📁 Source: Mathlib/RingTheory/Adjoin/Polynomial.lean
instCommRingAdjoinSingleton
instCommSemiringAdjoinSingleton
adjoin_eq_exists_aeval
adjoin_mem_exists_aeval
adjoin_singleton_eq_range_aeval
adjoin_singleton_induction
adjoin_X
aeval_mem_adjoin_singleton
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Polynomial.semiring
Polynomial.algebraOfAlgebra
id
AlgHom.funLike
Polynomial.aeval
Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
adjoin
Set
Set.instSingletonSet
AlgHom.range
map_top
Polynomial.adjoin_X
AlgHom.map_adjoin
Set.image_singleton
Polynomial.aeval_X
Polynomial.aeval_mem_adjoin_singleton
Algebra.IsUnramifiedAt.exists_primesOver_under_adjoin_eq_singleton_and_residueField_bijective
Algebra.finite_adjoin_simple_of_isIntegral
IsPrimitiveRoot.adjoinEquivRingOfIntegersOfPrimePow_apply
IsPrimitiveRoot.adjoinEquivRingOfIntegers_symm_apply
IsPrimitiveRoot.adjoinEquivRingOfIntegers_apply
AdjoinRoot.Minpoly.coe_toAdjoin
quotAdjoinEquivQuotMap_apply_mk
IsPrimitiveRoot.adjoinEquivRingOfIntegersOfPrimePow_symm_apply
IsPrimitiveRoot.adjoin_isCyclotomicExtension
IsCyclotomicExtension.Rat.isIntegralClosure_adjoin_singleton_of_prime_pow
prod_mem_ideal_map_of_mem_conductor
IsCyclotomicExtension.Rat.isIntegralClosure_adjoin_singleton_of_prime
Algebra.instIsScalarTowerSubtypeMemSubalgebraAdjoinSingletonSetCoeRingHomAlgebraMap
IntermediateField.instIsScalarTowerSubtypeMemSubalgebraAdjoinSingletonSetAdjoinCoeRingHomAlgebraMap
IsCyclotomicExtension.Rat.isIntegralClosure_adjoin_singleton
Algebra.adjoin
semiring
algebraOfAlgebra
Algebra.id
X
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
top_unique
sum_monomial_eq
Subalgebra.sum_mem
Subalgebra.smul_mem
Subalgebra.pow_mem
Algebra.subset_adjoin
aeval
Algebra.adjoin_singleton_eq_range_aeval
---
← Back to Index