Documentation Verification Report

Basic

πŸ“ Source: Mathlib/RingTheory/AlgebraicIndependent/Basic.lean

Statistics

MetricCount
Definitionstrdeg, mvPolynomialOptionEquivPolynomialAdjoin
2
TheoremsisTranscendenceBasis, isTranscendenceBasis_iff, lift_trdeg_eq, trdeg_eq, algebraicIndependent_iff, aeval_comp_mvPolynomialOptionEquivPolynomialAdjoin, aeval_of_algebraicIndependent, algebraMap_injective, cardinalMk_le_trdeg, image, image_of_comp, injective, lift_cardinalMk_le_trdeg, linearIndependent, map, map', mvPolynomialOptionEquivPolynomialAdjoin_C, mvPolynomialOptionEquivPolynomialAdjoin_C', mvPolynomialOptionEquivPolynomialAdjoin_X_none, mvPolynomialOptionEquivPolynomialAdjoin_X_some, mvPolynomialOptionEquivPolynomialAdjoin_apply, ne_zero, of_aeval, of_ringHom_of_comp_eq, of_subsingleton, repr_ker, restrictScalars, restrict_of_comp_subtype, ringHom_of_comp_eq, to_subtype_range, to_subtype_range', of_comp, of_comp_algebraMap, of_subsingleton, to_subtype_range, to_subtype_range', algebraicIndependent_X, algebraicIndependent_adjoin, algebraicIndependent_bounded_of_finset_algebraicIndependent_bounded, algebraicIndependent_comp_subtype, algebraicIndependent_empty, algebraicIndependent_empty_iff, algebraicIndependent_empty_type, algebraicIndependent_empty_type_iff, algebraicIndependent_finset_map_embedding_subtype, algebraicIndependent_iUnion_of_directed, algebraicIndependent_iff_ker_eq_bot, algebraicIndependent_of_finite, algebraicIndependent_of_finite_type, algebraicIndependent_ringHom_iff_of_comp_eq, algebraicIndependent_sUnion_of_directed, algebraicIndependent_subtype, exists_maximal_algebraicIndependent, instNonemptySubtypeSetAlgebraicIndepOnIdOfFaithfulSMul, isEmpty_algebraicIndependent, isTranscendenceBasis_iff_of_subsingleton, lift_trdeg_le_of_injective, lift_trdeg_le_of_surjective, trdeg_eq_zero_of_not_injective, trdeg_le_of_injective, trdeg_le_of_surjective, trdeg_subsingleton
62
Total64

AlgEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
isTranscendenceBasis πŸ“–mathematicalIsTranscendenceBasisDFunLike.coe
AlgEquiv
CommRing.toCommSemiring
CommSemiring.toSemiring
instFunLike
β€”IsTranscendenceBasis.of_comp
injective
symm_apply_apply
isTranscendenceBasis_iff πŸ“–mathematicalβ€”IsTranscendenceBasis
DFunLike.coe
AlgEquiv
CommRing.toCommSemiring
CommSemiring.toSemiring
instFunLike
β€”symm_apply_apply
isTranscendenceBasis
lift_trdeg_eq πŸ“–mathematicalβ€”Cardinal.lift
Algebra.trdeg
β€”LE.le.antisymm
lift_trdeg_le_of_injective
injective
lift_trdeg_le_of_surjective
surjective
trdeg_eq πŸ“–mathematicalβ€”Algebra.trdegβ€”Cardinal.lift_id
lift_trdeg_eq

AlgHom

Theorems

NameKindAssumesProvesValidatesDepends On
algebraicIndependent_iff πŸ“–mathematicalDFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
funLike
AlgebraicIndependentβ€”AlgebraicIndependent.of_comp
AlgebraicIndependent.map
Function.Injective.injOn

Algebra

Definitions

NameCategoryTheorems
trdeg πŸ“–CompOp
25 mathmath: trdeg_eq_zero_of_not_injective, IsAlgebraic.trdeg_le_cardinalMk, trdeg_lt_aleph0, trdeg_eq_zero, lift_trdeg_le_of_injective, AlgebraicIndependent.matroid_cRank_eq, AlgEquiv.trdeg_eq, IsTranscendenceBasis.lift_cardinalMk_eq_trdeg, trdeg_add_eq, lift_trdeg_le_of_surjective, trdeg_add_le, trdeg_eq_iSup_cardinalMk_isTranscendenceBasis, AlgebraicIndependent.cardinalMk_le_trdeg, trdeg_pos, IsTranscendenceBasis.cardinalMk_eq_trdeg, lift_trdeg_add_eq, trdeg_subsingleton, trdeg_le_of_surjective, AlgebraicIndependent.lift_cardinalMk_le_trdeg, AlgEquiv.lift_trdeg_eq, lift_trdeg_add_le, MvPolynomial.trdeg_of_isDomain, trdeg_eq_zero_iff, trdeg_le_of_injective, Polynomial.trdeg_of_isDomain

AlgebraicIndependent

Definitions

NameCategoryTheorems
mvPolynomialOptionEquivPolynomialAdjoin πŸ“–CompOp
5 mathmath: mvPolynomialOptionEquivPolynomialAdjoin_C, aeval_comp_mvPolynomialOptionEquivPolynomialAdjoin, mvPolynomialOptionEquivPolynomialAdjoin_X_some, mvPolynomialOptionEquivPolynomialAdjoin_X_none, mvPolynomialOptionEquivPolynomialAdjoin_apply

Theorems

NameKindAssumesProvesValidatesDepends On
aeval_comp_mvPolynomialOptionEquivPolynomialAdjoin πŸ“–mathematicalAlgebraicIndependentRingHom.comp
MvPolynomial
CommRing.toCommSemiring
Polynomial
Subalgebra
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set.range
Subalgebra.toSemiring
Semiring.toNonAssocSemiring
MvPolynomial.commSemiring
Polynomial.semiring
RingHomClass.toRingHom
AlgHom
Subalgebra.toCommSemiring
Polynomial.algebraOfAlgebra
Algebra.id
Subalgebra.toAlgebra
AlgHom.funLike
AlgHomClass.toRingHomClass
AlgHom.algHomClass
Polynomial.aeval
RingEquiv.toRingHom
mvPolynomialOptionEquivPolynomialAdjoin
MvPolynomial.algebra
MvPolynomial.aeval
β€”MvPolynomial.ringHom_ext
AlgHomClass.toRingHomClass
AlgHom.algHomClass
mvPolynomialOptionEquivPolynomialAdjoin_C
MvPolynomial.aeval_C
Polynomial.aeval_C
IsScalarTower.algebraMap_apply
IsScalarTower.subalgebra'
IsScalarTower.right
mvPolynomialOptionEquivPolynomialAdjoin_X_none
MvPolynomial.aeval_X
Polynomial.aeval_X
mvPolynomialOptionEquivPolynomialAdjoin_X_some
algebraMap_aevalEquiv
aeval_of_algebraicIndependent πŸ“–mathematicalAlgebraicIndependent
MvPolynomial
CommRing.toCommSemiring
MvPolynomial.instCommRingMvPolynomial
MvPolynomial.algebra
Algebra.id
DFunLike.coe
AlgHom
CommSemiring.toSemiring
MvPolynomial.commSemiring
AlgHom.funLike
MvPolynomial.aeval
β€”algebraicIndependent_iff
AlgHom.comp_apply
MvPolynomial.aeval_comp_bind₁
algebraMap_injective πŸ“–mathematicalAlgebraicIndependentDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
β€”MvPolynomial.algHom_C
Function.Injective.of_comp_iff
algebraicIndependent_iff_injective_aeval
MvPolynomial.C_injective
cardinalMk_le_trdeg πŸ“–mathematicalAlgebraicIndependentCardinal
Cardinal.instLE
Algebra.trdeg
β€”Cardinal.lift_id
lift_cardinalMk_le_trdeg
image πŸ“–mathematicalAlgebraicIndependent
Set.Elem
Set
Set.instMembership
Set.imageβ€”image_of_comp
image_of_comp πŸ“–mathematicalAlgebraicIndependent
Set.Elem
Set
Set.instMembership
Set.imageβ€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Set.injOn_iff_injective
Function.Injective.of_comp
injective
algebraicIndependent_equiv'
injective πŸ“–β€”AlgebraicIndependentβ€”β€”LinearIndependent.injective
linearIndependent
lift_cardinalMk_le_trdeg πŸ“–mathematicalAlgebraicIndependentCardinal
Cardinal.instLE
Cardinal.lift
Algebra.trdeg
β€”Cardinal.lift_mk_eq'
injective
Cardinal.lift_le
le_ciSup_of_le
Cardinal.bddAbove_range
small_subtype
small_set
UnivLE.small
UnivLE.self
to_subtype_range
le_rfl
linearIndependent πŸ“–mathematicalAlgebraicIndependentLinearIndependent
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
β€”linearIndependent_iff_injective_finsuppLinearCombination
RingHomCompTriple.ids
Finsupp.lhom_ext'
LinearMap.ext_ring
Finsupp.linearCombination_single
one_smul
MvPolynomial.aeval_X
algebraicIndependent_iff_injective_aeval
MvPolynomial.linearIndependent_X
map πŸ“–β€”AlgebraicIndependent
Set.InjOn
DFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHom.funLike
SetLike.coe
Subalgebra
Subalgebra.instSetLike
Algebra.adjoin
Set.range
β€”β€”MvPolynomial.algHom_ext
MvPolynomial.aeval_X
AlgHom.mem_range
Set.mem_range_self
MvPolynomial.aeval_rename
Algebra.adjoin_eq_range
map' πŸ“–β€”AlgebraicIndependent
DFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHom.funLike
β€”β€”map
Function.Injective.injOn
mvPolynomialOptionEquivPolynomialAdjoin_C πŸ“–mathematicalAlgebraicIndependentDFunLike.coe
RingEquiv
MvPolynomial
CommRing.toCommSemiring
Polynomial
Subalgebra
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set.range
Subalgebra.toSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MvPolynomial.instCommRingMvPolynomial
Polynomial.instMul
Distrib.toAdd
Polynomial.instAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
mvPolynomialOptionEquivPolynomialAdjoin
RingHom
Semiring.toNonAssocSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
MvPolynomial.C
Polynomial.semiring
Polynomial.C
algebraMap
Subalgebra.algebra
β€”AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
MvPolynomial.algHom_C
Polynomial.map_C
mvPolynomialOptionEquivPolynomialAdjoin_C'
mvPolynomialOptionEquivPolynomialAdjoin_C' πŸ“–mathematicalAlgebraicIndependentDFunLike.coe
RingHom
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set.range
Polynomial
Subalgebra.toSemiring
Semiring.toNonAssocSemiring
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
AlgEquiv
MvPolynomial
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
Subalgebra.algebra
AlgEquiv.instFunLike
aevalEquiv
MvPolynomial.C
algebraMap
β€”Subtype.val_injective
MvPolynomial.algHom_C
mvPolynomialOptionEquivPolynomialAdjoin_X_none πŸ“–mathematicalAlgebraicIndependentDFunLike.coe
RingEquiv
MvPolynomial
CommRing.toCommSemiring
Polynomial
Subalgebra
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set.range
Subalgebra.toSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MvPolynomial.instCommRingMvPolynomial
Polynomial.instMul
Distrib.toAdd
Polynomial.instAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
mvPolynomialOptionEquivPolynomialAdjoin
MvPolynomial.X
Polynomial.X
β€”AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
mvPolynomialOptionEquivPolynomialAdjoin_apply
MvPolynomial.aeval_X
Polynomial.map_X
mvPolynomialOptionEquivPolynomialAdjoin_X_some πŸ“–mathematicalAlgebraicIndependentDFunLike.coe
RingEquiv
MvPolynomial
CommRing.toCommSemiring
Polynomial
Subalgebra
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set.range
Subalgebra.toSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MvPolynomial.instCommRingMvPolynomial
Polynomial.instMul
Distrib.toAdd
Polynomial.instAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
mvPolynomialOptionEquivPolynomialAdjoin
MvPolynomial.X
RingHom
Semiring.toNonAssocSemiring
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
AlgEquiv
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
Subalgebra.algebra
AlgEquiv.instFunLike
aevalEquiv
β€”AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
mvPolynomialOptionEquivPolynomialAdjoin_apply
MvPolynomial.aeval_X
Polynomial.map_C
RingHom.coe_coe
mvPolynomialOptionEquivPolynomialAdjoin_apply πŸ“–mathematicalAlgebraicIndependentDFunLike.coe
RingEquiv
MvPolynomial
CommRing.toCommSemiring
Polynomial
Subalgebra
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set.range
Subalgebra.toSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MvPolynomial.instCommRingMvPolynomial
Polynomial.instMul
Distrib.toAdd
Polynomial.instAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
mvPolynomialOptionEquivPolynomialAdjoin
Polynomial.map
MvPolynomial.commSemiring
RingHomClass.toRingHom
AlgEquiv
MvPolynomial.algebra
Algebra.id
Subalgebra.algebra
AlgEquiv.instFunLike
Semiring.toNonAssocSemiring
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instEquivLike
AlgEquiv.instAlgEquivClass
aevalEquiv
AlgHom
Polynomial.commSemiring
Polynomial.algebraOfAlgebra
AlgHom.funLike
MvPolynomial.aeval
Polynomial.X
RingHom
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
MvPolynomial.X
β€”β€”
ne_zero πŸ“–β€”AlgebraicIndependentβ€”β€”LinearIndependent.ne_zero
linearIndependent
of_aeval πŸ“–mathematicalAlgebraicIndependent
DFunLike.coe
AlgHom
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
MvPolynomial.aeval
MvPolynomial.instCommRingMvPolynomialβ€”algebraicIndependent_iff
MvPolynomial.aeval_comp_bind₁
AlgHom.comp_apply
MvPolynomial.bind₁.eq_1
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
of_ringHom_of_comp_eq πŸ“–β€”AlgebraicIndependent
DFunLike.coe
RingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
algebraMap
RingHomClass.toRingHom
β€”β€”algebraicIndependent_iff
MvPolynomial.aeval_eq_evalβ‚‚Hom
MvPolynomial.evalβ‚‚Hom_map_hom
MvPolynomial.map_aeval
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
MvPolynomial.map_injective
RingHom.instRingHomClass
of_subsingleton πŸ“–mathematicalβ€”AlgebraicIndependentβ€”algebraicIndependent_iff
Unique.instSubsingleton
repr_ker πŸ“–mathematicalAlgebraicIndependentRingHom.ker
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set.range
MvPolynomial
RingHom
Semiring.toNonAssocSemiring
Subalgebra.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
RingHom.instRingHomClass
RingHomClass.toRingHom
AlgHom
Subalgebra.algebra
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
AlgHomClass.toRingHomClass
AlgHom.algHomClass
repr
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
β€”AlgHomClass.toRingHomClass
AlgHom.algHomClass
RingHom.instRingHomClass
RingHom.injective_iff_ker_eq_bot
AlgEquiv.injective
restrictScalars πŸ“–β€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
AlgebraicIndependent
β€”β€”MvPolynomial.ringHom_ext'
RingHom.ext
MvPolynomial.map_C
Algebra.algebraMap_eq_smul_one
MvPolynomial.algHom_C
smul_assoc
one_smul
MvPolynomial.map_X
MvPolynomial.aeval_X
RingHom.coe_comp
MvPolynomial.map_injective
restrict_of_comp_subtype πŸ“–mathematicalAlgebraicIndependent
Set.Elem
Set
Set.instMembership
Set.restrictβ€”β€”
ringHom_of_comp_eq πŸ“–β€”AlgebraicIndependent
DFunLike.coe
RingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
algebraMap
RingHomClass.toRingHom
β€”β€”algebraicIndependent_iff
MvPolynomial.map_surjective
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.coe_coe
MvPolynomial.map_aeval
MvPolynomial.evalβ‚‚Hom_map_hom
MvPolynomial.aeval_eq_evalβ‚‚Hom
RingHom.instRingHomClass
to_subtype_range πŸ“–mathematicalAlgebraicIndependentSet
Set.instMembership
Set.range
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
algebraicIndependent_subtype_range
injective
to_subtype_range' πŸ“–mathematicalAlgebraicIndependent
Set.range
Set
Set.instMembership
β€”to_subtype_range

IsTranscendenceBasis

Theorems

NameKindAssumesProvesValidatesDepends On
of_comp πŸ“–β€”DFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHom.funLike
IsTranscendenceBasis
β€”β€”AlgHom.algebraicIndependent_iff
algebraicIndependent_image
Function.Injective.injOn
Set.range_comp
Set.image_mono
Set.image_injective
of_comp_algebraMap πŸ“–β€”IsTranscendenceBasis
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
β€”β€”of_comp
FaithfulSMul.algebraMap_injective
of_subsingleton πŸ“–mathematicalβ€”IsTranscendenceBasisβ€”isTranscendenceBasis_iff_of_subsingleton
to_subtype_range πŸ“–mathematicalIsTranscendenceBasisSet
Set.instMembership
Set.range
β€”subsingleton_or_nontrivial
isTranscendenceBasis_iff_of_subsingleton
Set.instNonemptyRange
isTranscendenceBasis_subtype_range
AlgebraicIndependent.injective
to_subtype_range' πŸ“–mathematicalIsTranscendenceBasis
Set.range
Set
Set.instMembership
β€”to_subtype_range

MvPolynomial

Theorems

NameKindAssumesProvesValidatesDepends On
algebraicIndependent_X πŸ“–mathematicalβ€”AlgebraicIndependent
MvPolynomial
CommRing.toCommSemiring
X
instCommRingMvPolynomial
algebra
Algebra.id
β€”AlgebraicIndependent.eq_1
aeval_X_left

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
algebraicIndependent_adjoin πŸ“–mathematicalAlgebraicIndependentSubalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set.range
Algebra.subset_adjoin
Set.mem_range_self
Subalgebra.toCommRing
Subalgebra.algebra
β€”AlgebraicIndependent.of_comp
Algebra.subset_adjoin
Set.mem_range_self
algebraicIndependent_bounded_of_finset_algebraicIndependent_bounded πŸ“–mathematicalFinset.card
AlgebraicIndependent
Set
Set.instMembership
Cardinal
Cardinal.instLE
Set.Elem
Cardinal.instNatCast
β€”Cardinal.card_le_of
Finset.card_map
algebraicIndependent_finset_map_embedding_subtype
algebraicIndependent_comp_subtype πŸ“–mathematicalβ€”AlgebraicIndependent
Set.Elem
Set
Set.instMembership
MvPolynomial
CommRing.toCommSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MvPolynomial.instCommRingMvPolynomial
β€”MvPolynomial.algHom_ext
MvPolynomial.aeval_X
MvPolynomial.rename_X
injective_iff_map_eq_zero'
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
MvPolynomial.rename_injective
Subtype.val_injective
MvPolynomial.supported_eq_range_rename
algebraicIndependent_empty πŸ“–mathematicalβ€”AlgebraicIndependent
Set
Set.instMembership
Set.instEmptyCollection
Field.toCommRing
β€”algebraicIndependent_empty_type
Set.instIsEmptyElemEmptyCollection
algebraicIndependent_empty_iff πŸ“–mathematicalβ€”AlgebraicIndependent
Set
Set.instMembership
Set.instEmptyCollection
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
β€”Set.instIsEmptyElemEmptyCollection
algebraicIndependent_empty_type πŸ“–mathematicalβ€”AlgebraicIndependent
Field.toCommRing
β€”algebraicIndependent_empty_type_iff
RingHom.injective
DivisionRing.isSimpleRing
algebraicIndependent_empty_type_iff πŸ“–mathematicalβ€”AlgebraicIndependent
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
β€”algebraicIndependent_iff_injective_aeval
MvPolynomial.aeval_injective_iff_of_isEmpty
algebraicIndependent_finset_map_embedding_subtype πŸ“–mathematicalAlgebraicIndependent
Set
Set.instMembership
Finset
SetLike.instMembership
Finset.instSetLike
Finset.map
Function.Embedding.subtype
β€”Finset.mem_map
AlgebraicIndependent.comp
algebraicIndependent_iUnion_of_directed πŸ“–mathematicalDirected
Set
Set.instHasSubset
AlgebraicIndependent
Set.instMembership
Set.iUnionβ€”algebraicIndependent_of_finite
Set.finite_subset_iUnion
Directed.finset_le
Set.instIsTransSubset
AlgebraicIndependent.mono
Set.Subset.trans
Set.iUnionβ‚‚_subset
Set.Finite.mem_toFinset
algebraicIndependent_iff_ker_eq_bot πŸ“–mathematicalβ€”AlgebraicIndependent
RingHom.ker
MvPolynomial
CommRing.toCommSemiring
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
RingHom.instFunLike
RingHom.instRingHomClass
AlgHom.toRingHom
MvPolynomial.algebra
Algebra.id
MvPolynomial.aeval
Bot.bot
Ideal
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
β€”RingHom.injective_iff_ker_eq_bot
AlgHomClass.toRingHomClass
AlgHom.algHomClass
algebraicIndependent_of_finite πŸ“–β€”AlgebraicIndependent
Set
Set.instMembership
β€”β€”algebraicIndependent_subtype
MvPolynomial.mem_supported
Finset.finite_toSet
algebraicIndependent_of_finite_type πŸ“–β€”AlgebraicIndependent
Set.Elem
Set
Set.instMembership
β€”β€”injective_iff_map_eq_zero
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
algebraicIndependent_comp_subtype
Finset.finite_toSet
MvPolynomial.mem_supported_vars
algebraicIndependent_ringHom_iff_of_comp_eq πŸ“–mathematicalDFunLike.coe
RingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
algebraMap
RingHomClass.toRingHom
EquivLike.toFunLike
RingEquivClass.toRingHomClass
AlgebraicIndependentβ€”RingEquivClass.toRingHomClass
AlgebraicIndependent.of_ringHom_of_comp_eq
EquivLike.injective
AlgebraicIndependent.ringHom_of_comp_eq
EquivLike.surjective
algebraicIndependent_sUnion_of_directed πŸ“–mathematicalSet.Nonempty
Set
DirectedOn
Set.instHasSubset
AlgebraicIndependent
Set.instMembership
Set.sUnionβ€”Set.sUnion_eq_iUnion
algebraicIndependent_iUnion_of_directed
Set.Nonempty.to_subtype
DirectedOn.directed_val
algebraicIndependent_subtype πŸ“–mathematicalβ€”AlgebraicIndependent
Set
Set.instMembership
MvPolynomial
CommRing.toCommSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MvPolynomial.instCommRingMvPolynomial
β€”algebraicIndependent_comp_subtype
exists_maximal_algebraicIndependent πŸ“–mathematicalSet
Set.instHasSubset
AlgebraicIndepOn
Maximal
Set.instLE
β€”zorn_subset_nonempty
algebraicIndependent_sUnion_of_directed
IsChain.directedOn
Set.instReflSubset
Set.subset_sUnion_of_mem
instNonemptySubtypeSetAlgebraicIndepOnIdOfFaithfulSMul πŸ“–mathematicalβ€”Set
AlgebraicIndepOn
β€”algebraicIndependent_empty_type_iff
Set.instIsEmptyElemEmptyCollection
FaithfulSMul.algebraMap_injective
isEmpty_algebraicIndependent πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
IsEmpty
Set
AlgebraicIndepOn
β€”AlgebraicIndependent.algebraMap_injective
isTranscendenceBasis_iff_of_subsingleton πŸ“–mathematicalβ€”IsTranscendenceBasisβ€”Module.subsingleton
AlgebraicIndependent.of_subsingleton
Set.range_eq_empty
instIsEmptyFalse
HasSubset.Subset.antisymm
Set.instAntisymmSubset
lift_trdeg_le_of_injective πŸ“–mathematicalDFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHom.funLike
Cardinal
Cardinal.instLE
Cardinal.lift
Algebra.trdeg
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
trdeg_subsingleton
Cardinal.lift_one
Algebra.trdeg.eq_1
Cardinal.lift_iSup
Cardinal.bddAbove_range
small_subtype
small_set
UnivLE.small
UnivLE.self
ciSup_le'
AlgebraicIndependent.lift_cardinalMk_le_trdeg
AlgebraicIndependent.map'
lift_trdeg_le_of_surjective πŸ“–mathematicalDFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHom.funLike
Cardinal
Cardinal.instLE
Cardinal.lift
Algebra.trdeg
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
trdeg_subsingleton
Cardinal.lift_one
Algebra.trdeg.eq_1
Cardinal.lift_iSup
Cardinal.bddAbove_range
small_subtype
small_set
UnivLE.small
UnivLE.self
ciSup_le'
AlgebraicIndependent.lift_cardinalMk_le_trdeg
Zero.instNonempty
AlgebraicIndependent.of_comp
Function.invFun_eq
trdeg_eq_zero_of_not_injective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
Algebra.trdeg
Cardinal
Cardinal.instZero
β€”isEmpty_algebraicIndependent
Algebra.trdeg.eq_1
ciSup_of_empty
bot_eq_zero
Cardinal.canonicallyOrderedAdd
trdeg_le_of_injective πŸ“–mathematicalDFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHom.funLike
Cardinal
Cardinal.instLE
Algebra.trdeg
β€”Cardinal.lift_id
lift_trdeg_le_of_injective
trdeg_le_of_surjective πŸ“–mathematicalDFunLike.coe
AlgHom
CommRing.toCommSemiring
CommSemiring.toSemiring
AlgHom.funLike
Cardinal
Cardinal.instLE
Algebra.trdeg
β€”Cardinal.lift_id
lift_trdeg_le_of_surjective
trdeg_subsingleton πŸ“–mathematicalβ€”Algebra.trdeg
Cardinal
Cardinal.instOne
β€”Module.subsingleton
LE.le.antisymm
ciSup_le'
Set.subsingleton_of_subsingleton
le_ciSup_of_le
Cardinal.bddAbove_range
small_subtype
small_set
UnivLE.small
UnivLE.self
AlgebraicIndependent.of_subsingleton
Cardinal.mk_fintype
Fintype.card_unique
Nat.cast_one

---

← Back to Index