📁 Source: Mathlib/RingTheory/Adjoin/Tower.lean
adjoin_res_eq_adjoin_res
adjoin_restrictScalars
fg_trans'
exists_subalgebra_of_fg
fg_of_fg_of_fg
adjoin
CommSemiring.toSemiring
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Subalgebra.restrictScalars
Set.image
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
IsScalarTower.subalgebra'
IsScalarTower.right
adjoin_image
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.coe_toRingHom
IsScalarTower.coe_toAlgHom
adjoin_union_eq_adjoin_adjoin
Set.union_comm
SetLike.instMembership
Subalgebra.instSetLike
Subalgebra.map
IsScalarTower.toAlgHom
Subalgebra.toCommSemiring
Subalgebra.algebra
Subalgebra.toAlgebra
id
Set.ext
mem_top
Subalgebra.ext
Subalgebra.FG
Finset.coe_union
Finset.coe_image
adjoin_algebraMap_image_union_eq_adjoin_adjoin
IsScalarTower.subalgebra
adjoin_top
Subalgebra.restrictScalars_top
Algebra.instCompleteLatticeSubalgebra
Submodule.FG
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
Submodule
Submodule.instTop
Subalgebra.toSemiring
Subalgebra.moduleLeft
sum_mem
Submodule.addSubmonoidClass
Submodule.smul_mem
Algebra.subset_adjoin
Finset.mem_image₂_of_mem
Finset.mem_union_left
Submodule.subset_span
Finset.mem_insert_of_mem
Submodule.span_mul_span
Submodule.span_le
Finset.coe_insert
mul_one
Set.mem_insert
one_mul
Set.mem_insert_of_mem
SetLike.mem_coe
Finset.mem_union_right
Finset.mul_mem_mul
Subalgebra.fg_adjoin_finset
Submodule.restrictScalars_injective
Submodule.restrictScalars_top
eq_top_iff
Algebra.top_toSubmodule
Algebra.adjoin_eq_span
Submonoid.closure_induction
Finset.mem_insert_self
Submodule.mul_mem_mul
CommRing.toCommSemiring
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.fg_trans'
Subalgebra.fg_top
Subalgebra.fg_of_submodule_fg
isNoetherianRing_of_fg
fg_of_injective
isNoetherian_of_isNoetherianRing_of_finite
---
← Back to Index