| Name | Category | Theorems |
algEquivOfAssociated π | CompOp | 5 mathmath: algEquivOfAssociated_apply_root, algEquivOfAssociated_root, algEquivOfAssociated_toAlgHom, algEquivOfAssociated_symm, coe_algEquivOfAssociated
|
algEquivOfEq π | CompOp | 5 mathmath: algEquivOfEq_root, algEquivOfEq_apply_root, coe_algEquivOfEq, algEquivOfEq_symm, algEquivOfEq_toAlgHom
|
algHomOfDvd π | CompOp | 7 mathmath: algHomOfDvd_root, algEquivOfAssociated_toAlgHom, coe_algEquivOfEq, coe_algHomOfDvd, algEquivOfEq_toAlgHom, algHomOfDvd_apply_root, coe_algEquivOfAssociated
|
equiv π | CompOp | β |
equiv' π | CompOp | 6 mathmath: PowerBasis.quotientEquivQuotientMinpolyMap_apply, equiv'_symm_toAlgHom, equiv'_toAlgHom, PowerBasis.quotientEquivQuotientMinpolyMap_symm_apply, equiv'_symm_apply, equiv'_apply
|
hasCoeT π | CompOp | β |
instAlgebra π | CompOp | 95 mathmath: algEquivOfAssociated_apply_root, minpoly.ToAdjoin.injective, isAdjoinRoot_root_eq_root, AlgEquiv.coe_adjoinSingletonEquivAdjoinRootMinpoly_symm, minpoly_root, autAdjoinRootXPowSubCEquiv_root, IntermediateField.adjoinRootEquivAdjoin_symm_apply_gen, IsAdjoinRoot.adjoinRootAlgEquiv_symm_apply_eq_mk, PowerBasis.quotientEquivQuotientMinpolyMap_apply, adjoinRootXPowSubCEquiv_symm_eq_root, autAdjoinRootXPowSubCEquiv_symm_smul, algEquivOfAssociated_root, algHom_ext_iff, powerBasis'_gen, AlgEquiv.adjoinSingletonEquivAdjoinRootMinpoly_symm_toAlgHom, quotEquivQuotMap_symm_apply_mk, algHom_ext'_iff, liftAlgHom_of, Minpoly.toAdjoin.surjective, powerBasis'_dim, Differential.instDifferentialAlgebraAdjoinRoot, algHomOfDvd_root, coe_mapAlgHom, coe_liftHom, algebraMap_eq, aeval_eq_of_algebra, mk_leftInverse, algebraMap_eq', finiteType, IsAdjoinRoot.adjoinRootAlgEquiv_apply_root, Minpoly.coe_toAdjoin, quotEquivQuotMap_apply, isAdjoinRoot_map_eq_mkβ, IntermediateField.adjoin_root_eq_top, isAlgebraic_root, liftAlgHom_eq_algHom, IsAdjoinRoot.algEquiv_def, Polynomial.Monic.finite_adjoinRoot, IsAdjoinRoot.adjoinRootAlgEquiv_apply_eq_map, modByMonicHom_mk, isAdjoinRootMonic_toAdjoinRoot, mapAlgHom_comp_mapAlghom, liftAlgHom_mk, algEquivOfAssociated_toAlgHom, coe_mkβ, algEquivOfEq_root, IntermediateField.adjoinRootEquivAdjoin_apply_root, Minpoly.coe_toAdjoin_mk_X, powerBasisAux'_repr_symm_apply, quotEquivQuotMap_apply_mk, PowerBasis.quotientEquivQuotientMinpolyMap_symm_apply, toRingHom_liftAlgHom, IsAdjoinRoot.adjoinRootAlgEquiv_apply_mk, algEquivOfAssociated_symm, isSplittingField_AdjoinRoot_X_pow_sub_C, toRingHom_ofAlgHom, liftHom_eq_algHom, IsAdjoinRoot.adjoinRootAlgEquiv_symm_apply_root, isIntegral_root', algEquivOfEq_apply_root, adjoinRootXPowSubCEquiv_root, coe_liftAlgHom, powerBasis_dim, noZeroSMulDivisors_of_prime_of_degree_ne_zero, minpoly.equivAdjoin_toAlgHom, algHom_subsingleton, coe_mapAlgEquiv, minpoly.coe_equivAdjoin, finitePresentation, minpoly_powerBasis_gen, aeval_algHom_eq_zero, quotEquivQuotMap_symm_apply, powerBasisAux'_repr_apply_to_fun, coe_algEquivOfEq, aeval_eq, IsLocalization.adjoin_inv, liftHom_of, adjoinRoot_eq_top, liftHom_root, symm_mapAlgEquiv, coe_algHomOfDvd, Polynomial.Monic.free_adjoinRoot, liftAlgHom_root, autAdjoinRootXPowSubC_root, algEquivOfEq_symm, minpoly_powerBasis_gen_of_monic, liftHom_mk, algEquivOfEq_toAlgHom, algHomOfDvd_apply_root, WeierstrassCurve.Affine.CoordinateRing.basis_apply, mkβ_toRingHom, isIntegral_root, powerBasis_gen, coe_ofAlgHom, coe_algEquivOfAssociated
|
instCommRing π | CompOp | 163 mathmath: algEquivOfAssociated_apply_root, minpoly.ToAdjoin.injective, isAdjoinRoot_root_eq_root, AlgEquiv.coe_adjoinSingletonEquivAdjoinRootMinpoly_symm, WeierstrassCurve.Affine.CoordinateRing.smul, minpoly_root, autAdjoinRootXPowSubCEquiv_root, quotMapOfEquivQuotMapCMapSpanMk_symm_mk, root_X_pow_sub_C_eq_zero_iff, IntermediateField.adjoinRootEquivAdjoin_symm_apply_gen, WeierstrassCurve.Affine.CoordinateRing.basis_one, IsAdjoinRoot.adjoinRootAlgEquiv_symm_apply_eq_mk, PowerBasis.quotientEquivQuotientMinpolyMap_apply, adjoinRootXPowSubCEquiv_symm_eq_root, WeierstrassCurve.Affine.CoordinateRing.smul_basis_mul_C, mk_surjective, WeierstrassCurve.Affine.CoordinateRing.coe_basis, WeierstrassCurve.Affine.Point.toClass_zero, autAdjoinRootXPowSubCEquiv_symm_smul, algEquivOfAssociated_root, algHom_ext_iff, powerBasis'_gen, AlgEquiv.adjoinSingletonEquivAdjoinRootMinpoly_symm_toAlgHom, smul_mk, quotEquivQuotMap_symm_apply_mk, algHom_ext'_iff, liftAlgHom_of, evalEval_apply, symm_mapRingEquiv, Minpoly.toAdjoin.surjective, powerBasis'_dim, Differential.instDifferentialAlgebraAdjoinRoot, instIsNoetherianRing, mk_eq_mk, algHomOfDvd_root, isDomain_of_prime, WeierstrassCurve.Affine.CoordinateRing.mk_Ο, coe_mapAlgHom, coe_liftHom, algebraMap_eq, mul_div_root_cancel, WeierstrassCurve.Affine.CoordinateRing.C_addPolynomial, aeval_eq_of_algebra, WeierstrassCurve.Affine.CoordinateRing.mk_XYIdeal'_neg_mul, WeierstrassCurve.Affine.CoordinateRing.XYIdeal_add_eq, mk_leftInverse, algebraMap_eq', finiteType, coe_injective, quotMapCMapSpanMkEquivQuotMapCQuotMapSpanMk_symm_quotQuotMk, IsAdjoinRoot.adjoinRootAlgEquiv_apply_root, mk_eq_zero, Minpoly.coe_toAdjoin, lift_comp_of, quotEquivQuotMap_apply, isAdjoinRoot_map_eq_mkβ, WeierstrassCurve.Affine.CoordinateRing.norm_smul_basis, WeierstrassCurve.Affine.CoordinateRing.degree_norm_smul_basis, coe_injective', smul_of, isAlgebraic_root, isScalarTower_right, liftAlgHom_eq_algHom, IsAdjoinRoot.algEquiv_def, Polynomial.Monic.finite_adjoinRoot, lift_mk, WeierstrassCurve.Affine.CoordinateRing.map_mk, root_isInv, IsAdjoinRoot.adjoinRootAlgEquiv_apply_eq_map, modByMonicHom_mk, isAdjoinRootMonic_toAdjoinRoot, WeierstrassCurve.Affine.CoordinateRing.mk_Ο, mapAlgHom_comp_mapAlghom, map_comp_map, liftAlgHom_mk, algEquivOfAssociated_toAlgHom, coe_mkβ, algEquivOfEq_root, IntermediateField.adjoinRootEquivAdjoin_apply_root, WeierstrassCurve.Affine.CoordinateRing.instIsDomain, Minpoly.coe_toAdjoin_mk_X, powerBasisAux'_repr_symm_apply, quotEquivQuotMap_apply_mk, PowerBasis.quotientEquivQuotientMinpolyMap_symm_apply, WeierstrassCurve.Affine.CoordinateRing.mk_Ξ¨_sq, WeierstrassCurve.Affine.CoordinateRing.XYIdeal_neg_mul, toRingHom_liftAlgHom, WeierstrassCurve.Affine.CoordinateRing.exists_smul_basis_eq, WeierstrassCurve.Affine.CoordinateRing.C_addPolynomial_slope, WeierstrassCurve.Affine.CoordinateRing.mk_XYIdeal'_mul_mk_XYIdeal', IsAdjoinRoot.adjoinRootAlgEquiv_apply_mk, root_X_pow_sub_C_pow, algEquivOfAssociated_symm, toRingHom_ofAlgHom, liftHom_eq_algHom, evalβ_root, IsAdjoinRoot.adjoinRootAlgEquiv_symm_apply_root, WeierstrassCurve.Affine.CoordinateRing.map_injective, isIntegral_root', algEquivOfEq_apply_root, adjoinRootXPowSubCEquiv_root, coe_liftAlgHom, WeierstrassCurve.Affine.Point.toClass_some, WeierstrassCurve.Affine.Point.toClass_injective, powerBasis_dim, map_root, noZeroSMulDivisors_of_prime_of_degree_ne_zero, mk_X, quotAdjoinRootEquivQuotPolynomialQuot_symm_mk_mk, minpoly.equivAdjoin_toAlgHom, algHom_subsingleton, WeierstrassCurve.Affine.CoordinateRing.coe_norm_smul_basis, lift_of, coe_mapAlgEquiv, WeierstrassCurve.Affine.CoordinateRing.mk_Οβ_sq, WeierstrassCurve.Affine.CoordinateRing.basis_zero, minpoly.coe_equivAdjoin, finitePresentation, quotMapOfEquivQuotMapCMapSpanMk_mk, minpoly_powerBasis_gen, aeval_algHom_eq_zero, lift_root, quotEquivQuotMap_symm_apply, quotMapCMapSpanMkEquivQuotMapCQuotMapSpanMk_mk, powerBasisAux'_repr_apply_to_fun, coe_algEquivOfEq, aeval_eq, IsLocalization.adjoin_inv, liftHom_of, adjoinRoot_eq_top, Polynomial.X_sub_C_mul_removeFactor, WeierstrassCurve.Affine.Point.toClass_eq_zero, map_of, mk_self, liftHom_root, symm_mapAlgEquiv, WeierstrassCurve.Affine.CoordinateRing.XYIdeal'_eq, coe_algHomOfDvd, Polynomial.Monic.free_adjoinRoot, liftAlgHom_root, WeierstrassCurve.Affine.CoordinateRing.map_smul, autAdjoinRootXPowSubC_root, algEquivOfEq_symm, minpoly_powerBasis_gen_of_monic, liftHom_mk, algEquivOfEq_toAlgHom, coe_mapRingEquiv, algHomOfDvd_apply_root, quotAdjoinRootEquivQuotPolynomialQuot_mk_of, WeierstrassCurve.Affine.CoordinateRing.basis_apply, WeierstrassCurve.Affine.Point.toClass_apply, mkβ_toRingHom, isIntegral_root, ringHom_ext_iff, WeierstrassCurve.Affine.CoordinateRing.smul_basis_mul_Y, powerBasis_gen, WeierstrassCurve.Affine.CoordinateRing.XYIdeal_mul_XYIdeal, mk_C, coe_ofAlgHom, of.injective_of_degree_ne_zero, isRoot_root, evalEval_mk, coe_algEquivOfAssociated
|
instDecidableEq π | CompOp | β |
instDistribMulActionOfIsScalarTower π | CompOp | β |
instDistribSMulOfIsScalarTower π | CompOp | β |
instField π | CompOp | 10 mathmath: instNumberFieldRat, Polynomial.SplittingFieldAux.succ, Polynomial.SplittingFieldAux.algebraMap_succ, mul_div_root_cancel, Polynomial.natDegree_removeFactor, Polynomial.SplittingFieldAux.scalar_tower', IntermediateField.adjoin_root_eq_top, isSplittingField_AdjoinRoot_X_pow_sub_C, Polynomial.natDegree_removeFactor', Polynomial.X_sub_C_mul_removeFactor
|
instGroupWithZero π | CompOp | β |
instInhabited π | CompOp | β |
instSMulAdjoinRoot π | CompOp | 18 mathmath: WeierstrassCurve.Affine.CoordinateRing.smul, autAdjoinRootXPowSubCEquiv_root, WeierstrassCurve.Affine.CoordinateRing.smul_basis_mul_C, autAdjoinRootXPowSubCEquiv_symm_smul, smul_mk, WeierstrassCurve.Affine.CoordinateRing.instIsScalarTowerPolynomial, WeierstrassCurve.Affine.CoordinateRing.norm_smul_basis, Polynomial.SplittingFieldAux.scalar_tower', WeierstrassCurve.Affine.CoordinateRing.degree_norm_smul_basis, smul_of, isScalarTower_right, instIsScalarTower, WeierstrassCurve.Affine.CoordinateRing.exists_smul_basis_eq, instSMulCommClass, WeierstrassCurve.Affine.CoordinateRing.coe_norm_smul_basis, WeierstrassCurve.Affine.CoordinateRing.map_smul, autAdjoinRootXPowSubC_root, WeierstrassCurve.Affine.CoordinateRing.smul_basis_mul_Y
|
liftAlgHom π | CompOp | 11 mathmath: liftAlgHom_of, Minpoly.coe_toAdjoin, liftAlgHom_eq_algHom, equiv'_toAlgHom, liftAlgHom_mk, toRingHom_liftAlgHom, coe_liftAlgHom, equiv'_apply, coe_algHomOfDvd, liftAlgHom_root, liftHom_mk
|
liftHom π | CompOp | 4 mathmath: coe_liftHom, liftHom_eq_algHom, liftHom_of, liftHom_root
|
map π | CompOp | 6 mathmath: coe_mapAlgHom, map_comp_map, map_root, coe_mapAlgEquiv, map_of, coe_mapRingEquiv
|
mapAlgEquiv π | CompOp | 2 mathmath: coe_mapAlgEquiv, symm_mapAlgEquiv
|
mapAlgHom π | CompOp | 2 mathmath: coe_mapAlgHom, mapAlgHom_comp_mapAlghom
|
mapRingEquiv π | CompOp | 2 mathmath: symm_mapRingEquiv, coe_mapRingEquiv
|
mk π | CompOp | β |
mkβ π | CompOp | 3 mathmath: isAdjoinRoot_map_eq_mkβ, coe_mkβ, mkβ_toRingHom
|
modByMonicHom π | CompOp | 3 mathmath: mk_leftInverse, modByMonicHom_mk, powerBasisAux'_repr_apply_to_fun
|
of π | CompOp | 33 mathmath: quotMapOfEquivQuotMapCMapSpanMk_symm_mk, PowerBasis.quotientEquivQuotientMinpolyMap_apply, Polynomial.SplittingFieldAux.algebraMap_succ, quotEquivQuotMap_symm_apply_mk, liftAlgHom_of, algebraMap_eq, mul_div_root_cancel, algebraMap_eq', coe_injective, lift_comp_of, quotEquivQuotMap_apply, coe_injective', smul_of, root_isInv, quotEquivQuotMap_apply_mk, PowerBasis.quotientEquivQuotientMinpolyMap_symm_apply, root_X_pow_sub_C_pow, toRingHom_ofAlgHom, evalβ_root, quotAdjoinRootEquivQuotPolynomialQuot_symm_mk_mk, WeierstrassCurve.Affine.CoordinateRing.coe_norm_smul_basis, lift_of, quotMapOfEquivQuotMapCMapSpanMk_mk, quotEquivQuotMap_symm_apply, liftHom_of, Polynomial.X_sub_C_mul_removeFactor, map_of, quotAdjoinRootEquivQuotPolynomialQuot_mk_of, ringHom_ext_iff, mk_C, coe_ofAlgHom, of.injective_of_degree_ne_zero, isRoot_root
|
ofAlgHom π | CompOp | 3 mathmath: algHom_ext'_iff, toRingHom_ofAlgHom, coe_ofAlgHom
|
powerBasis π | CompOp | 4 mathmath: powerBasis_dim, minpoly_powerBasis_gen, minpoly_powerBasis_gen_of_monic, powerBasis_gen
|
powerBasis' π | CompOp | 3 mathmath: powerBasis'_gen, powerBasis'_dim, WeierstrassCurve.Affine.CoordinateRing.basis_apply
|
powerBasisAux π | CompOp | β |
powerBasisAux' π | CompOp | 2 mathmath: powerBasisAux'_repr_symm_apply, powerBasisAux'_repr_apply_to_fun
|
quotAdjoinRootEquivQuotPolynomialQuot π | CompOp | 5 mathmath: PowerBasis.quotientEquivQuotientMinpolyMap_apply, quotEquivQuotMap_apply, quotAdjoinRootEquivQuotPolynomialQuot_symm_mk_mk, quotEquivQuotMap_symm_apply, quotAdjoinRootEquivQuotPolynomialQuot_mk_of
|
quotEquivQuotMap π | CompOp | 5 mathmath: quotEquivQuotMap_symm_apply_mk, quotEquivQuotMap_apply, quotEquivQuotMap_apply_mk, PowerBasis.quotientEquivQuotientMinpolyMap_symm_apply, quotEquivQuotMap_symm_apply
|
quotMapCMapSpanMkEquivQuotMapCQuotMapSpanMk π | CompOp | 2 mathmath: quotMapCMapSpanMkEquivQuotMapCQuotMapSpanMk_symm_quotQuotMk, quotMapCMapSpanMkEquivQuotMapCQuotMapSpanMk_mk
|
quotMapOfEquivQuotMapCMapSpanMk π | CompOp | 2 mathmath: quotMapOfEquivQuotMapCMapSpanMk_symm_mk, quotMapOfEquivQuotMapCMapSpanMk_mk
|
root π | CompOp | 45 mathmath: algEquivOfAssociated_apply_root, isAdjoinRoot_root_eq_root, minpoly_root, autAdjoinRootXPowSubCEquiv_root, root_X_pow_sub_C_eq_zero_iff, IntermediateField.adjoinRootEquivAdjoin_symm_apply_gen, adjoinRootXPowSubCEquiv_symm_eq_root, autAdjoinRootXPowSubCEquiv_symm_smul, algEquivOfAssociated_root, algHom_ext_iff, powerBasis'_gen, algHom_ext'_iff, algHomOfDvd_root, mul_div_root_cancel, aeval_eq_of_algebra, IsAdjoinRoot.adjoinRootAlgEquiv_apply_root, IntermediateField.adjoin_root_eq_top, isAlgebraic_root, liftAlgHom_eq_algHom, root_isInv, algEquivOfEq_root, IntermediateField.adjoinRootEquivAdjoin_apply_root, root_X_pow_sub_C_pow, liftHom_eq_algHom, evalβ_root, IsAdjoinRoot.adjoinRootAlgEquiv_symm_apply_root, isIntegral_root', algEquivOfEq_apply_root, adjoinRootXPowSubCEquiv_root, map_root, mk_X, aeval_algHom_eq_zero, lift_root, aeval_eq, adjoinRoot_eq_top, Polynomial.X_sub_C_mul_removeFactor, liftHom_root, coe_algHomOfDvd, liftAlgHom_root, autAdjoinRootXPowSubC_root, algHomOfDvd_apply_root, isIntegral_root, ringHom_ext_iff, powerBasis_gen, isRoot_root
|