📁 Source: Mathlib/RingTheory/Adjoin/Dimension.lean
finrank_sup_le_of_free
rank_sup_le_of_free
Module.finrank
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Algebra.instCompleteLatticeSubalgebra
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
toCommRing
instModuleSubtypeMem
map_mul
MonoidHomClass.toMulHomClass
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
Cardinal.toNat_le_toNat
Cardinal.mul_lt_aleph0
Module.rank_lt_aleph0
LinearMap.rank_le_of_injective
Submodule.inclusion_injective
Cardinal.toNat_apply_of_aleph0_le
not_lt
Module.rank_lt_aleph0_iff
LE.le.trans
MulZeroClass.zero_mul
le_refl
of_not_not
mul_comm
sup_comm
Cardinal
Cardinal.instLE
Module.rank
Cardinal.instMul
Module.Free.exists_basis
IsScalarTower.right
Algebra.adjoin_union_coe_submodule
Submodule.span_mul_span
Algebra.sup_def
adjoin_eq_span_basis
IsScalarTower.left
Module.Basis.mk_eq_rank''
rank_span_le
Cardinal.mk_mul_le
mul_le_mul'
CanonicallyOrderedAdd.toMulLeftMono
Cardinal.canonicallyOrderedAdd
covariant_swap_mul_of_covariant_mul
Cardinal.mk_range_le
---
← Back to Index