Documentation Verification Report

Polynomial

📁 Source: Mathlib/RingTheory/Adjoin/Polynomial.lean

Statistics

MetricCount
DefinitionsinstCommRingAdjoinSingleton, instCommSemiringAdjoinSingleton
2
Theoremsadjoin_eq_exists_aeval, adjoin_mem_exists_aeval, adjoin_singleton_eq_range_aeval, adjoin_singleton_induction, adjoin_X, aeval_mem_adjoin_singleton
6
Total8

Algebra

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_eq_exists_aeval 📖mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Polynomial.semiring
Polynomial.algebraOfAlgebra
id
AlgHom.funLike
Polynomial.aeval
Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
adjoin
Set
Set.instSingletonSet
adjoin_singleton_eq_range_aeval
adjoin_mem_exists_aeval 📖mathematicalSubalgebra
SetLike.instMembership
Subalgebra.instSetLike
adjoin
Set
Set.instSingletonSet
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Polynomial.semiring
Polynomial.algebraOfAlgebra
id
AlgHom.funLike
Polynomial.aeval
adjoin_singleton_eq_range_aeval
adjoin_singleton_eq_range_aeval 📖mathematicaladjoin
Set
Set.instSingletonSet
AlgHom.range
Polynomial
CommSemiring.toSemiring
Polynomial.semiring
Polynomial.algebraOfAlgebra
id
Polynomial.aeval
map_top
Polynomial.adjoin_X
AlgHom.map_adjoin
Set.image_singleton
Polynomial.aeval_X
adjoin_singleton_induction 📖Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
adjoin
Set
Set.instSingletonSet
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Polynomial.semiring
Polynomial.algebraOfAlgebra
id
AlgHom.funLike
Polynomial.aeval
Polynomial.aeval_mem_adjoin_singleton
Polynomial.aeval_mem_adjoin_singleton
adjoin_eq_exists_aeval

Polynomial

Definitions

NameCategoryTheorems
instCommRingAdjoinSingleton 📖CompOp
9 mathmath: Algebra.IsUnramifiedAt.exists_primesOver_under_adjoin_eq_singleton_and_residueField_bijective, Algebra.finite_adjoin_simple_of_isIntegral, IsPrimitiveRoot.adjoinEquivRingOfIntegersOfPrimePow_apply, IsPrimitiveRoot.adjoinEquivRingOfIntegers_symm_apply, IsPrimitiveRoot.adjoinEquivRingOfIntegers_apply, AdjoinRoot.Minpoly.coe_toAdjoin, quotAdjoinEquivQuotMap_apply_mk, IsPrimitiveRoot.adjoinEquivRingOfIntegersOfPrimePow_symm_apply, IsPrimitiveRoot.adjoin_isCyclotomicExtension
instCommSemiringAdjoinSingleton 📖CompOp
7 mathmath: Algebra.IsUnramifiedAt.exists_primesOver_under_adjoin_eq_singleton_and_residueField_bijective, IsCyclotomicExtension.Rat.isIntegralClosure_adjoin_singleton_of_prime_pow, prod_mem_ideal_map_of_mem_conductor, IsCyclotomicExtension.Rat.isIntegralClosure_adjoin_singleton_of_prime, Algebra.instIsScalarTowerSubtypeMemSubalgebraAdjoinSingletonSetCoeRingHomAlgebraMap, IntermediateField.instIsScalarTowerSubtypeMemSubalgebraAdjoinSingletonSetAdjoinCoeRingHomAlgebraMap, IsCyclotomicExtension.Rat.isIntegralClosure_adjoin_singleton

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_X 📖mathematicalAlgebra.adjoin
Polynomial
CommSemiring.toSemiring
semiring
algebraOfAlgebra
Algebra.id
Set
Set.instSingletonSet
X
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
top_unique
sum_monomial_eq
Subalgebra.sum_mem
Subalgebra.smul_mem
Subalgebra.pow_mem
Algebra.subset_adjoin
aeval_mem_adjoin_singleton 📖mathematicalSubalgebra
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set
Set.instSingletonSet
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
aeval
Algebra.adjoin_singleton_eq_range_aeval

---

← Back to Index