Documentation Verification Report

RankAndCardinality

📁 Source: Mathlib/RingTheory/AlgebraicIndependent/RankAndCardinality.lean

Statistics

MetricCount
Definitions0
Theoremsrank_eq_cardinalMk, rank_sup_le, lift_cardinalMk_eq_max_lift, lift_rank_eq_max_lift
4
Total4

Algebra.Transcendental

Theorems

NameKindAssumesProvesValidatesDepends On
rank_eq_cardinalMk 📖mathematicalModule.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
exists_isTranscendenceBasis'
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.of_divisionRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsTranscendenceBasis.lift_cardinalMk_eq_max_lift
instIsDomain
IsTranscendenceBasis.nonempty_iff_transcendental
IsTranscendenceBasis.lift_rank_eq_max_lift

IntermediateField

Theorems

NameKindAssumesProvesValidatesDepends On
rank_sup_le 📖mathematicalCardinal
Cardinal.instLE
Module.rank
IntermediateField
SetLike.instMembership
instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toField
module'
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Cardinal.instMul
IsScalarTower.left
rank_sup_le_of_isAlgebraic
Algebra.Transcendental.rank_eq_cardinalMk
Algebra.Transcendental.ringHom_of_comp_eq
RingHom.instRingHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
le_sup_left
Algebra.transcendental_iff_not_isAlgebraic
inclusion_injective
sup_def
Cardinal.mul_mk_eq_max
Algebra.Transcendental.infinite
IsLocalRing.toNontrivial
Field.instIsLocalRing
Cardinal.lift_le
LE.le.trans
lift_cardinalMk_adjoin_le
sup_le_sup
le_refl
LE.le.trans_eq
Cardinal.mk_union_le
Cardinal.add_mk_eq_max
Cardinal.lift_max
sup_of_le_right
Cardinal.lift_mk_le_lift_mk_of_injective
RingHom.injective
DivisionRing.isSimpleRing
SubsemiringClass.nontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
sup_of_le_left

IsTranscendenceBasis

Theorems

NameKindAssumesProvesValidatesDepends On
lift_cardinalMk_eq_max_lift 📖mathematicalIsTranscendenceBasisCardinal.lift
Cardinal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Cardinal.instConditionallyCompleteLinearOrderBot
Cardinal.aleph0
le_antisymm
sup_eq_left
Equiv.infinite_iff
MvPolynomial.infinite_of_nonempty
Algebra.IsAlgebraic.cardinalMk_le_max
Subalgebra.isDomain
Subalgebra.instIsTorsionFree'
isAlgebraic
Cardinal.mk_le_of_injective
Subtype.val_injective
Cardinal.lift_mk_eq'
MvPolynomial.cardinalMk_eq_max_lift
Cardinal.lift_max
Cardinal.lift_lift
Cardinal.lift_aleph0
lift_rank_eq_max_lift 📖mathematicalIsTranscendenceBasis
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Cardinal.lift
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
Semifield.toCommSemiring
Cardinal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Cardinal.instConditionallyCompleteLinearOrderBot
Cardinal.aleph0
IsScalarTower.left
rank_mul_rank
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
SubsemiringClass.nontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
Module.Free.of_divisionRing
IntermediateField.isScalarTower_mid'
Cardinal.lift_mul
LinearEquiv.lift_rank_eq
IsScalarTower.right
MvRatFunc.rank_eq_max_lift
Cardinal.lift_max
Cardinal.lift_lift
Cardinal.lift_aleph0
Cardinal.mul_eq_left
le_sup_right
LE.le.trans_eq
Cardinal.lift_le
LE.le.trans
rank_le_card
Algebra.IsAlgebraic.cardinalMk_le_max
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
isAlgebraic_field
Cardinal.lift_mk_eq'
Cardinal.mk_fractionRing
MvPolynomial.cardinalMk_eq_max_lift
sup_of_le_left
LT.lt.ne'
rank_pos

---

← Back to Index