunLike.coe
AlgHom
AdicCompletion
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
HasQuotient.Quotient
Ideal
Ideal.instHasQuotient_1
Submodule.instPowNat
IsScalarTower.right
Algebra.id
instCommRing
Ideal.Quotient.semiring
instAlgebra
Ideal.instAlgebraQuotient
AlgHom.funLike
evalₐ
AdicCauchySequence
instCommRingAdicCauchySequence
instAlgebraAdicCauchySequence
mkₐ
RingHom
Ring.toSemiring
Ideal.instHasQuotient
Semiring.toNonAssocSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
IsAdicCauchy
—IsScalarTower.right
Ideal.instIsTwoSided_1
evalₐ_of šŸ“–mathematical—DFunLike.coe
AlgHom
AdicCompletion
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
HasQuotient.Quotient
Ideal
Ideal.instHasQuotient_1
Submodule.instPowNat
IsScalarTower.right
Algebra.id
instCommRing
Ideal.Quotient.semiring
instAlgebra
Ideal.instAlgebraQuotient
AlgHom.funLike
evalₐ
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroup
instModuleOfIsScalarTower
Algebra.toSMul
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
of
RingHom
Ring.toSemiring
Ideal.instHasQuotient
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
—IsScalarTower.right
ext_evalₐ šŸ“–ā€”DFunLike.coe
AlgHom
AdicCompletion
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
HasQuotient.Quotient
Ideal
Ideal.instHasQuotient_1
Submodule.instPowNat
IsScalarTower.right
Algebra.id
instCommRing
Ideal.Quotient.semiring
instAlgebra
Ideal.instAlgebraQuotient
AlgHom.funLike
evalₐ
——IsScalarTower.right
ext
Ideal.ext
IsScalarTower.left
Ideal.smul_top_eq_map
Submodule.restrictScalars.congr_simp
Ideal.map_id
Submodule.restrictScalars_self
AlgEquiv.injective
Ideal.instIsTwoSided_1
factor_eval_eq_evalₐ šŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instSMul
IsScalarTower.right
Algebra.id
Submodule.instPowNat
Top.top
Submodule.instTop
DFunLike.coe
LinearMap
Ring.toSemiring
CommRing.toRing
RingHom.id
HasQuotient.Quotient
Submodule
AddCommGroup.toAddCommMonoid
Ring.toAddCommGroup
Submodule.hasQuotient
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
LinearMap.instFunLike
Submodule.factor
AdicCompletion
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
instAddCommGroup
instModuleOfIsScalarTower
Algebra.toSMul
eval
AlgHom
Ideal.instHasQuotient_1
instCommRing
Ideal.Quotient.semiring
instAlgebra
Ideal.instAlgebraQuotient
AlgHom.funLike
evalₐ
—IsScalarTower.right
Ideal.instIsTwoSided_1
factor_eval_liftRingHom šŸ“–mathematicalRingHom.comp
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Submodule.instPowNat
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Module.toDistribMulAction
Semiring.toNonAssocSemiring
Ideal.Quotient.ring
Ideal.IsTwoSided.instHPowNat
Ideal.instIsTwoSided_1
Ideal.Quotient.factorPow
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonAssocSemiring.toNonUnitalNonAssocSemiring
Submodule.instSMul
IsScalarTower.right
Algebra.id
Top.top
Submodule.instTop
DFunLike.coe
LinearMap
RingHom.id
Submodule
AddCommGroup.toAddCommMonoid
Ring.toAddCommGroup
Submodule.hasQuotient
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
LinearMap.instFunLike
Submodule.factor
AdicCompletion
instAddCommGroup
instModuleOfIsScalarTower
Algebra.toSMul
eval
RingHom
instCommRing
RingHom.instFunLike
liftRingHom
Ideal.instHasQuotient_1
Ideal.Quotient.semiring
—IsScalarTower.right
IsScalarTower.left
Ideal.IsTwoSided.instHPowNat
Ideal.instIsTwoSided_1
LE.le.trans
Ideal.Quotient.factor_comp_apply
Ideal.Quotient.factor_eq
factor_evalₐ_eq_eval šŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Submodule.instSMul
Top.top
Submodule.instTop
DFunLike.coe
RingHom
HasQuotient.Quotient
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
Ideal.Quotient.factor
AlgHom
AdicCompletion
Ring.toAddCommGroup
Ideal.instHasQuotient_1
instCommRing
Ideal.Quotient.semiring
instAlgebra
Ideal.instAlgebraQuotient
AlgHom.funLike
evalₐ
LinearMap
RingHom.id
Submodule
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
instAddCommGroup
Submodule.Quotient.addCommGroup
instModuleOfIsScalarTower
Algebra.toSMul
Submodule.Quotient.module
LinearMap.instFunLike
eval
—IsScalarTower.right
Ideal.instIsTwoSided_1
IsScalarTower.left
le_of_eq
LE.le.trans
Ideal.Quotient.factor_comp_apply
Ideal.Quotient.factor_eq
factorₐ_evalₐ_one šŸ“–mathematical—DFunLike.coe
RingHom
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
CommSemiring.toSemiring
CommRing.toCommSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Semiring.toNonAssocSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
Ideal.Quotient.factor
AlgHom
AdicCompletion
Ring.toAddCommGroup
Semiring.toModule
Ideal.instHasQuotient_1
Submodule.instPowNat
IsScalarTower.right
instCommRing
Ideal.Quotient.semiring
instAlgebra
Ideal.instAlgebraQuotient
AlgHom.funLike
evalₐ
evalOneₐ
—Ideal.instIsTwoSided_1
IsScalarTower.right
instIsScalarTowerQuotientIdealHSMulTopSubmodule šŸ“–mathematical—IsScalarTower
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Submodule.instSMul
Semiring.toModule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
IsScalarTower.right
Algebra.id
Top.top
Submodule.instTop
Submodule
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
CommRing.toRing
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.Quotient.instSMul
Ring.toAddCommGroup
instSMulQuotientIdealHSMulTopSubmodule
—IsScalarTower.right
IsScalarTower.left
Quotient.inductionOn'
Submodule.Quotient.mk_smul
Ideal.instIsTwoSided_1
smul_assoc
Submodule.Quotient.isScalarTower
instIsScalarTower_1 šŸ“–mathematical—IsScalarTower
AdicCompletion
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
instSMul
Algebra.toSMul
Algebra.id
IsScalarTower.right
smul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
IsScalarTower.left
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
—IsScalarTower.right
IsScalarTower.left
ext
smul_eval
val_smul_apply
smul_assoc
instIsScalarTowerQuotientIdealHSMulTopSubmodule
kerProj_of šŸ“–mathematicalDFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHom.funLike
AdicCompletion
RingHom.ker
AlgHomClass.toRingHomClass
AlgHom.algHomClass
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
instCommRing
instAlgebra
kerProj
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroup
instModuleOfIsScalarTower
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
of
—AlgHomClass.toRingHomClass
AlgHom.algHomClass
IsScalarTower.left
kerProj_surjective šŸ“–mathematicalDFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHom.funLike
AdicCompletion
RingHom.ker
AlgHomClass.toRingHomClass
AlgHom.algHomClass
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
instCommRing
instAlgebra
kerProj
—AlgHomClass.toRingHomClass
AlgHom.algHomClass
RingHom.instIsTwoSidedKer
AlgEquiv.surjective
evalOneₐ_surjective
mk_ofAlgEquiv_symm šŸ“–mathematical—DFunLike.coe
RingHom
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.instPowNat
Semiring.toModule
IsScalarTower.right
Algebra.id
Semiring.toNonAssocSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
AlgEquiv
AdicCompletion
Ring.toAddCommGroup
instCommRing
instAlgebra
AlgEquiv.instFunLike
AlgEquiv.symm
ofAlgEquiv
AlgHom
Ideal.instHasQuotient_1
Ideal.Quotient.semiring
Ideal.instAlgebraQuotient
AlgHom.funLike
evalₐ
—IsScalarTower.right
Ideal.instIsTwoSided_1
IsScalarTower.left
mk_smul_top_ofAlgEquiv_symm
mk_ofAlgEquiv_symm_eq_evalOneₐ šŸ“–mathematical—DFunLike.coe
RingHom
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Semiring.toNonAssocSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
AlgEquiv
AdicCompletion
Ring.toAddCommGroup
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
instAlgebra
Algebra.id
AlgEquiv.instFunLike
AlgEquiv.symm
ofAlgEquiv
AlgHom
Ideal.instHasQuotient_1
Ideal.Quotient.semiring
Ideal.instAlgebraQuotient
AlgHom.funLike
evalOneₐ
—Ideal.instIsTwoSided_1
IsScalarTower.right
mk_smul_mk šŸ“–mathematical—HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.instSMul
Semiring.toModule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
IsScalarTower.right
Algebra.id
Top.top
Submodule.instTop
Submodule
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
instSMulQuotientIdealHSMulTopSubmodule
DFunLike.coe
RingHom
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
Submodule.Quotient.instSMul
—IsScalarTower.left
IsScalarTower.right
Ideal.instIsTwoSided_1
mk_smul_top_ofAlgEquiv_symm šŸ“–mathematical—DFunLike.coe
RingHom
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.instSMul
Semiring.toModule
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
IsScalarTower.right
Algebra.id
Submodule.instPowNat
Top.top
Submodule.instTop
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
AlgEquiv
AdicCompletion
Ring.toAddCommGroup
instCommRing
instAlgebra
AlgEquiv.instFunLike
AlgEquiv.symm
ofAlgEquiv
LinearMap
RingHom.id
Submodule
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
instAddCommGroup
Submodule.Quotient.addCommGroup
instModuleOfIsScalarTower
Algebra.toSMul
Submodule.Quotient.module
LinearMap.instFunLike
eval
—IsScalarTower.right
Ideal.instIsTwoSided_1
IsScalarTower.left
of_ofAlgEquiv_symm
mkₐ_apply_coe šŸ“–mathematical—DFunLike.coe
AlgHom
AdicCauchySequence
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
AdicCompletion
instCommRingAdicCauchySequence
instCommRing
instAlgebraAdicCauchySequence
instAlgebra
Algebra.id
AlgHom.funLike
mkₐ
RingHom
HasQuotient.Quotient
Ideal
Ring.toSemiring
Ideal.instHasQuotient
Submodule
AddCommGroup.toAddCommMonoid
Submodule.instSMul
Submodule.instPowNat
Top.top
Submodule.instTop
Semiring.toNonAssocSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
IsAdicCauchy
——
mul_apply šŸ“–mathematical—IsAdicCauchy
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
AdicCauchySequence
instMulAdicCauchySequence
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
——
ofAlgEquiv_apply šŸ“–mathematical—DFunLike.coe
AlgEquiv
AdicCompletion
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
Algebra.id
instAlgebra
AlgEquiv.instFunLike
ofAlgEquiv
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroup
instModuleOfIsScalarTower
Algebra.toSMul
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
of
——
ofAlgEquiv_symm_of šŸ“–mathematical—DFunLike.coe
AlgEquiv
AdicCompletion
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
instAlgebra
Algebra.id
AlgEquiv.instFunLike
AlgEquiv.symm
ofAlgEquiv
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroup
instModuleOfIsScalarTower
Algebra.toSMul
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
of
—IsScalarTower.left
ofLinearEquiv_symm_of
of_ofAlgEquiv_symm šŸ“–mathematical—DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AdicCompletion
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
AddCommGroup.toAddCommMonoid
instAddCommGroup
instModuleOfIsScalarTower
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
of
AlgEquiv
instCommRing
instAlgebra
AlgEquiv.instFunLike
AlgEquiv.symm
ofAlgEquiv
—IsScalarTower.left
of_ofLinearEquiv_symm
one_apply šŸ“–mathematical—IsAdicCauchy
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
AdicCauchySequence
instOneAdicCauchySequence
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
——
smul_eval šŸ“–mathematical—AdicCompletion
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
smul
HasQuotient.Quotient
Submodule
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
Ideal
Submodule.instSMul
Submodule.instPowNat
Top.top
Submodule.instTop
instSMulQuotientIdealHSMulTopSubmodule
——
smul_mk šŸ“–mathematical—HasQuotient.Quotient
Submodule
Ring.toSemiring
CommRing.toRing
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Top.top
Submodule.instTop
Submodule.Quotient.instSMul
IsAdicCauchy
Ring.toAddCommGroup
—IsScalarTower.left
IsScalarTower.right
Submodule.Quotient.mk_smul
Ideal.instIsTwoSided_1
surjective_evalₐ šŸ“–mathematical—AdicCompletion
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
HasQuotient.Quotient
Ideal
Ideal.instHasQuotient_1
Submodule.instPowNat
IsScalarTower.right
Algebra.id
DFunLike.coe
AlgHom
instCommRing
Ideal.Quotient.semiring
instAlgebra
Ideal.instAlgebraQuotient
AlgHom.funLike
evalₐ
—IsScalarTower.right
le_of_eq
Submodule.factor_surjective
Ideal.mul_le_right
Ideal.instIsTwoSided_1
eval_surjective
transitionMap_ideal_mk šŸ“–mathematical—DFunLike.coe
LinearMap
Ring.toSemiring
CommRing.toRing
RingHom.id
Semiring.toNonAssocSemiring
HasQuotient.Quotient
Submodule
AddCommGroup.toAddCommMonoid
Ring.toAddCommGroup
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.hasQuotient
Ideal
Submodule.instSMul
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Top.top
Submodule.instTop
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
LinearMap.instFunLike
transitionMap
RingHom
Ideal.instHasQuotient
NonAssocSemiring.toNonUnitalNonAssocSemiring
IsScalarTower.right
Algebra.id
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
—IsScalarTower.left
IsScalarTower.right
Ideal.instIsTwoSided_1
transitionMap_map_mul šŸ“–mathematical—DFunLike.coe
LinearMap
Ring.toSemiring
CommRing.toRing
RingHom.id
Semiring.toNonAssocSemiring
HasQuotient.Quotient
Submodule
AddCommGroup.toAddCommMonoid
Ring.toAddCommGroup
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.hasQuotient
Ideal
Submodule.instSMul
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Top.top
Submodule.instTop
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
LinearMap.instFunLike
transitionMap
Ideal.instHasQuotient_1
NonAssocSemiring.toNonUnitalNonAssocSemiring
IsScalarTower.right
Algebra.id
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Ideal.Quotient.commRing
—IsScalarTower.right
Quotient.inductionOnā‚‚'
IsScalarTower.left
transitionMap_map_one šŸ“–mathematical—DFunLike.coe
LinearMap
Ring.toSemiring
CommRing.toRing
RingHom.id
Semiring.toNonAssocSemiring
HasQuotient.Quotient
Submodule
AddCommGroup.toAddCommMonoid
Ring.toAddCommGroup
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.hasQuotient
Ideal
Submodule.instSMul
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Top.top
Submodule.instTop
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
LinearMap.instFunLike
transitionMap
Ideal.Quotient.one
—IsScalarTower.left
transitionMap_map_pow šŸ“–mathematical—DFunLike.coe
LinearMap
Ring.toSemiring
CommRing.toRing
RingHom.id
Semiring.toNonAssocSemiring
HasQuotient.Quotient
Submodule
AddCommGroup.toAddCommMonoid
Ring.toAddCommGroup
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.hasQuotient
Ideal
Submodule.instSMul
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Top.top
Submodule.instTop
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
LinearMap.instFunLike
transitionMap
Ideal.instHasQuotient_1
NonAssocSemiring.toNonUnitalNonAssocSemiring
IsScalarTower.right
Algebra.id
Monoid.toNatPow
Ideal.Quotient.semiring
—IsScalarTower.right
Quotient.inductionOn'
IsScalarTower.left
val_mul šŸ“–mathematical—AdicCompletion
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
instMul
HasQuotient.Quotient
Submodule
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
Ideal
Submodule.instSMul
Submodule.instPowNat
Top.top
Submodule.instTop
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Ideal.Quotient.commRing
——
val_one šŸ“–mathematical—AdicCompletion
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
instOne
HasQuotient.Quotient
Submodule
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
Ideal
Submodule.instSMul
Submodule.instPowNat
Top.top
Submodule.instTop
Ideal.Quotient.one
——
val_smul_eq_evalₐ_smul šŸ“–mathematical—HasQuotient.Quotient
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
Submodule.hasQuotient
Ideal
Submodule.instSMul
Submodule.instPowNat
Top.top
Submodule.instTop
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
IsScalarTower.right
Algebra.id
instSMulQuotientIdealHSMulTopSubmodule
Ideal.instHasQuotient_1
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Submodule.Quotient.addCommGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Ideal.Quotient.semiring
Module.instQuotientIdealSubmoduleHSMulTop
Ideal.instIsTwoSided_1
DFunLike.coe
AlgHom
AdicCompletion
instCommRing
instAlgebra
Ideal.instAlgebraQuotient
AlgHom.funLike
evalₐ
—IsScalarTower.left
IsScalarTower.right
induction_on
Ideal.instIsTwoSided_1
Quotient.inductionOn'

AdicCompletion.AdicCauchySequence

Definitions

NameCategoryTheorems
subalgebra šŸ“–CompOp—
subring šŸ“–CompOp—

AdicCompletion.Ideal

Theorems

NameKindAssumesProvesValidatesDepends On
mk_eq_mk šŸ“–mathematical—DFunLike.coe
RingHom
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.instPowNat
Semiring.toModule
IsScalarTower.right
Algebra.id
Semiring.toNonAssocSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
AdicCompletion.IsAdicCauchy
Ring.toAddCommGroup
—IsScalarTower.right
IsScalarTower.left
Ideal.smul_top_eq_map
Submodule.restrictScalars.congr_simp
Ideal.map_id
Submodule.restrictScalars_self
Ideal.instIsTwoSided_1
SModEq.symm

---

← Back to Index