Documentation Verification Report

AdjoinRoot

πŸ“ Source: Mathlib/RingTheory/AdjoinRoot.lean

Statistics

MetricCount
DefinitionstoAdjoin, quotQuotEquivComm, algEquivOfAssociated, algEquivOfEq, algHomOfDvd, equiv, equiv', hasCoeT, instAlgebra, instCommRing, instDecidableEq, instDistribMulActionOfIsScalarTower, instDistribSMulOfIsScalarTower, instField, instGroupWithZero, instInhabited, instSMulAdjoinRoot, liftAlgHom, liftHom, map, mapAlgEquiv, mapAlgHom, mapRingEquiv, mk, mkₐ, modByMonicHom, of, ofAlgHom, powerBasis, powerBasis', powerBasisAux, powerBasisAux', quotAdjoinRootEquivQuotPolynomialQuot, quotEquivQuotMap, quotMapCMapSpanMkEquivQuotMapCQuotMapSpanMk, quotMapOfEquivQuotMapCMapSpanMk, root, quotientEquivQuotientMinpolyMap
38
Theoremscoe_toAdjoin, coe_toAdjoin_mk_X, surjective, quotQuotEquivComm_mk, quotQuotEquivComm_symm_mk_mk, adjoinRoot_eq_top, aeval_algHom_eq_zero, aeval_eq, aeval_eq_of_algebra, algEquivOfAssociated_apply_root, algEquivOfAssociated_root, algEquivOfAssociated_symm, algEquivOfAssociated_toAlgHom, algEquivOfEq_apply_root, algEquivOfEq_root, algEquivOfEq_symm, algEquivOfEq_toAlgHom, algHomOfDvd_apply_root, algHomOfDvd_root, algHom_ext, algHom_ext', algHom_ext'_iff, algHom_ext_iff, algHom_subsingleton, algebraMap_eq, algebraMap_eq', coe_algEquivOfAssociated, coe_algEquivOfEq, coe_algHomOfDvd, coe_injective, coe_injective', coe_liftAlgHom, coe_liftHom, coe_mapAlgEquiv, coe_mapAlgHom, coe_mapRingEquiv, coe_mkₐ, coe_ofAlgHom, equiv'_apply, equiv'_symm_apply, equiv'_symm_toAlgHom, equiv'_toAlgHom, evalβ‚‚_root, finitePresentation, finiteType, induction_on, instIsNoetherianRing, instIsScalarTower, instSMulCommClass, isAlgebraic_root, isDomain_of_prime, isIntegral_root, isIntegral_root', isRoot_root, isScalarTower_right, liftAlgHom_eq_algHom, liftAlgHom_mk, liftAlgHom_of, liftAlgHom_root, liftHom_eq_algHom, liftHom_mk, liftHom_of, liftHom_root, lift_comp_of, lift_mk, lift_of, lift_root, mapAlgHom_comp_mapAlghom, map_comp_map, map_of, map_root, minpoly_powerBasis_gen, minpoly_powerBasis_gen_of_monic, minpoly_root, mk_C, mk_X, mk_eq_mk, mk_eq_zero, mk_leftInverse, mk_ne_zero_of_degree_lt, mk_ne_zero_of_natDegree_lt, mk_self, mk_surjective, mkₐ_toRingHom, modByMonicHom_mk, mul_div_root_cancel, noZeroSMulDivisors_of_prime_of_degree_ne_zero, nontrivial, injective_of_degree_ne_zero, powerBasis'_dim, powerBasis'_gen, powerBasisAux'_repr_apply_to_fun, powerBasisAux'_repr_symm_apply, powerBasis_dim, powerBasis_gen, quotAdjoinRootEquivQuotPolynomialQuot_mk_of, quotAdjoinRootEquivQuotPolynomialQuot_symm_mk_mk, quotEquivQuotMap_apply, quotEquivQuotMap_apply_mk, quotEquivQuotMap_symm_apply, quotEquivQuotMap_symm_apply_mk, quotMapCMapSpanMkEquivQuotMapCQuotMapSpanMk_mk, quotMapCMapSpanMkEquivQuotMapCQuotMapSpanMk_symm_quotQuotMk, quotMapOfEquivQuotMapCMapSpanMk_mk, quotMapOfEquivQuotMapCMapSpanMk_symm_mk, ringHom_ext, ringHom_ext_iff, root_isInv, smul_mk, smul_of, span_maximal_of_irreducible, symm_mapAlgEquiv, symm_mapRingEquiv, toRingHom_liftAlgHom, toRingHom_ofAlgHom, exists_dvd_monic_irreducible_of_isIntegral, exists_splits_map, finite_adjoinRoot, finite_quotient, free_adjoinRoot, free_quotient, quotientEquivQuotientMinpolyMap_apply, quotientEquivQuotientMinpolyMap_apply_mk, quotientEquivQuotientMinpolyMap_symm_apply, quotientEquivQuotientMinpolyMap_symm_apply_mk, finrank_quotient_span_eq_natDegree
126
Total164

AdjoinRoot

Definitions

NameCategoryTheorems
algEquivOfAssociated πŸ“–CompOp
5 mathmath: algEquivOfAssociated_apply_root, algEquivOfAssociated_root, algEquivOfAssociated_toAlgHom, algEquivOfAssociated_symm, coe_algEquivOfAssociated
algEquivOfEq πŸ“–CompOp
5 mathmath: algEquivOfEq_root, algEquivOfEq_apply_root, coe_algEquivOfEq, algEquivOfEq_symm, algEquivOfEq_toAlgHom
algHomOfDvd πŸ“–CompOp
7 mathmath: algHomOfDvd_root, algEquivOfAssociated_toAlgHom, coe_algEquivOfEq, coe_algHomOfDvd, algEquivOfEq_toAlgHom, algHomOfDvd_apply_root, coe_algEquivOfAssociated
equiv πŸ“–CompOpβ€”
equiv' πŸ“–CompOp
6 mathmath: PowerBasis.quotientEquivQuotientMinpolyMap_apply, equiv'_symm_toAlgHom, equiv'_toAlgHom, PowerBasis.quotientEquivQuotientMinpolyMap_symm_apply, equiv'_symm_apply, equiv'_apply
hasCoeT πŸ“–CompOpβ€”
instAlgebra πŸ“–CompOp
95 mathmath: algEquivOfAssociated_apply_root, minpoly.ToAdjoin.injective, isAdjoinRoot_root_eq_root, AlgEquiv.coe_adjoinSingletonEquivAdjoinRootMinpoly_symm, minpoly_root, autAdjoinRootXPowSubCEquiv_root, IntermediateField.adjoinRootEquivAdjoin_symm_apply_gen, IsAdjoinRoot.adjoinRootAlgEquiv_symm_apply_eq_mk, PowerBasis.quotientEquivQuotientMinpolyMap_apply, adjoinRootXPowSubCEquiv_symm_eq_root, autAdjoinRootXPowSubCEquiv_symm_smul, algEquivOfAssociated_root, algHom_ext_iff, powerBasis'_gen, AlgEquiv.adjoinSingletonEquivAdjoinRootMinpoly_symm_toAlgHom, quotEquivQuotMap_symm_apply_mk, algHom_ext'_iff, liftAlgHom_of, Minpoly.toAdjoin.surjective, powerBasis'_dim, Differential.instDifferentialAlgebraAdjoinRoot, algHomOfDvd_root, coe_mapAlgHom, coe_liftHom, algebraMap_eq, aeval_eq_of_algebra, mk_leftInverse, algebraMap_eq', finiteType, IsAdjoinRoot.adjoinRootAlgEquiv_apply_root, Minpoly.coe_toAdjoin, quotEquivQuotMap_apply, isAdjoinRoot_map_eq_mkₐ, IntermediateField.adjoin_root_eq_top, isAlgebraic_root, liftAlgHom_eq_algHom, IsAdjoinRoot.algEquiv_def, Polynomial.Monic.finite_adjoinRoot, IsAdjoinRoot.adjoinRootAlgEquiv_apply_eq_map, modByMonicHom_mk, isAdjoinRootMonic_toAdjoinRoot, mapAlgHom_comp_mapAlghom, liftAlgHom_mk, algEquivOfAssociated_toAlgHom, coe_mkₐ, algEquivOfEq_root, IntermediateField.adjoinRootEquivAdjoin_apply_root, Minpoly.coe_toAdjoin_mk_X, powerBasisAux'_repr_symm_apply, quotEquivQuotMap_apply_mk, PowerBasis.quotientEquivQuotientMinpolyMap_symm_apply, toRingHom_liftAlgHom, IsAdjoinRoot.adjoinRootAlgEquiv_apply_mk, algEquivOfAssociated_symm, isSplittingField_AdjoinRoot_X_pow_sub_C, toRingHom_ofAlgHom, liftHom_eq_algHom, IsAdjoinRoot.adjoinRootAlgEquiv_symm_apply_root, isIntegral_root', algEquivOfEq_apply_root, adjoinRootXPowSubCEquiv_root, coe_liftAlgHom, powerBasis_dim, noZeroSMulDivisors_of_prime_of_degree_ne_zero, minpoly.equivAdjoin_toAlgHom, algHom_subsingleton, coe_mapAlgEquiv, minpoly.coe_equivAdjoin, finitePresentation, minpoly_powerBasis_gen, aeval_algHom_eq_zero, quotEquivQuotMap_symm_apply, powerBasisAux'_repr_apply_to_fun, coe_algEquivOfEq, aeval_eq, IsLocalization.adjoin_inv, liftHom_of, adjoinRoot_eq_top, liftHom_root, symm_mapAlgEquiv, coe_algHomOfDvd, Polynomial.Monic.free_adjoinRoot, liftAlgHom_root, autAdjoinRootXPowSubC_root, algEquivOfEq_symm, minpoly_powerBasis_gen_of_monic, liftHom_mk, algEquivOfEq_toAlgHom, algHomOfDvd_apply_root, WeierstrassCurve.Affine.CoordinateRing.basis_apply, mkₐ_toRingHom, isIntegral_root, powerBasis_gen, coe_ofAlgHom, coe_algEquivOfAssociated
instCommRing πŸ“–CompOp
163 mathmath: algEquivOfAssociated_apply_root, minpoly.ToAdjoin.injective, isAdjoinRoot_root_eq_root, AlgEquiv.coe_adjoinSingletonEquivAdjoinRootMinpoly_symm, WeierstrassCurve.Affine.CoordinateRing.smul, minpoly_root, autAdjoinRootXPowSubCEquiv_root, quotMapOfEquivQuotMapCMapSpanMk_symm_mk, root_X_pow_sub_C_eq_zero_iff, IntermediateField.adjoinRootEquivAdjoin_symm_apply_gen, WeierstrassCurve.Affine.CoordinateRing.basis_one, IsAdjoinRoot.adjoinRootAlgEquiv_symm_apply_eq_mk, PowerBasis.quotientEquivQuotientMinpolyMap_apply, adjoinRootXPowSubCEquiv_symm_eq_root, WeierstrassCurve.Affine.CoordinateRing.smul_basis_mul_C, mk_surjective, WeierstrassCurve.Affine.CoordinateRing.coe_basis, WeierstrassCurve.Affine.Point.toClass_zero, autAdjoinRootXPowSubCEquiv_symm_smul, algEquivOfAssociated_root, algHom_ext_iff, powerBasis'_gen, AlgEquiv.adjoinSingletonEquivAdjoinRootMinpoly_symm_toAlgHom, smul_mk, quotEquivQuotMap_symm_apply_mk, algHom_ext'_iff, liftAlgHom_of, evalEval_apply, symm_mapRingEquiv, Minpoly.toAdjoin.surjective, powerBasis'_dim, Differential.instDifferentialAlgebraAdjoinRoot, instIsNoetherianRing, mk_eq_mk, algHomOfDvd_root, isDomain_of_prime, WeierstrassCurve.Affine.CoordinateRing.mk_ψ, coe_mapAlgHom, coe_liftHom, algebraMap_eq, mul_div_root_cancel, WeierstrassCurve.Affine.CoordinateRing.C_addPolynomial, aeval_eq_of_algebra, WeierstrassCurve.Affine.CoordinateRing.mk_XYIdeal'_neg_mul, WeierstrassCurve.Affine.CoordinateRing.XYIdeal_add_eq, mk_leftInverse, algebraMap_eq', finiteType, coe_injective, quotMapCMapSpanMkEquivQuotMapCQuotMapSpanMk_symm_quotQuotMk, IsAdjoinRoot.adjoinRootAlgEquiv_apply_root, mk_eq_zero, Minpoly.coe_toAdjoin, lift_comp_of, quotEquivQuotMap_apply, isAdjoinRoot_map_eq_mkₐ, WeierstrassCurve.Affine.CoordinateRing.norm_smul_basis, WeierstrassCurve.Affine.CoordinateRing.degree_norm_smul_basis, coe_injective', smul_of, isAlgebraic_root, isScalarTower_right, liftAlgHom_eq_algHom, IsAdjoinRoot.algEquiv_def, Polynomial.Monic.finite_adjoinRoot, lift_mk, WeierstrassCurve.Affine.CoordinateRing.map_mk, root_isInv, IsAdjoinRoot.adjoinRootAlgEquiv_apply_eq_map, modByMonicHom_mk, isAdjoinRootMonic_toAdjoinRoot, WeierstrassCurve.Affine.CoordinateRing.mk_Ο†, mapAlgHom_comp_mapAlghom, map_comp_map, liftAlgHom_mk, algEquivOfAssociated_toAlgHom, coe_mkₐ, algEquivOfEq_root, IntermediateField.adjoinRootEquivAdjoin_apply_root, WeierstrassCurve.Affine.CoordinateRing.instIsDomain, Minpoly.coe_toAdjoin_mk_X, powerBasisAux'_repr_symm_apply, quotEquivQuotMap_apply_mk, PowerBasis.quotientEquivQuotientMinpolyMap_symm_apply, WeierstrassCurve.Affine.CoordinateRing.mk_Ξ¨_sq, WeierstrassCurve.Affine.CoordinateRing.XYIdeal_neg_mul, toRingHom_liftAlgHom, WeierstrassCurve.Affine.CoordinateRing.exists_smul_basis_eq, WeierstrassCurve.Affine.CoordinateRing.C_addPolynomial_slope, WeierstrassCurve.Affine.CoordinateRing.mk_XYIdeal'_mul_mk_XYIdeal', IsAdjoinRoot.adjoinRootAlgEquiv_apply_mk, root_X_pow_sub_C_pow, algEquivOfAssociated_symm, toRingHom_ofAlgHom, liftHom_eq_algHom, evalβ‚‚_root, IsAdjoinRoot.adjoinRootAlgEquiv_symm_apply_root, WeierstrassCurve.Affine.CoordinateRing.map_injective, isIntegral_root', algEquivOfEq_apply_root, adjoinRootXPowSubCEquiv_root, coe_liftAlgHom, WeierstrassCurve.Affine.Point.toClass_some, WeierstrassCurve.Affine.Point.toClass_injective, powerBasis_dim, map_root, noZeroSMulDivisors_of_prime_of_degree_ne_zero, mk_X, quotAdjoinRootEquivQuotPolynomialQuot_symm_mk_mk, minpoly.equivAdjoin_toAlgHom, algHom_subsingleton, WeierstrassCurve.Affine.CoordinateRing.coe_norm_smul_basis, lift_of, coe_mapAlgEquiv, WeierstrassCurve.Affine.CoordinateRing.mk_Οˆβ‚‚_sq, WeierstrassCurve.Affine.CoordinateRing.basis_zero, minpoly.coe_equivAdjoin, finitePresentation, quotMapOfEquivQuotMapCMapSpanMk_mk, minpoly_powerBasis_gen, aeval_algHom_eq_zero, lift_root, quotEquivQuotMap_symm_apply, quotMapCMapSpanMkEquivQuotMapCQuotMapSpanMk_mk, powerBasisAux'_repr_apply_to_fun, coe_algEquivOfEq, aeval_eq, IsLocalization.adjoin_inv, liftHom_of, adjoinRoot_eq_top, Polynomial.X_sub_C_mul_removeFactor, WeierstrassCurve.Affine.Point.toClass_eq_zero, map_of, mk_self, liftHom_root, symm_mapAlgEquiv, WeierstrassCurve.Affine.CoordinateRing.XYIdeal'_eq, coe_algHomOfDvd, Polynomial.Monic.free_adjoinRoot, liftAlgHom_root, WeierstrassCurve.Affine.CoordinateRing.map_smul, autAdjoinRootXPowSubC_root, algEquivOfEq_symm, minpoly_powerBasis_gen_of_monic, liftHom_mk, algEquivOfEq_toAlgHom, coe_mapRingEquiv, algHomOfDvd_apply_root, quotAdjoinRootEquivQuotPolynomialQuot_mk_of, WeierstrassCurve.Affine.CoordinateRing.basis_apply, WeierstrassCurve.Affine.Point.toClass_apply, mkₐ_toRingHom, isIntegral_root, ringHom_ext_iff, WeierstrassCurve.Affine.CoordinateRing.smul_basis_mul_Y, powerBasis_gen, WeierstrassCurve.Affine.CoordinateRing.XYIdeal_mul_XYIdeal, mk_C, coe_ofAlgHom, of.injective_of_degree_ne_zero, isRoot_root, evalEval_mk, coe_algEquivOfAssociated
instDecidableEq πŸ“–CompOpβ€”
instDistribMulActionOfIsScalarTower πŸ“–CompOpβ€”
instDistribSMulOfIsScalarTower πŸ“–CompOpβ€”
instField πŸ“–CompOp
10 mathmath: instNumberFieldRat, Polynomial.SplittingFieldAux.succ, Polynomial.SplittingFieldAux.algebraMap_succ, mul_div_root_cancel, Polynomial.natDegree_removeFactor, Polynomial.SplittingFieldAux.scalar_tower', IntermediateField.adjoin_root_eq_top, isSplittingField_AdjoinRoot_X_pow_sub_C, Polynomial.natDegree_removeFactor', Polynomial.X_sub_C_mul_removeFactor
instGroupWithZero πŸ“–CompOpβ€”
instInhabited πŸ“–CompOpβ€”
instSMulAdjoinRoot πŸ“–CompOp
18 mathmath: WeierstrassCurve.Affine.CoordinateRing.smul, autAdjoinRootXPowSubCEquiv_root, WeierstrassCurve.Affine.CoordinateRing.smul_basis_mul_C, autAdjoinRootXPowSubCEquiv_symm_smul, smul_mk, WeierstrassCurve.Affine.CoordinateRing.instIsScalarTowerPolynomial, WeierstrassCurve.Affine.CoordinateRing.norm_smul_basis, Polynomial.SplittingFieldAux.scalar_tower', WeierstrassCurve.Affine.CoordinateRing.degree_norm_smul_basis, smul_of, isScalarTower_right, instIsScalarTower, WeierstrassCurve.Affine.CoordinateRing.exists_smul_basis_eq, instSMulCommClass, WeierstrassCurve.Affine.CoordinateRing.coe_norm_smul_basis, WeierstrassCurve.Affine.CoordinateRing.map_smul, autAdjoinRootXPowSubC_root, WeierstrassCurve.Affine.CoordinateRing.smul_basis_mul_Y
liftAlgHom πŸ“–CompOp
11 mathmath: liftAlgHom_of, Minpoly.coe_toAdjoin, liftAlgHom_eq_algHom, equiv'_toAlgHom, liftAlgHom_mk, toRingHom_liftAlgHom, coe_liftAlgHom, equiv'_apply, coe_algHomOfDvd, liftAlgHom_root, liftHom_mk
liftHom πŸ“–CompOp
4 mathmath: coe_liftHom, liftHom_eq_algHom, liftHom_of, liftHom_root
map πŸ“–CompOp
6 mathmath: coe_mapAlgHom, map_comp_map, map_root, coe_mapAlgEquiv, map_of, coe_mapRingEquiv
mapAlgEquiv πŸ“–CompOp
2 mathmath: coe_mapAlgEquiv, symm_mapAlgEquiv
mapAlgHom πŸ“–CompOp
2 mathmath: coe_mapAlgHom, mapAlgHom_comp_mapAlghom
mapRingEquiv πŸ“–CompOp
2 mathmath: symm_mapRingEquiv, coe_mapRingEquiv
mk πŸ“–CompOpβ€”
mkₐ πŸ“–CompOp
3 mathmath: isAdjoinRoot_map_eq_mkₐ, coe_mkₐ, mkₐ_toRingHom
modByMonicHom πŸ“–CompOp
3 mathmath: mk_leftInverse, modByMonicHom_mk, powerBasisAux'_repr_apply_to_fun
of πŸ“–CompOp
33 mathmath: quotMapOfEquivQuotMapCMapSpanMk_symm_mk, PowerBasis.quotientEquivQuotientMinpolyMap_apply, Polynomial.SplittingFieldAux.algebraMap_succ, quotEquivQuotMap_symm_apply_mk, liftAlgHom_of, algebraMap_eq, mul_div_root_cancel, algebraMap_eq', coe_injective, lift_comp_of, quotEquivQuotMap_apply, coe_injective', smul_of, root_isInv, quotEquivQuotMap_apply_mk, PowerBasis.quotientEquivQuotientMinpolyMap_symm_apply, root_X_pow_sub_C_pow, toRingHom_ofAlgHom, evalβ‚‚_root, quotAdjoinRootEquivQuotPolynomialQuot_symm_mk_mk, WeierstrassCurve.Affine.CoordinateRing.coe_norm_smul_basis, lift_of, quotMapOfEquivQuotMapCMapSpanMk_mk, quotEquivQuotMap_symm_apply, liftHom_of, Polynomial.X_sub_C_mul_removeFactor, map_of, quotAdjoinRootEquivQuotPolynomialQuot_mk_of, ringHom_ext_iff, mk_C, coe_ofAlgHom, of.injective_of_degree_ne_zero, isRoot_root
ofAlgHom πŸ“–CompOp
3 mathmath: algHom_ext'_iff, toRingHom_ofAlgHom, coe_ofAlgHom
powerBasis πŸ“–CompOp
4 mathmath: powerBasis_dim, minpoly_powerBasis_gen, minpoly_powerBasis_gen_of_monic, powerBasis_gen
powerBasis' πŸ“–CompOp
3 mathmath: powerBasis'_gen, powerBasis'_dim, WeierstrassCurve.Affine.CoordinateRing.basis_apply
powerBasisAux πŸ“–CompOpβ€”
powerBasisAux' πŸ“–CompOp
2 mathmath: powerBasisAux'_repr_symm_apply, powerBasisAux'_repr_apply_to_fun
quotAdjoinRootEquivQuotPolynomialQuot πŸ“–CompOp
5 mathmath: PowerBasis.quotientEquivQuotientMinpolyMap_apply, quotEquivQuotMap_apply, quotAdjoinRootEquivQuotPolynomialQuot_symm_mk_mk, quotEquivQuotMap_symm_apply, quotAdjoinRootEquivQuotPolynomialQuot_mk_of
quotEquivQuotMap πŸ“–CompOp
5 mathmath: quotEquivQuotMap_symm_apply_mk, quotEquivQuotMap_apply, quotEquivQuotMap_apply_mk, PowerBasis.quotientEquivQuotientMinpolyMap_symm_apply, quotEquivQuotMap_symm_apply
quotMapCMapSpanMkEquivQuotMapCQuotMapSpanMk πŸ“–CompOp
2 mathmath: quotMapCMapSpanMkEquivQuotMapCQuotMapSpanMk_symm_quotQuotMk, quotMapCMapSpanMkEquivQuotMapCQuotMapSpanMk_mk
quotMapOfEquivQuotMapCMapSpanMk πŸ“–CompOp
2 mathmath: quotMapOfEquivQuotMapCMapSpanMk_symm_mk, quotMapOfEquivQuotMapCMapSpanMk_mk
root πŸ“–CompOp
45 mathmath: algEquivOfAssociated_apply_root, isAdjoinRoot_root_eq_root, minpoly_root, autAdjoinRootXPowSubCEquiv_root, root_X_pow_sub_C_eq_zero_iff, IntermediateField.adjoinRootEquivAdjoin_symm_apply_gen, adjoinRootXPowSubCEquiv_symm_eq_root, autAdjoinRootXPowSubCEquiv_symm_smul, algEquivOfAssociated_root, algHom_ext_iff, powerBasis'_gen, algHom_ext'_iff, algHomOfDvd_root, mul_div_root_cancel, aeval_eq_of_algebra, IsAdjoinRoot.adjoinRootAlgEquiv_apply_root, IntermediateField.adjoin_root_eq_top, isAlgebraic_root, liftAlgHom_eq_algHom, root_isInv, algEquivOfEq_root, IntermediateField.adjoinRootEquivAdjoin_apply_root, root_X_pow_sub_C_pow, liftHom_eq_algHom, evalβ‚‚_root, IsAdjoinRoot.adjoinRootAlgEquiv_symm_apply_root, isIntegral_root', algEquivOfEq_apply_root, adjoinRootXPowSubCEquiv_root, map_root, mk_X, aeval_algHom_eq_zero, lift_root, aeval_eq, adjoinRoot_eq_top, Polynomial.X_sub_C_mul_removeFactor, liftHom_root, coe_algHomOfDvd, liftAlgHom_root, autAdjoinRootXPowSubC_root, algHomOfDvd_apply_root, isIntegral_root, ringHom_ext_iff, powerBasis_gen, isRoot_root

Theorems

NameKindAssumesProvesValidatesDepends On
adjoinRoot_eq_top πŸ“–mathematicalβ€”Algebra.adjoin
AdjoinRoot
CommRing.toCommSemiring
CommSemiring.toSemiring
instCommRing
instAlgebra
Algebra.id
Set
Set.instSingletonSet
root
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”Algebra.eq_top_iff
induction_on
aeval_eq
Algebra.adjoin_singleton_eq_range_aeval
aeval_algHom_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
AdjoinRoot
instCommRing
instAlgebra
root
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”RingHom.ext_iff
AlgHom.commutes
Polynomial.aeval_def
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
evalβ‚‚_root
Polynomial.hom_evalβ‚‚
aeval_eq πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
AdjoinRoot
Polynomial.semiring
instCommRing
Polynomial.algebraOfAlgebra
Algebra.id
instAlgebra
AlgHom.funLike
Polynomial.aeval
root
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
β€”aeval_eq_of_algebra
Algebra.algebraMap_self
Polynomial.map_id
aeval_eq_of_algebra πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
AdjoinRoot
Polynomial.semiring
instCommRing
Polynomial.algebraOfAlgebra
Algebra.id
instAlgebra
AlgHom.funLike
Polynomial.aeval
root
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.map
algebraMap
β€”Polynomial.induction_on
Polynomial.aeval_C
Polynomial.map_C
IsScalarTower.algebraMap_apply
instIsScalarTower
IsScalarTower.right
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
Polynomial.map_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
pow_add
pow_one
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
Polynomial.aeval_X
Polynomial.map_mul
Polynomial.map_pow
Polynomial.map_X
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
algEquivOfAssociated_apply_root πŸ“–mathematicalAssociated
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
DFunLike.coe
AlgEquiv
AdjoinRoot
instCommRing
instAlgebra
AlgEquiv.instFunLike
algEquivOfAssociated
root
β€”algEquivOfAssociated_root
algEquivOfAssociated_root πŸ“–mathematicalAssociated
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
DFunLike.coe
AlgEquiv
AdjoinRoot
instCommRing
instAlgebra
AlgEquiv.instFunLike
algEquivOfAssociated
root
β€”Associated.dvd
Associated.symm
coe_algEquivOfAssociated
algHomOfDvd_root
algEquivOfAssociated_symm πŸ“–mathematicalAssociated
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
AlgEquiv.symm
AdjoinRoot
instCommRing
instAlgebra
algEquivOfAssociated
Associated.symm
β€”β€”
algEquivOfAssociated_toAlgHom πŸ“–mathematicalAssociated
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
AlgEquiv.toAlgHom
AdjoinRoot
instCommRing
instAlgebra
algEquivOfAssociated
algHomOfDvd
Associated.dvd
Associated.symm
β€”β€”
algEquivOfEq_apply_root πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
AdjoinRoot
CommRing.toCommSemiring
CommSemiring.toSemiring
instCommRing
instAlgebra
AlgEquiv.instFunLike
algEquivOfEq
root
β€”algEquivOfEq_root
algEquivOfEq_root πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
AdjoinRoot
CommRing.toCommSemiring
CommSemiring.toSemiring
instCommRing
instAlgebra
AlgEquiv.instFunLike
algEquivOfEq
root
β€”Eq.dvd
coe_algEquivOfEq
algHomOfDvd_root
algEquivOfEq_symm πŸ“–mathematicalβ€”AlgEquiv.symm
AdjoinRoot
CommRing.toCommSemiring
CommSemiring.toSemiring
instCommRing
instAlgebra
algEquivOfEq
Polynomial
β€”β€”
algEquivOfEq_toAlgHom πŸ“–mathematicalβ€”AlgEquiv.toAlgHom
AdjoinRoot
CommRing.toCommSemiring
CommSemiring.toSemiring
instCommRing
instAlgebra
algEquivOfEq
algHomOfDvd
Eq.dvd
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
β€”β€”
algHomOfDvd_apply_root πŸ“–mathematicalPolynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
DFunLike.coe
AlgHom
AdjoinRoot
instCommRing
instAlgebra
AlgHom.funLike
algHomOfDvd
root
β€”algHomOfDvd_root
algHomOfDvd_root πŸ“–mathematicalPolynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
DFunLike.coe
AlgHom
AdjoinRoot
instCommRing
instAlgebra
AlgHom.funLike
algHomOfDvd
root
β€”map_root
AlgHomClass.toRingHomClass
AlgHom.algHomClass
algHom_ext πŸ“–β€”DFunLike.coe
AlgHom
AdjoinRoot
CommRing.toCommSemiring
CommSemiring.toSemiring
instCommRing
instAlgebra
Algebra.id
AlgHom.funLike
root
β€”β€”Ideal.Quotient.algHom_ext
Ideal.instIsTwoSided_1
Polynomial.algHom_ext
algHom_ext' πŸ“–β€”AlgHom.comp
AdjoinRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
instAlgebra
ofAlgHom
DFunLike.coe
AlgHom
AlgHom.funLike
root
β€”β€”AlgHom.coe_ringHom_injective
ringHom_ext
AlgHomClass.toRingHomClass
AlgHom.algHomClass
algHom_ext'_iff πŸ“–mathematicalβ€”AlgHom.comp
AdjoinRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
instAlgebra
ofAlgHom
DFunLike.coe
AlgHom
AlgHom.funLike
root
β€”algHom_ext'
algHom_ext_iff πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
AdjoinRoot
CommRing.toCommSemiring
CommSemiring.toSemiring
instCommRing
instAlgebra
Algebra.id
AlgHom.funLike
root
β€”algHom_ext
algHom_subsingleton πŸ“–mathematicalβ€”AlgHom
AdjoinRoot
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.instSub
CommRing.toRing
Polynomial.instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
Polynomial.X
Polynomial.instOne
instCommRing
instAlgebra
Algebra.id
β€”algHom_ext
inv_unique
AlgHom.commutes
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
algebraMap_eq
root_isInv
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
algebraMap_eq πŸ“–mathematicalβ€”algebraMap
AdjoinRoot
CommRing.toCommSemiring
CommSemiring.toSemiring
instCommRing
instAlgebra
Algebra.id
of
β€”β€”
algebraMap_eq' πŸ“–mathematicalβ€”algebraMap
AdjoinRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
instAlgebra
RingHom.comp
Semiring.toNonAssocSemiring
of
β€”β€”
coe_algEquivOfAssociated πŸ“–mathematicalAssociated
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
DFunLike.coe
AlgEquiv
AdjoinRoot
instCommRing
instAlgebra
AlgEquiv.instFunLike
algEquivOfAssociated
AlgHom
AlgHom.funLike
algHomOfDvd
Associated.dvd
Associated.symm
β€”β€”
coe_algEquivOfEq πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
AdjoinRoot
CommRing.toCommSemiring
CommSemiring.toSemiring
instCommRing
instAlgebra
AlgEquiv.instFunLike
algEquivOfEq
AlgHom
AlgHom.funLike
algHomOfDvd
Eq.dvd
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
β€”β€”
coe_algHomOfDvd πŸ“–mathematicalPolynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
DFunLike.coe
AlgHom
AdjoinRoot
instCommRing
instAlgebra
AlgHom.funLike
algHomOfDvd
Algebra.id
liftAlgHom
Algebra.ofId
root
Polynomial.semiring
Polynomial.algebraOfAlgebra
Polynomial.aeval
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
aeval_eq
β€”β€”
coe_injective πŸ“–mathematicalβ€”AdjoinRoot
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
RingHom.instFunLike
of
β€”nontrivial
instIsDomain
RingHom.injective
DivisionRing.isSimpleRing
coe_injective' πŸ“–mathematicalβ€”AdjoinRoot
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
RingHom.instFunLike
of
β€”RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
coe_liftAlgHom πŸ“–mathematicalPolynomial.evalβ‚‚
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHomClass.toRingHom
AlgHom
AlgHom.funLike
Semiring.toNonAssocSemiring
AlgHomClass.toRingHomClass
AlgHom.algHomClass
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
AdjoinRoot
instCommRing
instAlgebra
liftAlgHom
RingHom
RingHom.instFunLike
lift
AlgHom.toRingHom
β€”AlgHomClass.toRingHomClass
AlgHom.algHomClass
coe_liftHom πŸ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
RingHomClass.toRingHom
AdjoinRoot
instCommRing
instAlgebra
Semiring.toNonAssocSemiring
AlgHomClass.toRingHomClass
AlgHom.algHomClass
liftHom
lift
algebraMap
β€”AlgHomClass.toRingHomClass
AlgHom.algHomClass
coe_mapAlgEquiv πŸ“–mathematicalAssociated
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.map
RingHomClass.toRingHom
AlgEquiv
AlgEquiv.instFunLike
Semiring.toNonAssocSemiring
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instEquivLike
AlgEquiv.instAlgEquivClass
DFunLike.coe
AdjoinRoot
instCommRing
instAlgebra
mapAlgEquiv
RingHom
RingHom.instFunLike
map
Associated.dvd
Associated.symm
β€”AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
coe_mapAlgHom πŸ“–mathematicalPolynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
Polynomial.map
RingHomClass.toRingHom
AlgHom
AlgHom.funLike
Semiring.toNonAssocSemiring
AlgHomClass.toRingHomClass
AlgHom.algHomClass
DFunLike.coe
AdjoinRoot
instCommRing
instAlgebra
mapAlgHom
RingHom
RingHom.instFunLike
map
β€”AlgHomClass.toRingHomClass
AlgHom.algHomClass
coe_mapRingEquiv πŸ“–mathematicalAssociated
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.map
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
Semiring.toNonAssocSemiring
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
DFunLike.coe
AdjoinRoot
instCommRing
mapRingEquiv
RingHom
RingHom.instFunLike
map
Associated.dvd
Associated.symm
β€”RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
coe_mkₐ πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
AdjoinRoot
Polynomial.semiring
instCommRing
Polynomial.algebraOfAlgebra
Algebra.id
instAlgebra
AlgHom.funLike
mkₐ
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
β€”β€”
coe_ofAlgHom πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
AdjoinRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
instAlgebra
AlgHom.funLike
ofAlgHom
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
of
β€”β€”
equiv'_apply πŸ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
AdjoinRoot
Polynomial.semiring
instCommRing
Polynomial.algebraOfAlgebra
Algebra.id
instAlgebra
AlgHom.funLike
Polynomial.aeval
root
minpoly
CommRing.toRing
PowerBasis.gen
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AlgEquiv
AlgEquiv.instFunLike
equiv'
liftAlgHom
Algebra.ofId
β€”β€”
equiv'_symm_apply πŸ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
AdjoinRoot
Polynomial.semiring
instCommRing
Polynomial.algebraOfAlgebra
Algebra.id
instAlgebra
AlgHom.funLike
Polynomial.aeval
root
minpoly
CommRing.toRing
PowerBasis.gen
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AlgEquiv
AlgEquiv.instFunLike
AlgEquiv.symm
equiv'
Ring.toSemiring
PowerBasis.lift
β€”β€”
equiv'_symm_toAlgHom πŸ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
AdjoinRoot
Polynomial.semiring
instCommRing
Polynomial.algebraOfAlgebra
Algebra.id
instAlgebra
AlgHom.funLike
Polynomial.aeval
root
minpoly
CommRing.toRing
PowerBasis.gen
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AlgEquiv.toAlgHom
AlgEquiv.symm
equiv'
PowerBasis.lift
β€”β€”
equiv'_toAlgHom πŸ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
AdjoinRoot
Polynomial.semiring
instCommRing
Polynomial.algebraOfAlgebra
Algebra.id
instAlgebra
AlgHom.funLike
Polynomial.aeval
root
minpoly
CommRing.toRing
PowerBasis.gen
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AlgEquiv.toAlgHom
equiv'
liftAlgHom
Algebra.ofId
β€”β€”
evalβ‚‚_root πŸ“–mathematicalβ€”Polynomial.evalβ‚‚
AdjoinRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
of
root
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”algebraMap_eq
Polynomial.aeval_def
aeval_eq
mk_self
finitePresentation πŸ“–mathematicalβ€”Algebra.FinitePresentation
AdjoinRoot
CommRing.toCommSemiring
CommSemiring.toSemiring
instCommRing
instAlgebra
β€”Algebra.FinitePresentation.quotient
Submodule.fg_span_singleton
Algebra.FinitePresentation.polynomial
finiteType πŸ“–mathematicalβ€”Algebra.FiniteType
AdjoinRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
instAlgebra
β€”Algebra.FiniteType.quotient
Algebra.FiniteType.instPolynomial
induction_on πŸ“–β€”DFunLike.coe
RingHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
AdjoinRoot
Semiring.toNonAssocSemiring
Polynomial.semiring
instCommRing
RingHom.instFunLike
β€”β€”Quotient.inductionOn'
instIsNoetherianRing πŸ“–mathematicalβ€”IsNoetherianRing
AdjoinRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
β€”Ideal.Quotient.isNoetherianRing
Polynomial.isNoetherianRing
instIsScalarTower πŸ“–mathematicalβ€”IsScalarTower
AdjoinRoot
instSMulAdjoinRoot
β€”Submodule.Quotient.isScalarTower
Polynomial.isScalarTower
instSMulCommClass πŸ“–mathematicalβ€”SMulCommClass
AdjoinRoot
instSMulAdjoinRoot
β€”Submodule.Quotient.smulCommClass
Polynomial.smulCommClass
isAlgebraic_root πŸ“–mathematicalβ€”IsAlgebraic
AdjoinRoot
CommRing.toRing
instCommRing
instAlgebra
CommRing.toCommSemiring
Algebra.id
root
β€”evalβ‚‚_root
isDomain_of_prime πŸ“–mathematicalPrime
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
CommSemiring.toCommMonoidWithZero
Polynomial.commSemiring
IsDomain
AdjoinRoot
instCommRing
β€”Ideal.instIsTwoSided_1
Ideal.Quotient.isDomain_iff_prime
Ideal.span_singleton_prime
Prime.ne_zero
isIntegral_root πŸ“–mathematicalβ€”IsIntegral
AdjoinRoot
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toRing
instCommRing
instAlgebra
CommRing.toCommSemiring
Algebra.id
root
β€”IsAlgebraic.isIntegral
isAlgebraic_root
isIntegral_root' πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
IsIntegral
AdjoinRoot
CommRing.toRing
instCommRing
instAlgebra
Algebra.id
root
β€”evalβ‚‚_root
isRoot_root πŸ“–mathematicalβ€”Polynomial.IsRoot
AdjoinRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
Polynomial.map
of
root
β€”Polynomial.IsRoot.eq_1
Polynomial.eval_map
evalβ‚‚_root
isScalarTower_right πŸ“–mathematicalβ€”IsScalarTower
AdjoinRoot
instSMulAdjoinRoot
Algebra.toSMul
CommRing.toCommSemiring
instCommRing
CommSemiring.toSemiring
Algebra.id
β€”Ideal.Quotient.isScalarTower_right
Ideal.instIsTwoSided_1
liftAlgHom_eq_algHom πŸ“–mathematicalβ€”liftAlgHom
Algebra.id
CommRing.toCommSemiring
Algebra.ofId
CommSemiring.toSemiring
DFunLike.coe
AlgHom
AdjoinRoot
instCommRing
instAlgebra
AlgHom.funLike
root
aeval_algHom_eq_zero
β€”algHom_ext
aeval_algHom_eq_zero
liftAlgHom_root
liftAlgHom_mk πŸ“–mathematicalPolynomial.evalβ‚‚
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHomClass.toRingHom
AlgHom
AlgHom.funLike
Semiring.toNonAssocSemiring
AlgHomClass.toRingHomClass
AlgHom.algHomClass
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
AdjoinRoot
instCommRing
instAlgebra
liftAlgHom
RingHom
Polynomial
Polynomial.semiring
RingHom.instFunLike
β€”AlgHomClass.toRingHomClass
AlgHom.algHomClass
liftAlgHom_of πŸ“–mathematicalPolynomial.evalβ‚‚
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHomClass.toRingHom
AlgHom
AlgHom.funLike
Semiring.toNonAssocSemiring
AlgHomClass.toRingHomClass
AlgHom.algHomClass
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
AdjoinRoot
instCommRing
instAlgebra
liftAlgHom
RingHom
RingHom.instFunLike
of
β€”AlgHomClass.toRingHomClass
AlgHom.algHomClass
lift_of
liftAlgHom_root πŸ“–mathematicalPolynomial.evalβ‚‚
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHomClass.toRingHom
AlgHom
AlgHom.funLike
Semiring.toNonAssocSemiring
AlgHomClass.toRingHomClass
AlgHom.algHomClass
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
AdjoinRoot
instCommRing
instAlgebra
liftAlgHom
root
β€”AlgHomClass.toRingHomClass
AlgHom.algHomClass
lift_root
liftHom_eq_algHom πŸ“–mathematicalβ€”liftHom
DFunLike.coe
AlgHom
AdjoinRoot
CommRing.toCommSemiring
CommSemiring.toSemiring
instCommRing
instAlgebra
Algebra.id
AlgHom.funLike
root
aeval_algHom_eq_zero
β€”liftAlgHom_eq_algHom
liftHom_mk πŸ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AdjoinRoot
instCommRing
instAlgebra
liftAlgHom
Algebra.ofId
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
β€”β€”
liftHom_of πŸ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AdjoinRoot
instCommRing
instAlgebra
liftHom
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
of
algebraMap
β€”lift_of
liftHom_root πŸ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AdjoinRoot
instCommRing
instAlgebra
liftHom
root
β€”lift_root
lift_comp_of πŸ“–mathematicalPolynomial.evalβ‚‚
CommSemiring.toSemiring
CommRing.toCommSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
RingHom.comp
AdjoinRoot
Semiring.toNonAssocSemiring
instCommRing
lift
of
β€”RingHom.ext
lift_of
lift_mk πŸ“–mathematicalPolynomial.evalβ‚‚
CommSemiring.toSemiring
CommRing.toCommSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
RingHom
AdjoinRoot
Semiring.toNonAssocSemiring
instCommRing
RingHom.instFunLike
lift
Polynomial
Polynomial.semiring
β€”β€”
lift_of πŸ“–mathematicalPolynomial.evalβ‚‚
CommSemiring.toSemiring
CommRing.toCommSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
RingHom
AdjoinRoot
Semiring.toNonAssocSemiring
instCommRing
RingHom.instFunLike
lift
of
β€”mk_C
Polynomial.evalβ‚‚_C
lift_root πŸ“–mathematicalPolynomial.evalβ‚‚
CommSemiring.toSemiring
CommRing.toCommSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
RingHom
AdjoinRoot
Semiring.toNonAssocSemiring
instCommRing
RingHom.instFunLike
lift
root
β€”root.eq_1
Polynomial.evalβ‚‚_X
mapAlgHom_comp_mapAlghom πŸ“–mathematicalPolynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
Polynomial.map
RingHomClass.toRingHom
AlgHom
AlgHom.funLike
Semiring.toNonAssocSemiring
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.comp
AdjoinRoot
instCommRing
instAlgebra
mapAlgHom
Dvd.dvd.trans
β€”AlgHomClass.toRingHomClass
AlgHom.algHomClass
algHom_ext'
Dvd.dvd.trans
AlgHom.ext
map_of
map_root
map_comp_map πŸ“–mathematicalPolynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
Polynomial.map
RingHom.comp
AdjoinRoot
Semiring.toNonAssocSemiring
instCommRing
map
Dvd.dvd.trans
β€”ringHom_ext
Dvd.dvd.trans
RingHom.ext
map_of
map_root
map_of πŸ“–mathematicalPolynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
Polynomial.map
DFunLike.coe
RingHom
AdjoinRoot
Semiring.toNonAssocSemiring
instCommRing
RingHom.instFunLike
map
of
β€”lift_of
map_root πŸ“–mathematicalPolynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
Polynomial.map
DFunLike.coe
RingHom
AdjoinRoot
Semiring.toNonAssocSemiring
instCommRing
RingHom.instFunLike
map
root
β€”lift_root
minpoly_powerBasis_gen πŸ“–mathematicalβ€”minpoly
AdjoinRoot
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toRing
instCommRing
instAlgebra
CommRing.toCommSemiring
Algebra.id
PowerBasis.gen
powerBasis
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Polynomial.leadingCoeff
β€”powerBasis_gen
minpoly_root
minpoly_powerBasis_gen_of_monic πŸ“–mathematicalPolynomial.Monic
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial
Polynomial.instZero
Polynomial.Monic.ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
minpoly
AdjoinRoot
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toRing
instCommRing
instAlgebra
CommRing.toCommSemiring
Algebra.id
PowerBasis.gen
powerBasis
β€”minpoly_powerBasis_gen
Polynomial.Monic.leadingCoeff
inv_one
RingHom.map_one
mul_one
minpoly_root πŸ“–mathematicalβ€”minpoly
AdjoinRoot
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toRing
instCommRing
instAlgebra
CommRing.toCommSemiring
Algebra.id
root
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Polynomial.leadingCoeff
β€”Polynomial.monic_mul_leadingCoeff_inv
minpoly.unique
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
aeval_eq
mk_self
MulZeroClass.zero_mul
Polynomial.ringHom_ext'
RingHom.ext
lift_of
lift_root
Polynomial.degree_eq_natDegree
Polynomial.Monic.ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
Nat.cast_le
WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
WithBot.zeroLEOneClass
Nat.instZeroLEOneClass
WithBot.charZero
Nat.instCharZero
Polynomial.natDegree_mul
IsDomain.to_noZeroDivisors
instIsDomain
Polynomial.C_eq_zero
inv_eq_zero
Polynomial.leadingCoeff_eq_zero
Polynomial.natDegree_C
add_zero
Polynomial.natDegree_le_of_dvd
RingHom.comp_apply
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
mk_eq_zero
mk_C πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
AdjoinRoot
Semiring.toNonAssocSemiring
Polynomial.semiring
instCommRing
RingHom.instFunLike
Polynomial.C
of
β€”β€”
mk_X πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
AdjoinRoot
Semiring.toNonAssocSemiring
Polynomial.semiring
instCommRing
RingHom.instFunLike
Polynomial.X
root
β€”β€”
mk_eq_mk πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
AdjoinRoot
Semiring.toNonAssocSemiring
Polynomial.semiring
instCommRing
RingHom.instFunLike
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
Polynomial.instSub
CommRing.toRing
β€”Ideal.Quotient.eq
Ideal.mem_span_singleton
mk_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
AdjoinRoot
Semiring.toNonAssocSemiring
Polynomial.semiring
instCommRing
RingHom.instFunLike
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
Polynomial.commRing
β€”sub_zero
mk_leftInverse πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
AdjoinRoot
Polynomial
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Polynomial.semiring
instCommRing
RingHom.instFunLike
LinearMap
RingHom.id
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Polynomial.commRing
Algebra.toModule
instAlgebra
Algebra.id
Polynomial.module
Semiring.toModule
LinearMap.instFunLike
modByMonicHom
β€”induction_on
Polynomial.modByMonic_eq_sub_mul_div
sub_sub_cancel_left
dvd_neg
dvd_mul_right
mk_ne_zero_of_degree_lt πŸ“–β€”Polynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
Polynomial.degree
β€”β€”Iff.not
mk_eq_zero
Polynomial.Monic.not_dvd_of_degree_lt
mk_ne_zero_of_natDegree_lt πŸ“–β€”Polynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.natDegree
β€”β€”Iff.not
mk_eq_zero
Polynomial.Monic.not_dvd_of_natDegree_lt
mk_self πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
AdjoinRoot
Semiring.toNonAssocSemiring
Polynomial.semiring
instCommRing
RingHom.instFunLike
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Quotient.sound'
QuotientAddGroup.leftRel_apply
Ideal.mem_span_singleton
add_zero
mk_surjective πŸ“–mathematicalβ€”Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
AdjoinRoot
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Polynomial.semiring
instCommRing
RingHom.instFunLike
β€”Ideal.Quotient.mk_surjective
mkₐ_toRingHom πŸ“–mathematicalβ€”RingHomClass.toRingHom
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
AdjoinRoot
Polynomial.semiring
instCommRing
Polynomial.algebraOfAlgebra
Algebra.id
instAlgebra
AlgHom.funLike
Semiring.toNonAssocSemiring
AlgHomClass.toRingHomClass
AlgHom.algHomClass
mkₐ
β€”AlgHomClass.toRingHomClass
AlgHom.algHomClass
modByMonicHom_mk πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
AdjoinRoot
Polynomial
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRing
Polynomial.commRing
Algebra.toModule
instAlgebra
Algebra.id
Polynomial.module
Semiring.toModule
LinearMap.instFunLike
modByMonicHom
RingHom
Polynomial.semiring
RingHom.instFunLike
Polynomial.modByMonic
CommRing.toRing
β€”β€”
mul_div_root_cancel πŸ“–mathematicalβ€”Polynomial
AdjoinRoot
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
Polynomial.instMul
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
root
Polynomial.instDiv
Polynomial.map
of
β€”Polynomial.IsRoot.mul_div_eq
isRoot_root
noZeroSMulDivisors_of_prime_of_degree_ne_zero πŸ“–mathematicalPrime
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
CommSemiring.toCommMonoidWithZero
Polynomial.commSemiring
Module.IsTorsionFree
AdjoinRoot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRing
Algebra.toModule
instAlgebra
Algebra.id
β€”Module.isTorsionFree_iff_algebraMap_injective
isDomain_of_prime
of.injective_of_degree_ne_zero
nontrivial πŸ“–mathematicalβ€”Nontrivial
AdjoinRoot
β€”IsDomain.to_noZeroDivisors
Polynomial.degree_C
IsUnit.ne_zero
IsDomain.toNontrivial
powerBasis'_dim πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
PowerBasis.dim
AdjoinRoot
CommRing.toRing
instCommRing
instAlgebra
Algebra.id
powerBasis'
Polynomial.natDegree
β€”β€”
powerBasis'_gen πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
PowerBasis.gen
AdjoinRoot
CommRing.toRing
instCommRing
instAlgebra
Algebra.id
powerBasis'
root
β€”β€”
powerBasisAux'_repr_apply_to_fun πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
Finsupp
Polynomial.natDegree
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
LinearEquiv
RingHom.id
RingHomInvPair.ids
AdjoinRoot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRing
Finsupp.instAddCommMonoid
Algebra.toModule
instAlgebra
Algebra.id
Finsupp.module
Semiring.toModule
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
Module.Basis.repr
powerBasisAux'
Polynomial.coeff
LinearMap
Polynomial
Polynomial.commRing
Polynomial.module
LinearMap.instFunLike
modByMonicHom
β€”RingHomInvPair.ids
powerBasisAux'_repr_symm_apply πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
LinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Finsupp
Polynomial.natDegree
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
AdjoinRoot
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRing
Finsupp.module
Semiring.toModule
Algebra.toModule
instAlgebra
Algebra.id
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
LinearEquiv.symm
Module.Basis.repr
powerBasisAux'
RingHom
Polynomial
Polynomial.semiring
RingHom.instFunLike
Finset.sum
Polynomial.commRing
Finset.univ
Fin.fintype
LinearMap
Polynomial.module
LinearMap.instFunLike
Polynomial.monomial
Finsupp.instFunLike
β€”RingHomInvPair.ids
powerBasis_dim πŸ“–mathematicalβ€”PowerBasis.dim
AdjoinRoot
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toRing
instCommRing
instAlgebra
CommRing.toCommSemiring
Algebra.id
powerBasis
Polynomial.natDegree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”β€”
powerBasis_gen πŸ“–mathematicalβ€”PowerBasis.gen
AdjoinRoot
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toRing
instCommRing
instAlgebra
CommRing.toCommSemiring
Algebra.id
powerBasis
root
β€”β€”
quotAdjoinRootEquivQuotPolynomialQuot_mk_of πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
HasQuotient.Quotient
AdjoinRoot
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
Ideal.instHasQuotient_1
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
of
Polynomial
Ideal.Quotient.semiring
Polynomial.semiring
Polynomial.commRing
Ideal.Quotient.commRing
Ideal.span
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
Set
Set.instSingletonSet
Polynomial.map
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
quotAdjoinRootEquivQuotPolynomialQuot
Polynomial.ring
Ideal.Quotient.instRingQuotient
β€”Ideal.instIsTwoSided_1
quotAdjoinRootEquivQuotPolynomialQuot_symm_mk_mk πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
HasQuotient.Quotient
Polynomial
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Ideal.Quotient.semiring
Polynomial.semiring
Polynomial.commRing
Ideal.Quotient.commRing
Ideal.span
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
Set
Set.instSingletonSet
Polynomial.map
AdjoinRoot
instCommRing
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
of
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
quotAdjoinRootEquivQuotPolynomialQuot
Polynomial.ring
Ideal.Quotient.instRingQuotient
β€”Ideal.instIsTwoSided_1
quotAdjoinRootEquivQuotPolynomialQuot.eq_1
RingEquiv.symm_trans_apply
RingEquiv.symm_symm
Ideal.quotEquivOfEq_symm
RingHom.comp_apply
DoubleQuot.quotQuotMk.eq_1
quotMapCMapSpanMkEquivQuotMapCQuotMapSpanMk_symm_quotQuotMk
quotEquivQuotMap_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
HasQuotient.Quotient
AdjoinRoot
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
Ideal.instHasQuotient_1
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
of
Polynomial
Ideal.Quotient.semiring
Polynomial.semiring
Polynomial.commRing
Ideal.Quotient.commRing
Ideal.span
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
Set
Set.instSingletonSet
Polynomial.map
Ideal.instAlgebraQuotient
instAlgebra
Algebra.id
Polynomial.algebraOfAlgebra
AlgEquiv.instFunLike
quotEquivQuotMap
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
quotAdjoinRootEquivQuotPolynomialQuot
β€”Ideal.instIsTwoSided_1
quotEquivQuotMap_apply_mk πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
HasQuotient.Quotient
AdjoinRoot
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
Ideal.instHasQuotient_1
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
of
Polynomial
Ideal.Quotient.semiring
Polynomial.semiring
Polynomial.commRing
Ideal.Quotient.commRing
Ideal.span
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
Set
Set.instSingletonSet
Polynomial.map
Ideal.instAlgebraQuotient
instAlgebra
Algebra.id
Polynomial.algebraOfAlgebra
AlgEquiv.instFunLike
quotEquivQuotMap
Polynomial.ring
Ideal.Quotient.instRingQuotient
β€”Ideal.instIsTwoSided_1
quotEquivQuotMap_apply
quotAdjoinRootEquivQuotPolynomialQuot_mk_of
quotEquivQuotMap_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
HasQuotient.Quotient
Polynomial
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Ideal.Quotient.semiring
Polynomial.semiring
Polynomial.commRing
Ideal.Quotient.commRing
Ideal.span
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
Set
Set.instSingletonSet
Polynomial.map
AdjoinRoot
instCommRing
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
of
Ideal.instAlgebraQuotient
Polynomial.algebraOfAlgebra
Algebra.id
instAlgebra
AlgEquiv.instFunLike
AlgEquiv.symm
quotEquivQuotMap
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
quotAdjoinRootEquivQuotPolynomialQuot
β€”Ideal.instIsTwoSided_1
quotEquivQuotMap_symm_apply_mk πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
HasQuotient.Quotient
Polynomial
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Ideal.Quotient.semiring
Polynomial.semiring
Polynomial.commRing
Ideal.Quotient.commRing
Ideal.span
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
Set
Set.instSingletonSet
Polynomial.map
AdjoinRoot
instCommRing
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
of
Ideal.instAlgebraQuotient
Polynomial.algebraOfAlgebra
Algebra.id
instAlgebra
AlgEquiv.instFunLike
AlgEquiv.symm
quotEquivQuotMap
Polynomial.ring
Ideal.Quotient.instRingQuotient
β€”Ideal.instIsTwoSided_1
quotEquivQuotMap_symm_apply
quotMapCMapSpanMkEquivQuotMapCQuotMapSpanMk_mk πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
HasQuotient.Quotient
AdjoinRoot
Ideal
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Ring.toSemiring
Polynomial.ring
CommRing.toRing
Ideal.instHasQuotient
Ideal.span
Set
Set.instSingletonSet
Ideal.Quotient.semiring
Polynomial.commRing
Ideal.instHasQuotient_1
Ideal.Quotient.commRing
Ideal.map
RingHom
Semiring.toNonAssocSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
quotMapCMapSpanMkEquivQuotMapCQuotMapSpanMk
instCommRing
DoubleQuot.quotQuotMk
β€”Ideal.instIsTwoSided_1
quotMapCMapSpanMkEquivQuotMapCQuotMapSpanMk_symm_quotQuotMk πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
HasQuotient.Quotient
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal
Polynomial.semiring
Ideal.instHasQuotient_1
Polynomial.commRing
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
Ring.toSemiring
Polynomial.ring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.semiring
Ideal.Quotient.commRing
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
Ideal.span
Set
Set.instSingletonSet
AdjoinRoot
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
quotMapCMapSpanMkEquivQuotMapCQuotMapSpanMk
DoubleQuot.quotQuotMk
Ideal.Quotient.instRingQuotient
instCommRing
β€”Ideal.instIsTwoSided_1
quotMapOfEquivQuotMapCMapSpanMk_mk πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
HasQuotient.Quotient
AdjoinRoot
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
Ideal.instHasQuotient_1
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
of
Polynomial
Ring.toSemiring
Polynomial.ring
CommRing.toRing
Ideal.instHasQuotient
Ideal.span
Set
Set.instSingletonSet
Ideal.Quotient.semiring
Polynomial.commRing
Ideal.Quotient.commRing
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
Polynomial.semiring
Polynomial.C
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
quotMapOfEquivQuotMapCMapSpanMk
Ideal.Quotient.instRingQuotient
β€”Ideal.instIsTwoSided_1
quotMapOfEquivQuotMapCMapSpanMk_symm_mk πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
HasQuotient.Quotient
AdjoinRoot
Ideal
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Ring.toSemiring
Polynomial.ring
CommRing.toRing
Ideal.instHasQuotient
Ideal.span
Set
Set.instSingletonSet
Ideal.Quotient.semiring
Polynomial.commRing
Ideal.instHasQuotient_1
Ideal.Quotient.commRing
Ideal.map
RingHom
Semiring.toNonAssocSemiring
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
instCommRing
of
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
quotMapOfEquivQuotMapCMapSpanMk
Ideal.Quotient.instRingQuotient
β€”Ideal.instIsTwoSided_1
quotMapOfEquivQuotMapCMapSpanMk.eq_1
Ideal.quotEquivOfEq_symm
ringHom_ext πŸ“–β€”RingHom.comp
AdjoinRoot
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
of
DFunLike.coe
RingHom
RingHom.instFunLike
root
β€”β€”Ideal.Quotient.ringHom_ext
Ideal.instIsTwoSided_1
Polynomial.ringHom_ext'
RingHom.ext
ringHom_ext_iff πŸ“–mathematicalβ€”RingHom.comp
AdjoinRoot
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
of
DFunLike.coe
RingHom
RingHom.instFunLike
root
β€”ringHom_ext
root_isInv πŸ“–mathematicalβ€”AdjoinRoot
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.instSub
CommRing.toRing
Polynomial.instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
Polynomial.X
Polynomial.instOne
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
instCommRing
of
root
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”Polynomial.evalβ‚‚_mul
Polynomial.evalβ‚‚_C
Polynomial.evalβ‚‚_X
Polynomial.evalβ‚‚_one
sub_eq_zero
Polynomial.evalβ‚‚_sub
evalβ‚‚_root
smul_mk πŸ“–mathematicalβ€”AdjoinRoot
instSMulAdjoinRoot
DFunLike.coe
RingHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Semiring.toNonAssocSemiring
Polynomial.semiring
instCommRing
RingHom.instFunLike
SMulZeroClass.toSMul
Polynomial.instZero
Polynomial.smulZeroClass
DistribSMul.toSMulZeroClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
β€”β€”
smul_of πŸ“–mathematicalβ€”AdjoinRoot
instSMulAdjoinRoot
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
RingHom.instFunLike
of
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
DistribSMul.toSMulZeroClass
β€”of.eq_1
RingHom.comp_apply
Polynomial.smul_C
span_maximal_of_irreducible πŸ“–mathematicalβ€”Ideal.IsMaximal
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.semiring
Ideal.span
Set
Set.instSingletonSet
β€”PrincipalIdealRing.isMaximal_of_irreducible
EuclideanDomain.to_principal_ideal_domain
Fact.out
symm_mapAlgEquiv πŸ“–mathematicalAssociated
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.map
RingHomClass.toRingHom
AlgEquiv
AlgEquiv.instFunLike
Semiring.toNonAssocSemiring
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instEquivLike
AlgEquiv.instAlgEquivClass
AlgEquiv.symm
AdjoinRoot
instCommRing
instAlgebra
mapAlgEquiv
β€”AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
symm_mapRingEquiv πŸ“–mathematicalAssociated
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.map
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
Semiring.toNonAssocSemiring
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
RingEquiv.symm
AdjoinRoot
instCommRing
mapRingEquiv
β€”RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
toRingHom_liftAlgHom πŸ“–mathematicalPolynomial.evalβ‚‚
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHomClass.toRingHom
AlgHom
AlgHom.funLike
Semiring.toNonAssocSemiring
AlgHomClass.toRingHomClass
AlgHom.algHomClass
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AdjoinRoot
instCommRing
instAlgebra
liftAlgHom
lift
AlgHom.toRingHom
β€”AlgHomClass.toRingHomClass
AlgHom.algHomClass
toRingHom_ofAlgHom πŸ“–mathematicalβ€”RingHomClass.toRingHom
AlgHom
AdjoinRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
instCommRing
instAlgebra
AlgHom.funLike
Semiring.toNonAssocSemiring
AlgHomClass.toRingHomClass
AlgHom.algHomClass
ofAlgHom
of
β€”AlgHomClass.toRingHomClass
AlgHom.algHomClass

AdjoinRoot.Minpoly

Definitions

NameCategoryTheorems
toAdjoin πŸ“–CompOp
8 mathmath: minpoly.ToAdjoin.injective, AlgEquiv.coe_adjoinSingletonEquivAdjoinRootMinpoly_symm, AlgEquiv.adjoinSingletonEquivAdjoinRootMinpoly_symm_toAlgHom, toAdjoin.surjective, coe_toAdjoin, coe_toAdjoin_mk_X, minpoly.equivAdjoin_toAlgHom, minpoly.coe_equivAdjoin

Theorems

NameKindAssumesProvesValidatesDepends On
coe_toAdjoin πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
AdjoinRoot
minpoly
CommRing.toRing
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set
Set.instSingletonSet
AdjoinRoot.instCommRing
Subalgebra.toSemiring
AdjoinRoot.instAlgebra
Algebra.id
Subalgebra.algebra
AlgHom.funLike
toAdjoin
Polynomial.instCommRingAdjoinSingleton
AdjoinRoot.liftAlgHom
Algebra.ofId
Algebra.self_mem_adjoin_singleton
β€”β€”
coe_toAdjoin_mk_X πŸ“–mathematicalβ€”Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set
Set.instSingletonSet
DFunLike.coe
AlgHom
AdjoinRoot
minpoly
CommRing.toRing
AdjoinRoot.instCommRing
Subalgebra.toSemiring
AdjoinRoot.instAlgebra
Algebra.id
Subalgebra.algebra
AlgHom.funLike
toAdjoin
RingHom
Polynomial
Semiring.toNonAssocSemiring
Polynomial.semiring
RingHom.instFunLike
Polynomial.X
β€”Algebra.self_mem_adjoin_singleton
AdjoinRoot.liftAlgHom_root

AdjoinRoot.Minpoly.toAdjoin

Theorems

NameKindAssumesProvesValidatesDepends On
surjective πŸ“–mathematicalβ€”AdjoinRoot
minpoly
CommRing.toRing
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set
Set.instSingletonSet
DFunLike.coe
AlgHom
AdjoinRoot.instCommRing
Subalgebra.toSemiring
AdjoinRoot.instAlgebra
Algebra.id
Subalgebra.algebra
AlgHom.funLike
AdjoinRoot.Minpoly.toAdjoin
β€”AlgHom.range_eq_top
eq_top_iff
Algebra.adjoin_adjoin_coe_preimage
Algebra.adjoin_le
Algebra.self_mem_adjoin_singleton
AdjoinRoot.liftAlgHom_root

AdjoinRoot.Polynomial

Definitions

NameCategoryTheorems
quotQuotEquivComm πŸ“–CompOp
2 mathmath: quotQuotEquivComm_mk, quotQuotEquivComm_symm_mk_mk

Theorems

NameKindAssumesProvesValidatesDepends On
quotQuotEquivComm_mk πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
HasQuotient.Quotient
Polynomial
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Ideal.Quotient.semiring
Polynomial.semiring
Polynomial.commRing
Ideal.Quotient.commRing
Ideal.span
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
Set
Set.instSingletonSet
Polynomial.map
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
Polynomial.ring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
quotQuotEquivComm
Ideal.Quotient.instRingQuotient
β€”Ideal.instIsTwoSided_1
quotQuotEquivComm_symm_mk_mk πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
HasQuotient.Quotient
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal
Polynomial.semiring
Ideal.instHasQuotient_1
Polynomial.commRing
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
Ideal.Quotient.semiring
Ideal.Quotient.commRing
Ideal.span
Ring.toSemiring
CommRing.toRing
Polynomial.ring
Ideal.instHasQuotient
Set
Set.instSingletonSet
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
Polynomial.map
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
quotQuotEquivComm
Ideal.Quotient.instRingQuotient
β€”Ideal.instIsTwoSided_1

AdjoinRoot.of

Theorems

NameKindAssumesProvesValidatesDepends On
injective_of_degree_ne_zero πŸ“–mathematicalβ€”AdjoinRoot
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
AdjoinRoot.instCommRing
RingHom.instFunLike
AdjoinRoot.of
β€”injective_iff_map_eq_zero
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
Polynomial.C_eq_zero
eq_zero_of_zero_dvd
AdjoinRoot.mk_eq_zero
RingHom.comp_apply
eq_1
Mathlib.Tactic.Contrapose.contraposeβ‚‚
Polynomial.degree_C
le_antisymm
Polynomial.degree_le_of_dvd
IsDomain.to_noZeroDivisors
Polynomial.zero_le_degree_iff

Irreducible

Theorems

NameKindAssumesProvesValidatesDepends On
exists_dvd_monic_irreducible_of_isIntegral πŸ“–mathematicalIrreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Polynomial.map
algebraMap
β€”ne_zero
isIntegral_trans
AdjoinRoot.instIsScalarTower
IsScalarTower.right
AdjoinRoot.isIntegral_root
minpoly.dvd_map_of_isScalarTower
AdjoinRoot.minpoly_root
minpoly.monic
minpoly.irreducible
instIsDomain
dvd_of_mul_right_dvd

Polynomial.Monic

Theorems

NameKindAssumesProvesValidatesDepends On
exists_splits_map πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.Splits
Polynomial.map
algebraMap
β€”Nat.strong_induction_on
Module.Finite.self
Module.Free.self
Polynomial.map_one
eq_one_of_isUnit
Polynomial.eval_map_algebraMap
AdjoinRoot.aeval_eq
AdjoinRoot.mk_self
of_mul_monic_left
Polynomial.monic_X_sub_C
map
free_adjoinRoot
finite_adjoinRoot
Ideal.Quotient.nontrivial_iff
natDegree_map
natDegree_mul
Polynomial.natDegree_sub_C
Polynomial.natDegree_X
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.instZeroLEOneClass
IsScalarTower.right
IsScalarTower.of_algebraMap_eq'
Module.Finite.trans
Module.Free.trans
IsScalarTower.algebraMap_eq
Polynomial.map_map
Polynomial.map_mul
Polynomial.Splits.mul
Polynomial.map_sub
Polynomial.map_X
Polynomial.map_C
finite_adjoinRoot πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.Finite
AdjoinRoot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AdjoinRoot.instCommRing
Algebra.toModule
AdjoinRoot.instAlgebra
Algebra.id
β€”Module.Finite.of_basis
Finite.of_fintype
finite_quotient πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.Finite
HasQuotient.Quotient
Polynomial
Ideal
Polynomial.semiring
Ideal.instHasQuotient_1
Polynomial.commRing
Ideal.span
Set
Set.instSingletonSet
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Ideal.Quotient.commRing
Submodule.Quotient.module'
Polynomial.ring
CommRing.toRing
Ring.toAddCommGroup
Semiring.toModule
Algebra.toSMul
Polynomial.algebraOfAlgebra
Algebra.id
Polynomial.module
IsScalarTower.right
β€”finite_adjoinRoot
free_adjoinRoot πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.Free
AdjoinRoot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AdjoinRoot.instCommRing
Algebra.toModule
AdjoinRoot.instAlgebra
Algebra.id
β€”Module.Free.of_basis
free_quotient πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.Free
HasQuotient.Quotient
Polynomial
Ideal
Polynomial.semiring
Ideal.instHasQuotient_1
Polynomial.commRing
Ideal.span
Set
Set.instSingletonSet
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Ideal.Quotient.commRing
Submodule.Quotient.module'
Polynomial.ring
CommRing.toRing
Ring.toAddCommGroup
Semiring.toModule
Algebra.toSMul
Polynomial.algebraOfAlgebra
Algebra.id
Polynomial.module
IsScalarTower.right
β€”free_adjoinRoot

PowerBasis

Definitions

NameCategoryTheorems
quotientEquivQuotientMinpolyMap πŸ“–CompOp
4 mathmath: quotientEquivQuotientMinpolyMap_apply, quotientEquivQuotientMinpolyMap_apply_mk, quotientEquivQuotientMinpolyMap_symm_apply_mk, quotientEquivQuotientMinpolyMap_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
quotientEquivQuotientMinpolyMap_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
Polynomial
Ideal.Quotient.semiring
Polynomial.semiring
Polynomial.commRing
Ideal.Quotient.commRing
Ideal.span
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
Set
Set.instSingletonSet
Polynomial.map
minpoly
gen
Ideal.instAlgebraQuotient
Polynomial.algebraOfAlgebra
Algebra.id
AlgEquiv.instFunLike
quotientEquivQuotientMinpolyMap
RingEquiv
AdjoinRoot
AdjoinRoot.instCommRing
AdjoinRoot.of
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
AdjoinRoot.quotAdjoinRootEquivQuotPolynomialQuot
Ideal.quotientMap
RingHomClass.toRingHom
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
RingEquiv.symm
RingEquivClass.toRingEquiv
AdjoinRoot.instAlgebra
AlgEquiv.instEquivLike
AlgEquivClass.toRingEquivClass
AlgEquiv.instAlgEquivClass
AdjoinRoot.equiv'
β€”Ideal.instIsTwoSided_1
quotientEquivQuotientMinpolyMap_apply_mk πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
HasQuotient.Quotient
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
Polynomial
Ideal.Quotient.semiring
Polynomial.semiring
Polynomial.commRing
Ideal.Quotient.commRing
Ideal.span
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
Set
Set.instSingletonSet
Polynomial.map
minpoly
gen
Ideal.instAlgebraQuotient
Polynomial.algebraOfAlgebra
Algebra.id
AlgEquiv.instFunLike
quotientEquivQuotientMinpolyMap
AlgHom
AlgHom.funLike
Polynomial.aeval
Polynomial.ring
Ideal.Quotient.instRingQuotient
β€”Ideal.instIsTwoSided_1
quotientEquivQuotientMinpolyMap.eq_1
AlgEquiv.trans_apply
AlgEquiv.ofRingEquiv_apply
AlgEquiv.coe_ringEquiv'
AdjoinRoot.equiv'_symm_apply
lift_aeval
AdjoinRoot.aeval_eq
quotientEquivQuotientMinpolyMap_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
HasQuotient.Quotient
Polynomial
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Ideal.Quotient.semiring
Polynomial.semiring
Polynomial.commRing
Ideal.Quotient.commRing
Ideal.span
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
Set
Set.instSingletonSet
Polynomial.map
minpoly
gen
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
Ideal.instAlgebraQuotient
Polynomial.algebraOfAlgebra
Algebra.id
AlgEquiv.instFunLike
AlgEquiv.symm
quotientEquivQuotientMinpolyMap
MulEquiv
AdjoinRoot
AdjoinRoot.instCommRing
AdjoinRoot.of
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
MulEquivClass.toMulEquiv
RingEquiv
Distrib.toAdd
RingEquiv.instEquivLike
RingEquivClass.toMulEquivClass
RingEquiv.instRingEquivClass
RingEquivClass.toRingEquiv
AdjoinRoot.instAlgebra
AlgEquiv.instEquivLike
AlgEquivClass.toRingEquivClass
AlgEquiv.instAlgEquivClass
AlgEquiv.ofRingEquiv
Ideal.quotientEquiv
RingEquiv.symm
AdjoinRoot.equiv'
AdjoinRoot.quotEquivQuotMap
β€”Ideal.instIsTwoSided_1
quotientEquivQuotientMinpolyMap_symm_apply_mk πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
HasQuotient.Quotient
Polynomial
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.instHasQuotient_1
Ideal.Quotient.semiring
Polynomial.semiring
Polynomial.commRing
Ideal.Quotient.commRing
Ideal.span
Ring.toSemiring
CommRing.toRing
Ideal.instHasQuotient
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
Set
Set.instSingletonSet
Polynomial.map
minpoly
gen
Ideal.map
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
Ideal.instAlgebraQuotient
Polynomial.algebraOfAlgebra
Algebra.id
AlgEquiv.instFunLike
AlgEquiv.symm
quotientEquivQuotientMinpolyMap
Polynomial.ring
Ideal.Quotient.instRingQuotient
AlgHom
AlgHom.funLike
Polynomial.aeval
β€”Ideal.instIsTwoSided_1
AlgEquivClass.toRingEquivClass
AlgEquiv.instAlgEquivClass
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
RingHom.instRingHomClass

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
finrank_quotient_span_eq_natDegree πŸ“–mathematicalβ€”Module.finrank
HasQuotient.Quotient
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Ideal
Polynomial.semiring
Ideal.instHasQuotient_1
Polynomial.commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Ideal.span
Set
Set.instSingletonSet
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Ideal.Quotient.commRing
Submodule.Quotient.module'
Polynomial.ring
DivisionRing.toRing
Field.toDivisionRing
Ring.toAddCommGroup
Semiring.toModule
Algebra.toSMul
Semifield.toCommSemiring
Polynomial.algebraOfAlgebra
Algebra.id
Polynomial.module
IsScalarTower.right
Polynomial.natDegree
β€”IsScalarTower.right
Polynomial.natDegree_zero
LinearEquiv.finrank_eq
LinearMap.IsScalarTower.compatibleSMul
Ideal.Quotient.isScalarTower
Ideal.span_singleton_zero
Module.finrank_of_not_finite
IsNoetherianRing.strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
Polynomial.instFree
Polynomial.not_finite
PowerBasis.finrank
AdjoinRoot.powerBasis_dim

---

← Back to Index