Basic
π Source: Mathlib/RingTheory/AlgebraicIndependent/Basic.lean
Statistics
AlgEquiv
Theorems
AlgHom
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
algebraicIndependent_iff π | mathematical | DFunLike.coeAlgHomCommRing.toCommSemiringCommSemiring.toSemiringfunLike | AlgebraicIndependent | β | AlgebraicIndependent.of_compAlgebraicIndependent.mapFunction.Injective.injOn |
Algebra
Definitions
AlgebraicIndependent
Definitions
| Name | Category | Theorems |
|---|---|---|
mvPolynomialOptionEquivPolynomialAdjoin π | CompOp |
Theorems
IsTranscendenceBasis
Theorems
MvPolynomial
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
algebraicIndependent_X π | mathematical | β | AlgebraicIndependentMvPolynomialCommRing.toCommSemiringXinstCommRingMvPolynomialalgebraAlgebra.id | β | AlgebraicIndependent.eq_1aeval_X_left |
(root)
Theorems
---