Documentation Verification Report

Basic

πŸ“ Source: Mathlib/RingTheory/AdicCompletion/Basic.lean

Statistics

MetricCount
DefinitionsAdicCauchySequence, instAdd, instAddCommGroup, instCoeFunForallNat, instModule, instNeg, instSMul, instSMulInt, instSMulNat, instSub, instZero, mk, submodule, IsAdicCauchy, eval, incl, instAdd, instAddCommGroup, instModuleOfIsScalarTower, instNeg, instSMul, instSub, instZero, mk, of, ofLinearEquiv, submodule, transitionMap, Hausdorffification, of, IsAdicComplete, extend, IsHausdorff, IsPrecomplete
34
Theoremsadd_apply, ext, ext_iff, mk_coe, mk_eq_mk, smul_apply, sub_apply, zero_apply, coe_eval, eval_apply, eval_comp_of, eval_lift, eval_lift_apply, eval_of, eval_surjective, ext, ext_iff, incl_apply, induction_on, instIsCentralScalar, instIsHausdorff, instIsScalarTower, instSMulCommClass, isAdicCauchy_iff, mk_apply_coe, mk_surjective, mk_zero_of, ofLinearEquiv_apply, ofLinearEquiv_symm_of, of_apply, of_bijective, of_bijective_iff, of_inj, of_injective, of_injective_iff, of_ofLinearEquiv_symm, of_surjective, of_surjective_iff, range_eval, transitionMap_comp_eval, transitionMap_comp_eval_apply, val_add, val_add_apply, val_neg, val_neg_apply, val_smul, val_smul_apply, val_sub, val_sub_apply, val_sum, val_sum_apply, val_zero, val_zero_apply, induction_on, instIsHausdorff, lift_comp_of, lift_eq, lift_of, eq_lift, extend_eq, factorPow_comp_eq_of_factorPow_comp_succ_eq, factorPow_comp_extend, mkQ_comp_lift, mk_lift, of_comp_lift, of_lift, bot, eq_lift, le_jacobson_bot, mkQ_comp_lift, mk_lift, of_comp_lift, of_lift, of_subsingleton, subsingleton, toIsHausdorff, toIsPrecomplete, funext, funext', bot, eq_iff_smodEq, funext, funext', haus, haus', iInf_pow_smul, map_algebraMap_iff, of_map, of_subsingleton, subsingleton, bot, of_subsingleton, prec, prec', top, isAdicComplete_iff, isHausdorff_iff, isPrecomplete_iff
98
Total132

AdicCompletion

Definitions

NameCategoryTheorems
AdicCauchySequence πŸ“–CompOp
20 mathmath: mk_zero_of, map_ext'_iff, AdicCauchySequence.zero_apply, mkₐ_apply_coe, AdicCauchySequence.map_zero, AdicCauchySequence.add_apply, AdicCauchySequence.smul_apply, AdicCauchySequence.map_id, AdicCauchySequence.sub_apply, map_mk, AdicCauchySequence.map_apply_coe, mk_surjective, map_ext''_iff, AdicCauchySequence.map_comp_apply, mul_apply, one_apply, AdicCauchySequence.map_comp, evalₐ_mk, evalₐ_mkₐ, mk_apply_coe
IsAdicCauchy πŸ“–MathDef
17 mathmath: AdicCauchySequence.mk_eq_mk, AdicCauchySequence.zero_apply, mkₐ_apply_coe, isAdicCauchy_iff, AdicCauchySequence.add_apply, AdicCauchySequence.smul_apply, AdicCauchySequence.ext_iff, AdicCauchySequence.sub_apply, smul_mk, Ideal.mk_eq_mk, AdicCauchySequence.map_apply_coe, AdicCauchySequence.mk_coe, mul_apply, one_apply, evalₐ_mk, evalₐ_mkₐ, mk_apply_coe
eval πŸ“–CompOp
12 mathmath: factor_eval_eq_evalₐ, range_eval, transitionMap_comp_eval, coe_eval, mk_smul_top_ofAlgEquiv_symm, factor_eval_liftRingHom, factor_evalₐ_eq_eval, eval_of, eval_surjective, eval_apply, eval_comp_of, eval_lift
incl πŸ“–CompOp
1 mathmath: incl_apply
instAdd πŸ“–CompOp
2 mathmath: val_add_apply, val_add
instAddCommGroup πŸ“–CompOp
78 mathmath: of_surjective_iff, mk_zero_of, map_val_apply, of_ofAlgEquiv_symm, incl_apply, map_ext'_iff, ofTensorProduct_surjective_of_finite, pi_apply_coe, map_injective, factor_eval_eq_evalₐ, IsAdicComplete.of_liftRingHom, sumInv_apply, sum_lof, map_comp_apply, val_sum, IsAdicComplete.of_lift, map_comp, range_eval, transitionMap_comp_eval, map_id, instIsHausdorff, sumInv_comp_sum, coe_eval, coe_ofTensorProductEquivOfFiniteNoetherian, ofTensorProductEquivOfFiniteNoetherian_symm_of, ofTensorProduct_bijective_of_finite_of_isNoetherian, of_bijective_iff, IsAdicComplete.of_comp_lift, ofTensorProduct_bijective_of_pi_of_fintype, map_mk, ofAlgEquiv_apply, of_surjective, sum_of, mk_surjective, map_ext''_iff, congr_symm_apply, of_ofLinearEquiv_symm, kerProj_of, evalOneₐ_of, IsAdicComplete.StrictMono.of_comp_lift, mk_smul_top_ofAlgEquiv_symm, tensor_map_id_left_eq_map, factor_eval_liftRingHom, of_inj, ofTensorProduct_tmul, map_exact, of_injective, ofTensorProductEquivOfFiniteNoetherian_apply, sumEquivOfFintype_apply, of_bijective, evalₐ_of, factor_evalₐ_eq_eval, eval_of, map_zero, component_sumInv, evalₐ_mk, piEquivOfFintype_apply, IsAdicComplete.StrictMono.of_lift, ofTensorProduct_naturality, ofLinearEquiv_apply, mk_apply_coe, congr_apply, of_injective_iff, eval_lift_apply, eval_surjective, sumEquivOfFintype_symm_apply, eval_apply, piEquivFin_apply, ofLinearEquiv_symm_of, val_sum_apply, map_of, map_surjective_of_mkQ_comp_surjective, of_apply, map_surjective, eval_comp_of, sum_comp_sumInv, eval_lift, ofAlgEquiv_symm_of
instModuleOfIsScalarTower πŸ“–CompOp
56 mathmath: of_surjective_iff, mk_zero_of, of_ofAlgEquiv_symm, incl_apply, map_ext'_iff, ofTensorProduct_surjective_of_finite, factor_eval_eq_evalₐ, IsAdicComplete.of_liftRingHom, IsAdicComplete.of_lift, range_eval, transitionMap_comp_eval, instIsHausdorff, coe_eval, coe_ofTensorProductEquivOfFiniteNoetherian, ofTensorProductEquivOfFiniteNoetherian_symm_of, ofTensorProduct_bijective_of_finite_of_isNoetherian, of_bijective_iff, IsAdicComplete.of_comp_lift, ofTensorProduct_bijective_of_pi_of_fintype, map_mk, ofAlgEquiv_apply, of_surjective, mk_surjective, map_ext''_iff, of_ofLinearEquiv_symm, kerProj_of, evalOneₐ_of, IsAdicComplete.StrictMono.of_comp_lift, mk_smul_top_ofAlgEquiv_symm, tensor_map_id_left_eq_map, factor_eval_liftRingHom, of_inj, ofTensorProduct_tmul, of_injective, ofTensorProductEquivOfFiniteNoetherian_apply, of_bijective, evalₐ_of, factor_evalₐ_eq_eval, eval_of, evalₐ_mk, IsAdicComplete.StrictMono.of_lift, ofTensorProduct_naturality, ofLinearEquiv_apply, mk_apply_coe, of_injective_iff, eval_lift_apply, tensor_map_id_left_injective_of_injective, eval_surjective, eval_apply, flat_of_isNoetherian, ofLinearEquiv_symm_of, map_of, of_apply, eval_comp_of, eval_lift, ofAlgEquiv_symm_of
instNeg πŸ“–CompOp
2 mathmath: val_neg_apply, val_neg
instSMul πŸ“–CompOp
6 mathmath: instIsScalarTower_1, val_smul, instIsCentralScalar, instIsScalarTower, instSMulCommClass, val_smul_apply
instSub πŸ“–CompOp
2 mathmath: val_sub_apply, val_sub
instZero πŸ“–CompOp
4 mathmath: mk_zero_of, map_exact, val_zero, val_zero_apply
mk πŸ“–CompOpβ€”
of πŸ“–CompOp
27 mathmath: of_surjective_iff, of_ofAlgEquiv_symm, IsAdicComplete.of_liftRingHom, IsAdicComplete.of_lift, ofTensorProductEquivOfFiniteNoetherian_symm_of, of_bijective_iff, IsAdicComplete.of_comp_lift, ofAlgEquiv_apply, of_surjective, of_ofLinearEquiv_symm, kerProj_of, evalOneₐ_of, IsAdicComplete.StrictMono.of_comp_lift, of_inj, ofTensorProduct_tmul, of_injective, of_bijective, evalₐ_of, eval_of, IsAdicComplete.StrictMono.of_lift, ofLinearEquiv_apply, of_injective_iff, ofLinearEquiv_symm_of, map_of, of_apply, eval_comp_of, ofAlgEquiv_symm_of
ofLinearEquiv πŸ“–CompOp
3 mathmath: of_ofLinearEquiv_symm, ofLinearEquiv_apply, ofLinearEquiv_symm_of
submodule πŸ“–CompOpβ€”
transitionMap πŸ“–CompOp
7 mathmath: transitionMap_comp_eval, transitionMap_comp_reduceModIdeal, transitionMap_map_pow, transitionMap_ideal_mk, transitionMap_map_mul, transitionMap_comp_eval_apply, transitionMap_map_one

Theorems

NameKindAssumesProvesValidatesDepends On
coe_eval πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AdicCompletion
HasQuotient.Quotient
Submodule
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
CommRing.toRing
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Top.top
Submodule.instTop
instAddCommGroup
Submodule.Quotient.addCommGroup
instModuleOfIsScalarTower
Algebra.toSMul
Submodule.Quotient.module
LinearMap.instFunLike
eval
β€”IsScalarTower.left
IsScalarTower.right
eval_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AdicCompletion
HasQuotient.Quotient
Submodule
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
CommRing.toRing
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Top.top
Submodule.instTop
instAddCommGroup
Submodule.Quotient.addCommGroup
instModuleOfIsScalarTower
Algebra.toSMul
Submodule.Quotient.module
LinearMap.instFunLike
eval
β€”IsScalarTower.left
IsScalarTower.right
eval_comp_of πŸ“–mathematicalβ€”LinearMap.comp
AdicCompletion
HasQuotient.Quotient
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
CommRing.toRing
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Top.top
Submodule.instTop
instAddCommGroup
Submodule.Quotient.addCommGroup
instModuleOfIsScalarTower
Algebra.toSMul
Submodule.Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
eval
of
Submodule.mkQ
β€”IsScalarTower.left
IsScalarTower.right
RingHomCompTriple.ids
eval_lift πŸ“–mathematicalLinearMap.comp
HasQuotient.Quotient
Submodule
Ring.toSemiring
CommRing.toRing
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Top.top
Submodule.instTop
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
transitionMap
AdicCompletion
CommSemiring.toSemiring
CommRing.toCommSemiring
IsScalarTower.right
Algebra.id
instAddCommGroup
instModuleOfIsScalarTower
Algebra.toSMul
eval
lift
β€”IsScalarTower.left
IsScalarTower.right
RingHomCompTriple.ids
eval_lift_apply πŸ“–mathematicalLinearMap.comp
HasQuotient.Quotient
Submodule
Ring.toSemiring
CommRing.toRing
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Top.top
Submodule.instTop
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
transitionMap
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
AdicCompletion
instAddCommGroup
instModuleOfIsScalarTower
Algebra.toSMul
Algebra.id
LinearMap.instFunLike
lift
IsScalarTower.right
β€”IsScalarTower.left
IsScalarTower.right
RingHomCompTriple.ids
eval_of πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AdicCompletion
HasQuotient.Quotient
Submodule
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
CommRing.toRing
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Top.top
Submodule.instTop
instAddCommGroup
Submodule.Quotient.addCommGroup
instModuleOfIsScalarTower
Algebra.toSMul
Submodule.Quotient.module
LinearMap.instFunLike
eval
of
Ring.toSemiring
Submodule.mkQ
β€”IsScalarTower.left
IsScalarTower.right
eval_surjective πŸ“–mathematicalβ€”AdicCompletion
HasQuotient.Quotient
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
CommRing.toRing
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Top.top
Submodule.instTop
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
instAddCommGroup
Submodule.Quotient.addCommGroup
instModuleOfIsScalarTower
Algebra.toSMul
Submodule.Quotient.module
LinearMap.instFunLike
eval
β€”IsScalarTower.left
IsScalarTower.right
Quotient.inductionOn'
ext πŸ“–β€”β€”β€”β€”β€”
ext_iff πŸ“–β€”β€”β€”β€”ext
incl_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AdicCompletion
AddCommGroup.toAddCommMonoid
instAddCommGroup
Pi.addCommMonoid
HasQuotient.Quotient
Submodule
Submodule.hasQuotient
CommRing.toRing
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Monoid.toNatPow
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Top.top
Submodule.instTop
Submodule.Quotient.addCommGroup
instModuleOfIsScalarTower
Algebra.toSMul
Pi.module
Submodule.Quotient.module
LinearMap.instFunLike
incl
β€”IsScalarTower.left
induction_on πŸ“–β€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AdicCauchySequence
AdicCompletion
AddCommGroup.toAddCommMonoid
AdicCauchySequence.instAddCommGroup
instAddCommGroup
AdicCauchySequence.instModule
instModuleOfIsScalarTower
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
β€”β€”IsScalarTower.left
mk_surjective
instIsCentralScalar πŸ“–mathematicalβ€”IsCentralScalar
AdicCompletion
instSMul
MulOpposite
β€”ext
IsCentralScalar.op_smul_eq_smul
Submodule.Quotient.isCentralScalar
instIsHausdorff πŸ“–mathematicalβ€”IsHausdorff
AdicCompletion
instAddCommGroup
instModuleOfIsScalarTower
CommSemiring.toSemiring
CommRing.toCommSemiring
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
AddCommGroup.toAddCommMonoid
Module.toDistribMulAction
β€”IsScalarTower.left
IsScalarTower.right
ext
Submodule.smul_induction_on
SModEq.zero
Quotient.inductionOn'
Submodule.smul_mem_smul
Submodule.mem_top
add_zero
instIsScalarTower πŸ“–mathematicalβ€”IsScalarTower
AdicCompletion
instSMul
β€”ext
smul_assoc
Submodule.Quotient.isScalarTower
instSMulCommClass πŸ“–mathematicalβ€”SMulCommClass
AdicCompletion
instSMul
β€”ext
SMulCommClass.smul_comm
Submodule.Quotient.smulCommClass
isAdicCauchy_iff πŸ“–mathematicalβ€”IsAdicCauchy
SModEq
CommRing.toRing
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule
AddCommGroup.toAddCommMonoid
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Top.top
Submodule.instTop
β€”IsScalarTower.left
IsScalarTower.right
Nat.le_induction
SModEq.trans
SModEq.mono
Submodule.smul_mono
Ideal.pow_le_pow_right
le_refl
mk_apply_coe πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AdicCauchySequence
AdicCompletion
AddCommGroup.toAddCommMonoid
AdicCauchySequence.instAddCommGroup
instAddCommGroup
AdicCauchySequence.instModule
instModuleOfIsScalarTower
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
Ring.toSemiring
CommRing.toRing
HasQuotient.Quotient
Submodule
Submodule.hasQuotient
Ideal
Submodule.instSMul
Semiring.toModule
Submodule.instPowNat
Top.top
Submodule.instTop
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
Submodule.mkQ
IsAdicCauchy
β€”IsScalarTower.left
mk_surjective πŸ“–mathematicalβ€”AdicCauchySequence
AdicCompletion
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
AdicCauchySequence.instAddCommGroup
instAddCommGroup
AdicCauchySequence.instModule
instModuleOfIsScalarTower
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
β€”IsScalarTower.left
SModEq.def
Submodule.mkQ_apply
Submodule.smul_mono_left
Ideal.pow_le_pow_right
ext
Submodule.Quotient.mk_surjective
mk_zero_of πŸ“–mathematicalSubmodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Top.top
Submodule.instTop
IsAdicCauchy
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
AdicCauchySequence
AdicCompletion
AdicCauchySequence.instAddCommGroup
instAddCommGroup
AdicCauchySequence.instModule
instModuleOfIsScalarTower
Algebra.toSMul
LinearMap.instFunLike
instZero
β€”IsScalarTower.left
IsScalarTower.right
ext
mk_apply_coe
Submodule.mkQ_apply
val_zero
Submodule.smul_mono_left
Ideal.pow_le_pow_right
ofLinearEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AdicCompletion
AddCommGroup.toAddCommMonoid
instAddCommGroup
instModuleOfIsScalarTower
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
EquivLike.toFunLike
LinearEquiv.instEquivLike
ofLinearEquiv
LinearMap
LinearMap.instFunLike
of
β€”RingHomInvPair.ids
IsScalarTower.left
ofLinearEquiv_symm_of πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AdicCompletion
AddCommGroup.toAddCommMonoid
instAddCommGroup
instModuleOfIsScalarTower
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
ofLinearEquiv
LinearMap
LinearMap.instFunLike
of
β€”RingHomInvPair.ids
IsScalarTower.left
LinearEquiv.ofBijective_symm_apply_apply
of_bijective
of_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AdicCompletion
AddCommGroup.toAddCommMonoid
instAddCommGroup
instModuleOfIsScalarTower
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
of
Ring.toSemiring
CommRing.toRing
HasQuotient.Quotient
Submodule
Submodule.hasQuotient
Ideal
Submodule.instSMul
Semiring.toModule
Submodule.instPowNat
IsScalarTower.right
Top.top
Submodule.instTop
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
Submodule.mkQ
β€”IsScalarTower.left
of_bijective πŸ“–mathematicalβ€”Function.Bijective
AdicCompletion
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroup
instModuleOfIsScalarTower
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
of
β€”IsScalarTower.left
of_bijective_iff
of_bijective_iff πŸ“–mathematicalβ€”Function.Bijective
AdicCompletion
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroup
instModuleOfIsScalarTower
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
of
IsAdicComplete
β€”IsScalarTower.left
of_injective_iff
of_surjective_iff
IsAdicComplete.toIsHausdorff
IsAdicComplete.toIsPrecomplete
of_inj πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AdicCompletion
AddCommGroup.toAddCommMonoid
instAddCommGroup
instModuleOfIsScalarTower
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
of
β€”IsScalarTower.left
of_injective
of_injective πŸ“–mathematicalβ€”AdicCompletion
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroup
instModuleOfIsScalarTower
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
of
β€”IsScalarTower.left
of_injective_iff
of_injective_iff πŸ“–mathematicalβ€”AdicCompletion
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroup
instModuleOfIsScalarTower
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
of
IsHausdorff
β€”IsScalarTower.left
IsScalarTower.right
ext
LinearMap.ker_eq_bot
Submodule.ext
IsHausdorff.haus
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
of_ofLinearEquiv_symm πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AdicCompletion
AddCommGroup.toAddCommMonoid
instAddCommGroup
instModuleOfIsScalarTower
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
of
LinearEquiv
RingHomInvPair.ids
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
ofLinearEquiv
β€”IsScalarTower.left
RingHomInvPair.ids
LinearEquiv.apply_ofBijective_symm_apply
of_bijective
of_surjective πŸ“–mathematicalβ€”AdicCompletion
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroup
instModuleOfIsScalarTower
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
of
β€”IsScalarTower.left
of_surjective_iff
of_surjective_iff πŸ“–mathematicalβ€”AdicCompletion
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
instAddCommGroup
instModuleOfIsScalarTower
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
of
IsPrecomplete
β€”IsScalarTower.left
IsScalarTower.right
SModEq.symm
Submodule.mkQ_apply
eval_of
SModEq.eq_1
ext
Submodule.Quotient.mk_surjective
range_eval πŸ“–mathematicalβ€”LinearMap.range
AdicCompletion
HasQuotient.Quotient
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
CommRing.toRing
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Top.top
Submodule.instTop
instAddCommGroup
Submodule.Quotient.addCommGroup
instModuleOfIsScalarTower
Algebra.toSMul
Submodule.Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
eval
β€”IsScalarTower.left
IsScalarTower.right
RingHomSurjective.ids
LinearMap.range_eq_top
eval_surjective
transitionMap_comp_eval πŸ“–mathematicalβ€”LinearMap.comp
AdicCompletion
HasQuotient.Quotient
Submodule
Ring.toSemiring
CommRing.toRing
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Top.top
Submodule.instTop
instAddCommGroup
Submodule.Quotient.addCommGroup
instModuleOfIsScalarTower
CommSemiring.toSemiring
CommRing.toCommSemiring
Algebra.toSMul
Algebra.id
Submodule.Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
transitionMap
eval
β€”LinearMap.ext
IsScalarTower.left
RingHomCompTriple.ids
transitionMap_comp_eval_apply
transitionMap_comp_eval_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
Ring.toSemiring
CommRing.toRing
RingHom.id
Semiring.toNonAssocSemiring
HasQuotient.Quotient
Submodule
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Top.top
Submodule.instTop
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
LinearMap.instFunLike
transitionMap
β€”β€”
val_add πŸ“–mathematicalβ€”AdicCompletion
instAdd
Pi.instAdd
HasQuotient.Quotient
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
CommRing.toRing
Ideal
Submodule.instSMul
Semiring.toModule
Submodule.instPowNat
Top.top
Submodule.instTop
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Submodule.Quotient.addCommGroup
β€”β€”
val_add_apply πŸ“–mathematicalβ€”AdicCompletion
instAdd
HasQuotient.Quotient
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
CommRing.toRing
Ideal
Submodule.instSMul
Semiring.toModule
Submodule.instPowNat
Top.top
Submodule.instTop
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Submodule.Quotient.addCommGroup
β€”β€”
val_neg πŸ“–mathematicalβ€”AdicCompletion
instNeg
Pi.instNeg
HasQuotient.Quotient
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
CommRing.toRing
Ideal
Submodule.instSMul
Semiring.toModule
Submodule.instPowNat
Top.top
Submodule.instTop
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Submodule.Quotient.addCommGroup
β€”β€”
val_neg_apply πŸ“–mathematicalβ€”AdicCompletion
instNeg
HasQuotient.Quotient
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
CommRing.toRing
Ideal
Submodule.instSMul
Semiring.toModule
Submodule.instPowNat
Top.top
Submodule.instTop
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Submodule.Quotient.addCommGroup
β€”β€”
val_smul πŸ“–mathematicalβ€”AdicCompletion
instSMul
Pi.instSMul
HasQuotient.Quotient
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
CommRing.toRing
Ideal
Submodule.instSMul
Semiring.toModule
Submodule.instPowNat
Top.top
Submodule.instTop
Submodule.Quotient.instSMul'
β€”β€”
val_smul_apply πŸ“–mathematicalβ€”AdicCompletion
instSMul
HasQuotient.Quotient
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
CommRing.toRing
Ideal
Submodule.instSMul
Semiring.toModule
Submodule.instPowNat
Top.top
Submodule.instTop
Submodule.Quotient.instSMul'
β€”β€”
val_sub πŸ“–mathematicalβ€”AdicCompletion
instSub
Pi.instSub
HasQuotient.Quotient
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
CommRing.toRing
Ideal
Submodule.instSMul
Semiring.toModule
Submodule.instPowNat
Top.top
Submodule.instTop
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Submodule.Quotient.addCommGroup
β€”β€”
val_sub_apply πŸ“–mathematicalβ€”AdicCompletion
instSub
HasQuotient.Quotient
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
CommRing.toRing
Ideal
Submodule.instSMul
Semiring.toModule
Submodule.instPowNat
Top.top
Submodule.instTop
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Submodule.Quotient.addCommGroup
β€”β€”
val_sum πŸ“–mathematicalβ€”Finset.sum
AdicCompletion
AddCommGroup.toAddCommMonoid
instAddCommGroup
Pi.addCommMonoid
HasQuotient.Quotient
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.hasQuotient
CommRing.toRing
Ideal
Submodule.instSMul
Semiring.toModule
Submodule.instPowNat
Top.top
Submodule.instTop
Submodule.Quotient.addCommGroup
β€”IsScalarTower.left
incl_apply
Finset.sum_congr
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
val_sum_apply πŸ“–mathematicalβ€”Finset.sum
AdicCompletion
AddCommGroup.toAddCommMonoid
instAddCommGroup
HasQuotient.Quotient
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.hasQuotient
CommRing.toRing
Ideal
Submodule.instSMul
Semiring.toModule
Submodule.instPowNat
Top.top
Submodule.instTop
Submodule.Quotient.addCommGroup
β€”val_sum
Finset.sum_apply
val_zero πŸ“–mathematicalβ€”AdicCompletion
instZero
Pi.instZero
HasQuotient.Quotient
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
CommRing.toRing
Ideal
Submodule.instSMul
Semiring.toModule
Submodule.instPowNat
Top.top
Submodule.instTop
Submodule.Quotient.instZeroQuotient
β€”β€”
val_zero_apply πŸ“–mathematicalβ€”AdicCompletion
instZero
HasQuotient.Quotient
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
CommRing.toRing
Ideal
Submodule.instSMul
Semiring.toModule
Submodule.instPowNat
Top.top
Submodule.instTop
Submodule.Quotient.instZeroQuotient
β€”β€”

AdicCompletion.AdicCauchySequence

Definitions

NameCategoryTheorems
instAdd πŸ“–CompOp
1 mathmath: add_apply
instAddCommGroup πŸ“–CompOp
12 mathmath: AdicCompletion.mk_zero_of, AdicCompletion.map_ext'_iff, map_zero, map_id, AdicCompletion.map_mk, map_apply_coe, AdicCompletion.mk_surjective, AdicCompletion.map_ext''_iff, map_comp_apply, map_comp, AdicCompletion.evalₐ_mk, AdicCompletion.mk_apply_coe
instCoeFunForallNat πŸ“–CompOpβ€”
instModule πŸ“–CompOp
12 mathmath: AdicCompletion.mk_zero_of, AdicCompletion.map_ext'_iff, map_zero, map_id, AdicCompletion.map_mk, map_apply_coe, AdicCompletion.mk_surjective, AdicCompletion.map_ext''_iff, map_comp_apply, map_comp, AdicCompletion.evalₐ_mk, AdicCompletion.mk_apply_coe
instNeg πŸ“–CompOpβ€”
instSMul πŸ“–CompOp
1 mathmath: smul_apply
instSMulInt πŸ“–CompOpβ€”
instSMulNat πŸ“–CompOpβ€”
instSub πŸ“–CompOp
1 mathmath: sub_apply
instZero πŸ“–CompOp
1 mathmath: zero_apply
mk πŸ“–CompOpβ€”
submodule πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
add_apply πŸ“–mathematicalβ€”AdicCompletion.IsAdicCauchy
AdicCompletion.AdicCauchySequence
instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
β€”β€”
ext πŸ“–β€”AdicCompletion.IsAdicCauchyβ€”β€”β€”
ext_iff πŸ“–mathematicalβ€”AdicCompletion.IsAdicCauchyβ€”ext
mk_coe πŸ“–mathematicalSModEq
CommRing.toRing
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule
AddCommGroup.toAddCommMonoid
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Top.top
Submodule.instTop
AdicCompletion.IsAdicCauchyβ€”IsScalarTower.left
IsScalarTower.right
mk_eq_mk πŸ“–mathematicalβ€”CommRing.toRing
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule
AddCommGroup.toAddCommMonoid
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Top.top
Submodule.instTop
AdicCompletion.IsAdicCauchy
β€”SModEq.symm
smul_apply πŸ“–mathematicalβ€”AdicCompletion.IsAdicCauchy
AdicCompletion.AdicCauchySequence
instSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”β€”
sub_apply πŸ“–mathematicalβ€”AdicCompletion.IsAdicCauchy
AdicCompletion.AdicCauchySequence
instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
β€”β€”
zero_apply πŸ“–mathematicalβ€”AdicCompletion.IsAdicCauchy
AdicCompletion.AdicCauchySequence
instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”

Hausdorffification

Definitions

NameCategoryTheorems
of πŸ“–CompOp
2 mathmath: lift_comp_of, lift_of

Theorems

NameKindAssumesProvesValidatesDepends On
induction_on πŸ“–β€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Hausdorffification
AddCommGroup.toAddCommMonoid
Submodule.Quotient.addCommGroup
CommRing.toRing
iInf
Submodule
Submodule.instInfSet
Ideal
Submodule.instSMul
Semiring.toModule
Submodule.instPowNat
Top.top
Submodule.instTop
Submodule.Quotient.module
LinearMap.instFunLike
of
β€”β€”Quotient.inductionOn'
instIsHausdorff πŸ“–mathematicalβ€”IsHausdorff
Hausdorffification
Submodule.Quotient.addCommGroup
CommRing.toRing
iInf
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.instInfSet
Ideal
Submodule.instSMul
Semiring.toModule
Submodule.instPowNat
Top.top
Submodule.instTop
Submodule.Quotient.module
β€”Quotient.inductionOn'
IsScalarTower.left
IsScalarTower.right
Submodule.Quotient.mk_eq_zero
Submodule.mem_iInf
RingHomSurjective.ids
Submodule.comap_map_mkQ
sup_of_le_right
iInf_le
Submodule.map_smul''
Submodule.mem_comap
Submodule.map_top
Submodule.range_mkQ
SModEq.zero
lift_comp_of πŸ“–mathematicalβ€”LinearMap.comp
Hausdorffification
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.Quotient.addCommGroup
CommRing.toRing
iInf
Submodule
Submodule.instInfSet
Ideal
Submodule.instSMul
Semiring.toModule
Submodule.instPowNat
Top.top
Submodule.instTop
Submodule.Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
lift
of
β€”LinearMap.ext
RingHomCompTriple.ids
lift_eq πŸ“–mathematicalLinearMap.comp
Hausdorffification
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.Quotient.addCommGroup
CommRing.toRing
iInf
Submodule
Submodule.instInfSet
Ideal
Submodule.instSMul
Semiring.toModule
Submodule.instPowNat
Top.top
Submodule.instTop
Submodule.Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
of
liftβ€”RingHomCompTriple.ids
LinearMap.ext
induction_on
lift_of
LinearMap.comp_apply
lift_of πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.id
Semiring.toNonAssocSemiring
Hausdorffification
AddCommGroup.toAddCommMonoid
Submodule.Quotient.addCommGroup
CommRing.toRing
iInf
Submodule
Submodule.instInfSet
Ideal
Submodule.instSMul
Semiring.toModule
Submodule.instPowNat
Top.top
Submodule.instTop
Submodule.Quotient.module
LinearMap.instFunLike
lift
of
β€”β€”

IsAdicComplete

Theorems

NameKindAssumesProvesValidatesDepends On
bot πŸ“–mathematicalβ€”IsAdicComplete
Bot.bot
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”IsHausdorff.bot
IsPrecomplete.bot
eq_lift πŸ“–mathematicalLinearMap.comp
HasQuotient.Quotient
Submodule
Ring.toSemiring
CommRing.toRing
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Top.top
Submodule.instTop
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
Submodule.factorPow
CommSemiring.toSemiring
CommRing.toCommSemiring
IsScalarTower.right
Algebra.id
Submodule.mkQ
liftβ€”IsScalarTower.left
IsScalarTower.right
RingHomCompTriple.ids
DFunLike.coe_injective
IsHausdorff.funext
toIsHausdorff
mk_lift
le_jacobson_bot πŸ“–mathematicalβ€”Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.jacobson
CommRing.toRing
Bot.bot
Submodule.instBot
β€”Ideal.neg_mem_iff
Ideal.mem_jacobson_bot
add_comm
IsScalarTower.right
Ideal.mul_top
Ideal.instIsTwoSided_1
add_tsub_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
Finset.sum_range_add
sub_sub
sub_self
zero_sub
neg_mem_iff
NonUnitalSubringClass.toNegMemClass
instNonUnitalSubringClassIdeal
Submodule.sum_mem
mul_pow
pow_add
mul_assoc
Ideal.mul_mem_right
Ideal.pow_mem_pow
IsScalarTower.left
toIsPrecomplete
isUnit_iff_exists_inv
instIsDedekindFiniteMonoid
sub_eq_zero
neg_mul
IsHausdorff.haus
toIsHausdorff
SModEq.sub_mem
smul_eq_mul
sub_zero
pow_zero
Ideal.one_eq_top
neg_sub
mul_geom_sum
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Ideal.sub_mem
Ideal.mul_mem_left
mkQ_comp_lift πŸ“–mathematicalLinearMap.comp
HasQuotient.Quotient
Submodule
Ring.toSemiring
CommRing.toRing
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Top.top
Submodule.instTop
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
Submodule.factorPow
CommSemiring.toSemiring
CommRing.toCommSemiring
IsScalarTower.right
Algebra.id
Submodule.mkQ
lift
β€”IsScalarTower.left
IsScalarTower.right
RingHomCompTriple.ids
LinearMap.ext
mk_lift
mk_lift πŸ“–mathematicalLinearMap.comp
HasQuotient.Quotient
Submodule
Ring.toSemiring
CommRing.toRing
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Top.top
Submodule.instTop
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
Submodule.factorPow
CommSemiring.toSemiring
CommRing.toCommSemiring
IsScalarTower.right
Algebra.id
DFunLike.coe
LinearMap
LinearMap.instFunLike
lift
β€”IsScalarTower.left
IsScalarTower.right
RingHomCompTriple.ids
Submodule.mkQ_apply
AdicCompletion.eval_of
AdicCompletion.of_ofLinearEquiv_symm
of_comp_lift πŸ“–mathematicalLinearMap.comp
HasQuotient.Quotient
Submodule
Ring.toSemiring
CommRing.toRing
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Top.top
Submodule.instTop
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
Submodule.factorPow
AdicCompletion
CommSemiring.toSemiring
CommRing.toCommSemiring
AdicCompletion.instAddCommGroup
AdicCompletion.instModuleOfIsScalarTower
Algebra.toSMul
Algebra.id
AdicCompletion.of
lift
AdicCompletion.lift
β€”IsScalarTower.left
IsScalarTower.right
RingHomCompTriple.ids
LinearMap.ext
of_lift
of_lift πŸ“–mathematicalLinearMap.comp
HasQuotient.Quotient
Submodule
Ring.toSemiring
CommRing.toRing
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Top.top
Submodule.instTop
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
Submodule.factorPow
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
AdicCompletion
AdicCompletion.instAddCommGroup
AdicCompletion.instModuleOfIsScalarTower
Algebra.toSMul
Algebra.id
LinearMap.instFunLike
AdicCompletion.of
lift
AdicCompletion.lift
β€”IsScalarTower.left
IsScalarTower.right
RingHomCompTriple.ids
AdicCompletion.of_ofLinearEquiv_symm
of_subsingleton πŸ“–mathematicalβ€”IsAdicCompleteβ€”IsHausdorff.of_subsingleton
IsPrecomplete.of_subsingleton
subsingleton πŸ“–β€”β€”β€”β€”IsHausdorff.subsingleton
toIsHausdorff
toIsHausdorff πŸ“–mathematicalβ€”IsHausdorffβ€”β€”
toIsPrecomplete πŸ“–mathematicalβ€”IsPrecompleteβ€”β€”

IsAdicComplete.StrictMono

Definitions

NameCategoryTheorems
extend πŸ“–CompOp
4 mathmath: extend_eq, of_comp_lift, factorPow_comp_extend, of_lift

Theorems

NameKindAssumesProvesValidatesDepends On
eq_lift πŸ“–mathematicalStrictMono
Nat.instPreorder
LinearMap.comp
HasQuotient.Quotient
Submodule
Ring.toSemiring
CommRing.toRing
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Top.top
Submodule.instTop
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
Submodule.factorPow
StrictMono.monotone
Nat.instPartialOrder
CommSemiring.toSemiring
CommRing.toCommSemiring
IsScalarTower.right
Algebra.id
Submodule.mkQ
liftβ€”IsScalarTower.left
IsScalarTower.right
RingHomCompTriple.ids
StrictMono.monotone
DFunLike.coe_injective
IsHausdorff.StrictMono.funext
IsAdicComplete.toIsHausdorff
mk_lift
extend_eq πŸ“–mathematicalStrictMono
Nat.instPreorder
LinearMap.comp
HasQuotient.Quotient
Submodule
Ring.toSemiring
CommRing.toRing
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Top.top
Submodule.instTop
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
Submodule.factorPow
StrictMono.monotone
Nat.instPartialOrder
extendβ€”IsScalarTower.left
IsScalarTower.right
RingHomCompTriple.ids
StrictMono.monotone
factorPow_comp_eq_of_factorPow_comp_succ_eq
StrictMono.id_le
instWellFoundedLTNat
factorPow_comp_eq_of_factorPow_comp_succ_eq πŸ“–β€”StrictMono
Nat.instPreorder
LinearMap.comp
HasQuotient.Quotient
Submodule
Ring.toSemiring
CommRing.toRing
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Top.top
Submodule.instTop
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
Submodule.factorPow
StrictMono.monotone
Nat.instPartialOrder
β€”β€”IsScalarTower.left
IsScalarTower.right
RingHomCompTriple.ids
StrictMono.monotone
LinearMap.ext
Submodule.eq_factor_of_eq_factor_succ
Submodule.smul_mono_left
Ideal.pow_le_pow_right
factorPow_comp_extend πŸ“–mathematicalStrictMono
Nat.instPreorder
LinearMap.comp
HasQuotient.Quotient
Submodule
Ring.toSemiring
CommRing.toRing
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Top.top
Submodule.instTop
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
Submodule.factorPow
StrictMono.monotone
Nat.instPartialOrder
extendβ€”IsScalarTower.left
IsScalarTower.right
RingHomCompTriple.ids
StrictMono.monotone
LinearMap.ext
LE.le.trans
StrictMono.id_le
instWellFoundedLTNat
Submodule.factor_comp_apply
LinearMap.comp.congr_simp
factorPow_comp_eq_of_factorPow_comp_succ_eq
mkQ_comp_lift πŸ“–mathematicalStrictMono
Nat.instPreorder
LinearMap.comp
HasQuotient.Quotient
Submodule
Ring.toSemiring
CommRing.toRing
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Top.top
Submodule.instTop
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
Submodule.factorPow
StrictMono.monotone
Nat.instPartialOrder
CommSemiring.toSemiring
CommRing.toCommSemiring
IsScalarTower.right
Algebra.id
Submodule.mkQ
lift
β€”IsScalarTower.left
IsScalarTower.right
RingHomCompTriple.ids
StrictMono.monotone
LinearMap.ext
mk_lift
mk_lift πŸ“–mathematicalStrictMono
Nat.instPreorder
LinearMap.comp
HasQuotient.Quotient
Submodule
Ring.toSemiring
CommRing.toRing
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Top.top
Submodule.instTop
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
Submodule.factorPow
StrictMono.monotone
Nat.instPartialOrder
CommSemiring.toSemiring
CommRing.toCommSemiring
IsScalarTower.right
Algebra.id
DFunLike.coe
LinearMap
LinearMap.instFunLike
lift
β€”IsScalarTower.left
IsScalarTower.right
RingHomCompTriple.ids
StrictMono.monotone
AdicCompletion.of_bijective
Submodule.mkQ_apply
AdicCompletion.eval_of
LinearEquiv.apply_ofBijective_symm_apply
extend_eq
of_comp_lift πŸ“–mathematicalStrictMono
Nat.instPreorder
LinearMap.comp
HasQuotient.Quotient
Submodule
Ring.toSemiring
CommRing.toRing
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Top.top
Submodule.instTop
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
Submodule.factorPow
StrictMono.monotone
Nat.instPartialOrder
AdicCompletion
CommSemiring.toSemiring
CommRing.toCommSemiring
AdicCompletion.instAddCommGroup
AdicCompletion.instModuleOfIsScalarTower
Algebra.toSMul
Algebra.id
AdicCompletion.of
lift
AdicCompletion.lift
extend
factorPow_comp_extend
β€”IsScalarTower.left
IsScalarTower.right
RingHomCompTriple.ids
StrictMono.monotone
IsAdicComplete.of_comp_lift
factorPow_comp_extend
of_lift πŸ“–mathematicalStrictMono
Nat.instPreorder
LinearMap.comp
HasQuotient.Quotient
Submodule
Ring.toSemiring
CommRing.toRing
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Top.top
Submodule.instTop
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
Submodule.factorPow
StrictMono.monotone
Nat.instPartialOrder
DFunLike.coe
LinearMap
CommSemiring.toSemiring
CommRing.toCommSemiring
AdicCompletion
AdicCompletion.instAddCommGroup
AdicCompletion.instModuleOfIsScalarTower
Algebra.toSMul
Algebra.id
LinearMap.instFunLike
AdicCompletion.of
lift
AdicCompletion.lift
extend
factorPow_comp_extend
β€”IsScalarTower.left
IsScalarTower.right
RingHomCompTriple.ids
StrictMono.monotone
IsAdicComplete.of_lift
factorPow_comp_extend

IsHausdorff

Theorems

NameKindAssumesProvesValidatesDepends On
bot πŸ“–mathematicalβ€”IsHausdorff
Bot.bot
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”IsScalarTower.left
IsScalarTower.right
pow_one
Submodule.bot_smul
eq_iff_smodEq πŸ“–mathematicalβ€”SModEq
CommRing.toRing
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule
AddCommGroup.toAddCommMonoid
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Monoid.toNatPow
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Top.top
Submodule.instTop
β€”IsScalarTower.left
sub_eq_zero
haus'
IsScalarTower.right
sub_zero
funext πŸ“–β€”CommRing.toRing
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule
AddCommGroup.toAddCommMonoid
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Monoid.toNatPow
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Top.top
Submodule.instTop
β€”β€”IsScalarTower.left
eq_iff_smodEq
funext' πŸ“–β€”DFunLike.coe
RingHom
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
CommSemiring.toSemiring
CommRing.toCommSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IdemSemiring.toSemiring
Submodule.idemSemiring
Algebra.id
Semiring.toNonAssocSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
β€”β€”Ideal.instIsTwoSided_1
IsScalarTower.left
eq_iff_smodEq
Ideal.mul_top
haus πŸ“–β€”SModEq
CommRing.toRing
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule
AddCommGroup.toAddCommMonoid
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Top.top
Submodule.instTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”haus'
haus' πŸ“–β€”SModEq
CommRing.toRing
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule
AddCommGroup.toAddCommMonoid
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Top.top
Submodule.instTop
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”β€”
iInf_pow_smul πŸ“–mathematicalβ€”iInf
Submodule
CommSemiring.toSemiring
CommRing.toCommSemiring
AddCommGroup.toAddCommMonoid
Submodule.instInfSet
Ideal
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Top.top
Submodule.instTop
Bot.bot
Submodule.instBot
β€”IsScalarTower.left
IsScalarTower.right
eq_bot_iff
Submodule.mem_bot
haus
SModEq.zero
Submodule.mem_iInf
map_algebraMap_iff πŸ“–mathematicalβ€”IsHausdorff
Ideal.map
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
Algebra.toModule
β€”IsScalarTower.right
IsScalarTower.left
Ideal.mul_top
Ideal.instIsTwoSided_1
Ideal.smul_top_eq_map
RingHom.instRingHomClass
of_map πŸ“–mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.map
RingHom
RingHom.instFunLike
algebraMap
IsHausdorffβ€”IsScalarTower.left
IsScalarTower.right
haus
SModEq.of_toAddSubgroup_le
AddSubgroup.toAddSubmonoid_le
AddSubmonoid.smul_le
algebraMap_smul
AddSubmonoid.smul_mem_smul
Ideal.mem_map_of_mem
Ideal.pow_right_mono
Ideal.map_pow
RingHom.instRingHomClass
of_subsingleton πŸ“–mathematicalβ€”IsHausdorffβ€”IsScalarTower.left
IsScalarTower.right
subsingleton πŸ“–β€”β€”β€”β€”eq_of_sub_eq_zero
haus
IsScalarTower.left
IsScalarTower.right
Ideal.top_pow
Submodule.top_smul
SModEq.top

IsHausdorff.StrictMono

Theorems

NameKindAssumesProvesValidatesDepends On
funext πŸ“–β€”StrictMono
Nat.instPreorder
CommRing.toRing
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule
AddCommGroup.toAddCommMonoid
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Top.top
Submodule.instTop
β€”β€”IsScalarTower.left
IsScalarTower.right
IsHausdorff.eq_iff_smodEq
SModEq.mono
Submodule.pow_smul_top_le
StrictMono.le_apply
instWellFoundedLTNat
funext' πŸ“–β€”StrictMono
Nat.instPreorder
DFunLike.coe
RingHom
HasQuotient.Quotient
Ideal
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.instPowNat
Semiring.toModule
IsScalarTower.right
Algebra.id
Semiring.toNonAssocSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
RingHom.instFunLike
β€”β€”IsScalarTower.right
Ideal.instIsTwoSided_1
IsScalarTower.left
IsHausdorff.eq_iff_smodEq
SModEq.mono
Submodule.pow_smul_top_le
StrictMono.le_apply
instWellFoundedLTNat
Ideal.mul_top

IsPrecomplete

Theorems

NameKindAssumesProvesValidatesDepends On
bot πŸ“–mathematicalβ€”IsPrecomplete
Bot.bot
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”IsScalarTower.left
IsScalarTower.right
pow_zero
Ideal.one_eq_top
Submodule.top_smul
SModEq.top
SModEq.bot
Submodule.bot_smul
pow_one
SModEq.refl
of_subsingleton πŸ“–mathematicalβ€”IsPrecompleteβ€”IsScalarTower.left
IsScalarTower.right
SModEq.refl
prec πŸ“–β€”SModEq
CommRing.toRing
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule
AddCommGroup.toAddCommMonoid
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Top.top
Submodule.instTop
β€”β€”prec'
prec' πŸ“–β€”SModEq
CommRing.toRing
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule
AddCommGroup.toAddCommMonoid
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Top.top
Submodule.instTop
β€”β€”β€”
top πŸ“–mathematicalβ€”IsPrecomplete
Top.top
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”IsScalarTower.left
IsScalarTower.right
Ideal.top_pow
Submodule.top_smul
SModEq.top

(root)

Definitions

NameCategoryTheorems
Hausdorffification πŸ“–CompOp
3 mathmath: Hausdorffification.instIsHausdorff, Hausdorffification.lift_comp_of, Hausdorffification.lift_of
IsAdicComplete πŸ“–CompData
7 mathmath: IsAdic.isAdicComplete_iff, IsAdicComplete.bot, AdicCompletion.of_bijective_iff, WittVector.isAdicCompleteIdealSpanP, PadicInt.instIsAdicCompleteMaximalIdeal, IsAdicComplete.of_subsingleton, isAdicComplete_iff
IsHausdorff πŸ“–CompData
17 mathmath: IsDiscreteValuationRing.instIsHausdorffMaximalIdeal, IsAdicComplete.toIsHausdorff, isHausdorff_iff, IsHausdorff.of_isDomain, Hausdorffification.instIsHausdorff, AdicCompletion.instIsHausdorff, IsHausdorff.map_algebraMap_iff, IsHausdorff.bot, instIsHausdorffMaximalIdeal, IsHausdorff.of_le_jacobson, IsHausdorff.of_isTorsionFree, IsHausdorff.of_map, IsAdic.isHausdorff_iff, isAdicComplete_iff, AdicCompletion.of_injective_iff, IsHausdorff.of_isLocalRing, IsHausdorff.of_subsingleton
IsPrecomplete πŸ“–CompData
8 mathmath: AdicCompletion.of_surjective_iff, IsPrecomplete.bot, IsAdic.isPrecomplete_iff, IsAdicComplete.toIsPrecomplete, IsPrecomplete.top, isPrecomplete_iff, isAdicComplete_iff, IsPrecomplete.of_subsingleton

Theorems

NameKindAssumesProvesValidatesDepends On
isAdicComplete_iff πŸ“–mathematicalβ€”IsAdicComplete
IsHausdorff
IsPrecomplete
β€”β€”
isHausdorff_iff πŸ“–mathematicalβ€”IsHausdorff
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”IsScalarTower.left
IsScalarTower.right
IsHausdorff.haus
isPrecomplete_iff πŸ“–mathematicalβ€”IsPrecomplete
SModEq
CommRing.toRing
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule
AddCommGroup.toAddCommMonoid
Submodule.instSMul
Semiring.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Submodule.instPowNat
IsScalarTower.right
Algebra.id
Top.top
Submodule.instTop
β€”IsScalarTower.left
IsScalarTower.right
IsPrecomplete.prec'

---

← Back to Index