Documentation Verification Report

Noetherian

📁 Source: Mathlib/RingTheory/AdicCompletion/Noetherian.lean

Statistics

MetricCount
Definitions0
Theoremsof_isDomain, of_isLocalRing, of_isTorsionFree, of_le_jacobson, instIsHausdorffMaximalIdeal
5
Total5

IsHausdorff

Theorems

NameKindAssumesProvesValidatesDepends On
of_isDomain 📖mathematicalIsHausdorff
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
of_isTorsionFree
Module.Finite.self
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
NoZeroDivisors.toNoZeroSMulDivisors
IsDomain.to_noZeroDivisors
of_isLocalRing 📖mathematicalIsHausdorffof_le_jacobson
LE.le.trans
IsLocalRing.le_maximalIdeal
IsLocalRing.maximalIdeal_le_jacobson
of_isTorsionFree 📖mathematicalIsHausdorffIsScalarTower.left
IsScalarTower.right
Eq.le
Ideal.iInf_pow_smul_eq_bot_of_isTorsionFree
of_le_jacobson 📖mathematicalIdeal
CommSemiring.toSemiring
CommRing.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.jacobson
CommRing.toRing
Bot.bot
Ring.toSemiring
Submodule.instBot
IsHausdorffIsScalarTower.left
IsScalarTower.right
Eq.le
Ideal.iInf_pow_smul_eq_bot_of_le_jacobson

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
instIsHausdorffMaximalIdeal 📖mathematicalIsHausdorff
IsLocalRing.maximalIdeal
CommRing.toCommSemiring
IsHausdorff.of_le_jacobson
IsLocalRing.maximalIdeal_le_jacobson

---

← Back to Index