| Name | Category | Theorems |
evalOneā š | CompOp | 6 mathmath: factorā_evalā_one, evalOneā_of, mk_ofAlgEquiv_symm_eq_evalOneā, Algebra.FormallySmooth.exists_adicCompletionEvalOneā_comp_eq, evalOneā_surjective, evalOneā_liftAlgHom
|
evalā š | CompOp | 12 mathmath: val_smul_eq_evalā_smul, factor_eval_eq_evalā, factorā_evalā_one, mk_ofAlgEquiv_symm, evalā_liftAlgHom, surjective_evalā, evalā_of, factor_evalā_eq_eval, evalā_comp_liftRingHom, evalā_mk, evalā_mkā, evalā_liftRingHom
|
instAlgebra š | CompOp | 36 mathmath: of_ofAlgEquiv_symm, ofTensorProduct_surjective_of_finite, val_smul_eq_evalā_smul, factor_eval_eq_evalā, mkā_apply_coe, coe_ofTensorProductEquivOfFiniteNoetherian, factorā_evalā_one, ofTensorProductEquivOfFiniteNoetherian_symm_of, mk_ofAlgEquiv_symm, ofTensorProduct_bijective_of_finite_of_isNoetherian, kerProj_surjective, ofTensorProduct_bijective_of_pi_of_fintype, ofAlgEquiv_apply, IsAdicComplete.ofAlgEquiv_comp_liftRingHom, kerProj_of, evalOneā_of, mk_smul_top_ofAlgEquiv_symm, tensor_map_id_left_eq_map, ofTensorProduct_tmul, evalā_liftAlgHom, surjective_evalā, mk_ofAlgEquiv_symm_eq_evalOneā, ofTensorProductEquivOfFiniteNoetherian_apply, Algebra.FormallySmooth.exists_adicCompletionEvalOneā_comp_eq, evalā_of, evalOneā_surjective, factor_evalā_eq_eval, evalā_comp_liftRingHom, evalā_mk, evalā_mkā, ofTensorProduct_naturality, Algebra.FormallySmooth.exists_kerProj_comp_eq_id, tensor_map_id_left_injective_of_injective, evalOneā_liftAlgHom, evalā_liftRingHom, ofAlgEquiv_symm_of
|
instAlgebraAdicCauchySequence š | CompOp | 2 mathmath: mkā_apply_coe, evalā_mkā
|
instCommRing š | CompOp | 64 mathmath: map_val_apply, of_ofAlgEquiv_symm, map_ext'_iff, ofTensorProduct_surjective_of_finite, val_smul_eq_evalā_smul, pi_apply_coe, map_injective, factor_eval_eq_evalā, IsAdicComplete.of_liftRingHom, sumInv_apply, sum_lof, mkā_apply_coe, map_comp_apply, map_comp, map_id, sumInv_comp_sum, coe_ofTensorProductEquivOfFiniteNoetherian, factorā_evalā_one, ofTensorProductEquivOfFiniteNoetherian_symm_of, mk_ofAlgEquiv_symm, ofTensorProduct_bijective_of_finite_of_isNoetherian, kerProj_surjective, ofTensorProduct_bijective_of_pi_of_fintype, map_mk, ofAlgEquiv_apply, IsAdicComplete.ofAlgEquiv_comp_liftRingHom, sum_of, congr_symm_apply, kerProj_of, evalOneā_of, mk_smul_top_ofAlgEquiv_symm, tensor_map_id_left_eq_map, factor_eval_liftRingHom, ofTensorProduct_tmul, map_exact, evalā_liftAlgHom, surjective_evalā, mk_ofAlgEquiv_symm_eq_evalOneā, ofTensorProductEquivOfFiniteNoetherian_apply, sumEquivOfFintype_apply, Algebra.FormallySmooth.exists_adicCompletionEvalOneā_comp_eq, evalā_of, evalOneā_surjective, factor_evalā_eq_eval, evalā_comp_liftRingHom, map_zero, component_sumInv, evalā_mk, piEquivOfFintype_apply, evalā_mkā, ofTensorProduct_naturality, congr_apply, Algebra.FormallySmooth.exists_kerProj_comp_eq_id, tensor_map_id_left_injective_of_injective, sumEquivOfFintype_symm_apply, flat_of_isNoetherian, piEquivFin_apply, evalOneā_liftAlgHom, evalā_liftRingHom, map_of, map_surjective_of_mkQ_comp_surjective, map_surjective, sum_comp_sumInv, ofAlgEquiv_symm_of
|
instCommRingAdicCauchySequence š | CompOp | 2 mathmath: mkā_apply_coe, evalā_mkā
|
instIntCast š | CompOp | ā |
instIntCastAdicCauchySequence š | CompOp | ā |
instModuleQuotientIdealHSMulTopSubmodule š | CompOp | ā |
instMul š | CompOp | 1 mathmath: val_mul
|
instMulAdicCauchySequence š | CompOp | 1 mathmath: mul_apply
|
instNatCast š | CompOp | ā |
instNatCastAdicCauchySequence š | CompOp | ā |
instOne š | CompOp | 2 mathmath: ofTensorProductEquivOfFiniteNoetherian_symm_of, val_one
|
instOneAdicCauchySequence š | CompOp | 1 mathmath: one_apply
|
instPowAdicCauchySequenceNat š | CompOp | ā |
instPowNat š | CompOp | ā |
instSMulQuotientIdealHSMulTopSubmodule š | CompOp | 4 mathmath: val_smul_eq_evalā_smul, smul_eval, mk_smul_mk, instIsScalarTowerQuotientIdealHSMulTopSubmodule
|
kerProj š | CompOp | 3 mathmath: kerProj_surjective, kerProj_of, Algebra.FormallySmooth.exists_kerProj_comp_eq_id
|
liftAlgHom š | CompOp | 2 mathmath: evalā_liftAlgHom, evalOneā_liftAlgHom
|
liftRingHom š | CompOp | 5 mathmath: IsAdicComplete.of_liftRingHom, IsAdicComplete.ofAlgEquiv_comp_liftRingHom, factor_eval_liftRingHom, evalā_comp_liftRingHom, evalā_liftRingHom
|
mkā š | CompOp | 2 mathmath: mkā_apply_coe, evalā_mkā
|
ofAlgEquiv š | CompOp | 7 mathmath: of_ofAlgEquiv_symm, mk_ofAlgEquiv_symm, ofAlgEquiv_apply, IsAdicComplete.ofAlgEquiv_comp_liftRingHom, mk_smul_top_ofAlgEquiv_symm, mk_ofAlgEquiv_symm_eq_evalOneā, ofAlgEquiv_symm_of
|
smul š | CompOp | 3 mathmath: instIsScalarTower_1, smul_eval, ofTensorProduct_tmul
|
subalgebra š | CompOp | ā |
subring š | CompOp | ā |
transitionMapā š | CompOp | ā |