Documentation Verification Report

Topology

📁 Source: Mathlib/RingTheory/AdicCompletion/Topology.lean

Statistics

MetricCount
Definitions0
TheoremsisAdicComplete_iff, isHausdorff_iff, isPrecomplete_iff
3
Total3

IsAdic

Theorems

NameKindAssumesProvesValidatesDepends On
isAdicComplete_iff 📖mathematicalIsAdic
UniformSpace.toTopologicalSpace
IsAdicComplete
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
CompleteSpace
T2Space
isAdicComplete_iff
isHausdorff_iff
isPrecomplete_iff
isHausdorff_iff 📖mathematicalIsAdicIsHausdorff
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
T2Space
AddGroupFilterBasis.t2Space_iff_sInter_subset
IsScalarTower.left
IsScalarTower.right
isHausdorff_iff
Ideal.mul_top
Ideal.instIsTwoSided_1
isPrecomplete_iff 📖mathematicalIsAdic
UniformSpace.toTopologicalSpace
IsPrecomplete
Ring.toAddCommGroup
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
CompleteSpace
Filter.HasBasis.isCountablyGenerated
instCountableNat
hasBasis_nhds_zero
IsUniformAddGroup.uniformity_countably_generated
IsScalarTower.right
IsScalarTower.left
Ideal.mul_top
Ideal.instIsTwoSided_1
UniformSpace.complete_of_cauchySeq_tendsto
Filter.HasBasis.cauchySeq_iff
Filter.HasBasis.uniformity_of_nhds_zero
Finset.le_sup
Ideal.add_mem
LE.le.trans
sub_add_sub_cancel
Filter.HasBasis.tendsto_right_iff
hasBasis_nhds
Set.image_add_left
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
sub_eq_neg_add
CompleteSpace.complete
sub_sub_sub_cancel_left
Ideal.sub_mem
sub_add_sub_cancel'
le_sup_right
le_max_left

---

← Back to Index