Documentation Verification Report

Transcendental

πŸ“ Source: Mathlib/RingTheory/AlgebraicIndependent/Transcendental.lean

Statistics

MetricCount
DefinitionsTranscendental, Transcendental
2
Theoremsinsert, insert_iff, adjoin_iff_disjoint, adjoin_of_disjoint, iff_adjoin_image, iff_adjoin_image_compl, iff_transcendental_adjoin_image, isEmpty_of_isAlgebraic, option_iff, option_iff_transcendental, polynomial_aeval_of_transcendental, sumElim, sumElim_comp, sumElim_iff, sumElim_of_tower, transcendental, transcendental_adjoin, transcendental_adjoin_iff, algebraicIndependent_polynomial_aeval_X, algebraicIndependent_iff_transcendental, algebraicIndependent_of_finite', algebraicIndependent_of_finite_type', algebraicIndependent_of_set_of_finite, algebraicIndependent_singleton_iff, algebraicIndependent_unique_type_iff, lift_trdeg_add_le, trdeg_add_le, trdeg_eq_zero, trdeg_eq_zero_iff, trdeg_ne_zero_iff, trdeg_pos
31
Total33

Algebra

Definitions

NameCategoryTheorems
Transcendental πŸ“–CompData
9 mathmath: transcendental_ringHom_iff_of_comp_eq, Transcendental.ringHom_of_comp_eq, trdeg_ne_zero_iff, transcendental_of_subsingleton, transcendental_iff_not_isAlgebraic, Transcendental.of_ringHom_of_comp_eq, IsTranscendenceBasis.nonempty_iff_transcendental, RatFunc.transcendental, transcendental_def

AlgebraicIndepOn

Theorems

NameKindAssumesProvesValidatesDepends On
insert πŸ“–mathematicalAlgebraicIndepOn
Transcendental
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set.image
Subalgebra.toCommRing
CommRing.toRing
Subalgebra.toAlgebra
Ring.toSemiring
Algebra.id
Set
Set.instInsert
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Function.Injective.nontrivial
AlgebraicIndependent.algebraMap_injective
insert_iff
isAlgebraic_algebraMap
SubsemiringClass.nontrivial
Subalgebra.instSubsemiringClass
Algebra.subset_adjoin
insert_iff πŸ“–mathematicalSet
Set.instMembership
AlgebraicIndepOn
Set.instInsert
Transcendental
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set.image
Subalgebra.toCommRing
CommRing.toRing
Subalgebra.toAlgebra
Ring.toSemiring
Algebra.id
β€”algebraicIndependent_equiv
Set.image_eq_range
AlgebraicIndependent.option_iff

AlgebraicIndependent

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_iff_disjoint πŸ“–mathematicalAlgebraicIndependentSet.Elem
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set.image
Set
Set.instMembership
Subalgebra.toCommRing
Subalgebra.toAlgebra
Algebra.id
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”of_not_not
Set.not_disjoint_iff
transcendental
isAlgebraic_algebraMap
SubsemiringClass.nontrivial
Subalgebra.instSubsemiringClass
Algebra.subset_adjoin
adjoin_of_disjoint
adjoin_of_disjoint πŸ“–mathematicalAlgebraicIndependent
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.Elem
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set.image
Set.instMembership
Subalgebra.toCommRing
Subalgebra.toAlgebra
Algebra.id
β€”comp
iff_adjoin_image
Disjoint.subset_compl_left
Set.inclusion_injective
iff_adjoin_image πŸ“–mathematicalβ€”AlgebraicIndependent
Set.Elem
Set
Set.instMembership
AlgebraicIndepOn
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set.image
Subalgebra.toCommRing
Subalgebra.toAlgebra
Algebra.id
Compl.compl
Set.instCompl
β€”Set.ext
algebraicIndependent_equiv'
sumElim_iff
iff_adjoin_image_compl πŸ“–mathematicalβ€”AlgebraicIndependent
Set.Elem
Compl.compl
Set
Set.instCompl
Set.instMembership
AlgebraicIndepOn
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set.image
Subalgebra.toCommRing
Subalgebra.toAlgebra
Algebra.id
β€”compl_compl
iff_adjoin_image
iff_transcendental_adjoin_image πŸ“–mathematicalβ€”AlgebraicIndependent
Transcendental
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set.image
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Subalgebra.toCommRing
CommRing.toRing
Subalgebra.toAlgebra
Ring.toSemiring
Algebra.id
β€”iff_adjoin_image_compl
algebraicIndependent_unique_type_iff
isEmpty_of_isAlgebraic πŸ“–mathematicalAlgebraicIndependentIsEmptyβ€”isEmpty_or_nonempty
transcendental
Algebra.IsAlgebraic.isAlgebraic
option_iff πŸ“–mathematicalβ€”AlgebraicIndependent
Transcendental
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set.range
Subalgebra.toCommRing
CommRing.toRing
Subalgebra.toAlgebra
Ring.toSemiring
Algebra.id
β€”comp
Option.some_injective
option_iff_transcendental
option_iff_transcendental πŸ“–mathematicalAlgebraicIndependentTranscendental
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set.range
Subalgebra.toCommRing
CommRing.toRing
Subalgebra.toAlgebra
Ring.toSemiring
Algebra.id
β€”algebraicIndependent_iff_injective_aeval
transcendental_iff_injective
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.coe_toRingHom
aeval_comp_mvPolynomialOptionEquivPolynomialAdjoin
RingHom.coe_comp
Function.Injective.of_comp_iff'
RingEquiv.bijective
polynomial_aeval_of_transcendental πŸ“–mathematicalAlgebraicIndependent
Transcendental
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.ring
CommRing.toRing
Polynomial.algebraOfAlgebra
Algebra.id
DFunLike.coe
AlgHom
Polynomial.semiring
AlgHom.funLike
Polynomial.aeval
β€”AlgHom.comp_apply
Polynomial.algHom_ext
Polynomial.aeval_X
MvPolynomial.aeval_X
aeval_of_algebraicIndependent
MvPolynomial.algebraicIndependent_polynomial_aeval_X
sumElim πŸ“–β€”AlgebraicIndependent
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set.range
Subalgebra.toCommRing
Subalgebra.toAlgebra
Algebra.id
β€”β€”sumElim_iff
sumElim_comp πŸ“–mathematicalAlgebraicIndependentDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
β€”sumElim_of_tower
map'
algebraMap_injective
Set.range_comp_subset_range
sumElim_iff πŸ“–mathematicalβ€”AlgebraicIndependent
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set.range
Subalgebra.toCommRing
Subalgebra.toAlgebra
Algebra.id
β€”MvPolynomial.isScalarTower
IsScalarTower.right
IsScalarTower.subalgebra'
MvPolynomial.algHom_ext
MvPolynomial.aeval_X
MvPolynomial.sumToIter_Xl
MvPolynomial.map_X
MvPolynomial.sumToIter_Xr
MvPolynomial.map_C
MvPolynomial.algHom_C
comp
Sum.inr_injective
sumElim_of_tower πŸ“–β€”AlgebraicIndependent
Set
Set.instHasSubset
Set.range
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
β€”β€”algebraMap_injective
Algebra.adjoin_le
IsScalarTower.of_algebraMap_eq
AlgEquiv.apply_symm_apply
sumElim
restrictScalars
AlgEquiv.injective
Subalgebra.inclusion_injective
transcendental πŸ“–mathematicalAlgebraicIndependentTranscendental
CommRing.toRing
β€”comp
Function.injective_of_subsingleton
FinVec.map_eq
algebraicIndependent_iff_transcendental
transcendental_adjoin πŸ“–mathematicalAlgebraicIndependent
Set
Set.instMembership
Transcendental
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set.image
Subalgebra.toCommRing
CommRing.toRing
Subalgebra.toAlgebra
Ring.toSemiring
Algebra.id
β€”algebraicIndependent_singleton_iff
Unique.instSubsingleton
adjoin_of_disjoint
Set.disjoint_singleton_right
transcendental_adjoin_iff πŸ“–mathematicalAlgebraicIndependentTranscendental
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set.image
Subalgebra.toCommRing
CommRing.toRing
Subalgebra.toAlgebra
Ring.toSemiring
Algebra.id
Set
Set.instMembership
β€”Set.disjoint_singleton_right
algebraicIndependent_singleton_iff
Unique.instSubsingleton
adjoin_iff_disjoint

MvPolynomial

Theorems

NameKindAssumesProvesValidatesDepends On
algebraicIndependent_polynomial_aeval_X πŸ“–mathematicalTranscendental
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.ring
CommRing.toRing
Polynomial.algebraOfAlgebra
Algebra.id
AlgebraicIndependent
MvPolynomial
DFunLike.coe
AlgHom
Polynomial.semiring
commSemiring
algebra
AlgHom.funLike
Polynomial.aeval
X
instCommRingMvPolynomial
β€”algebraicIndependent_of_finite_type'
C_injective
Algebra.adjoin_le_iff
Set.image_subset_iff
Set.mem_preimage
Algebra.adjoin_mono
Set.mem_image_of_mem
Polynomial.aeval_mem_adjoin_singleton
Transcendental.of_tower_top_of_subalgebra_le
transcendental_supported_polynomial_aeval_X

(root)

Definitions

NameCategoryTheorems
Transcendental πŸ“–MathDef
35 mathmath: Polynomial.transcendental, AlgebraicIndependent.transcendental_adjoin_iff, RatFunc.transcendental_X, AlgebraicIndependent.transcendental_adjoin, transcendental_iff_injective, transcendental_ringHom_iff_of_comp_eq, IsStronglyTranscendental.transcendental, MvPolynomial.transcendental_polynomial_aeval_X_iff, MvPolynomial.transcendental_supported_X_iff, Polynomial.transcendental_X, isStronglyTranscendental_iff_of_field, transcendental_aeval_iff, Algebra.IsIntegral.transcendental_iff, AlgebraicIndependent.option_iff_transcendental, Algebra.IsAlgebraic.transcendental_iff, transcendental_iff_ker_eq_bot, AlgebraicIndepOn.insert_iff, IsStronglyTranscendental.iff_of_isFractionRing, algebraicIndependent_singleton_iff, transcendental_liouvilleNumber, is_transcendental_of_subsingleton, AlgebraicIndependent.option_iff, MvPolynomial.transcendental_X, AlgebraicIndependent.transcendental, Algebra.Transcendental.transcendental, algebraicIndependent_iff_transcendental, IntermediateField.transcendental_adjoin_iff, MvPolynomial.transcendental_supported_polynomial_aeval_X_iff, Liouville.transcendental, MvPolynomial.transcendental_supported_X, transcendental_iff, transcendental_algebraMap_iff, Algebra.transcendental_def, AlgebraicIndependent.iff_transcendental_adjoin_image, algebraicIndependent_unique_type_iff

Theorems

NameKindAssumesProvesValidatesDepends On
algebraicIndependent_iff_transcendental πŸ“–mathematicalβ€”AlgebraicIndependent
Matrix.vecCons
Matrix.vecEmpty
Transcendental
CommRing.toRing
β€”Matrix.cons_val_fin_one
algebraicIndependent_of_finite' πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
Transcendental
Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Subalgebra.toCommRing
CommRing.toRing
Subalgebra.toAlgebra
Ring.toSemiring
Algebra.id
AlgebraicIndependent
Set
Set.instMembership
β€”algebraicIndependent_of_finite_type'
Set.Finite.image
AlgebraicIndependent.image
Function.Injective.mem_set_image
Subtype.val_injective
algebraicIndependent_of_finite_type' πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
Transcendental
Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set.image
Subalgebra.toCommRing
CommRing.toRing
Subalgebra.toAlgebra
Ring.toSemiring
Algebra.id
AlgebraicIndependentβ€”algebraicIndependent_of_set_of_finite
algebraicIndependent_empty_type_iff
Set.instIsEmptyElemEmptyCollection
algebraicIndependent_of_set_of_finite πŸ“–β€”AlgebraicIndependent
Set.Elem
Set
Set.instMembership
Transcendental
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set.image
Subalgebra.toCommRing
CommRing.toRing
Subalgebra.toAlgebra
Ring.toSemiring
Algebra.id
β€”β€”algebraicIndependent_of_finite_type
Set.Finite.induction_on_subset
Set.Finite.diff
AlgebraicIndependent.comp
Set.union_empty
Set.inclusion_injective
Set.union_insert
AlgebraicIndependent.option_iff_transcendental
Set.image_eq_range
Set.Finite.subset
Set.union_subset
Set.inter_subset_left
HasSubset.Subset.trans
Set.instIsTransSubset
Set.diff_subset
Equiv.injective
Set.inter_union_diff
algebraicIndependent_singleton_iff πŸ“–mathematicalβ€”AlgebraicIndependent
Transcendental
CommRing.toRing
β€”algebraicIndependent_unique_type_iff
algebraicIndependent_unique_type_iff πŸ“–mathematicalβ€”AlgebraicIndependent
Transcendental
CommRing.toRing
Unique.instInhabited
β€”transcendental_iff_injective
algebraicIndependent_iff_injective_aeval
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
MvPolynomial.algHom_ext
Unique.instSubsingleton
MvPolynomial.aeval_X
MvPolynomial.rename_X
MvPolynomial.evalβ‚‚_X
Polynomial.aeval_X
lift_trdeg_add_le πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
Cardinal.instAdd
Cardinal.lift
Algebra.trdeg
β€”Cardinal.lift_iSup
Cardinal.bddAbove_range
small_subtype
small_set
UnivLE.small
UnivLE.self
Cardinal.ciSup_add_ciSup
instNonemptySubtypeSetAlgebraicIndepOnIdOfFaithfulSMul
univLE_of_max
add_comm
ciSup_le
AlgebraicIndependent.sumElim_comp
le_ciSup_of_le
AlgebraicIndependent.to_subtype_range
Cardinal.lift_umax
Cardinal.mk_range_eq_of_injective
AlgebraicIndependent.injective
Cardinal.lift_id'
le_refl
trdeg_add_le πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
Cardinal.instAdd
Algebra.trdeg
β€”Cardinal.lift_id
lift_trdeg_add_le
trdeg_eq_zero πŸ“–mathematicalβ€”Algebra.trdeg
Cardinal
Cardinal.instZero
β€”bot_unique
ciSup_le'
AlgebraicIndependent.isEmpty_of_isAlgebraic
Eq.le
Cardinal.mk_eq_zero
trdeg_eq_zero_iff πŸ“–mathematicalβ€”Algebra.trdeg
Cardinal
Cardinal.instZero
Algebra.IsAlgebraic
CommRing.toRing
β€”trdeg_eq_zero
not_iff_not
Algebra.transcendental_iff_not_isAlgebraic
LT.lt.ne'
trdeg_pos
trdeg_ne_zero_iff πŸ“–mathematicalβ€”Algebra.Transcendental
CommRing.toRing
β€”Algebra.transcendental_iff_not_isAlgebraic
trdeg_eq_zero_iff
trdeg_pos πŸ“–mathematicalβ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.instZero
Algebra.trdeg
β€”Algebra.Transcendental.transcendental
LT.lt.trans_le
zero_lt_one
IsOrderedRing.toZeroLEOneClass
Cardinal.isOrderedRing
NeZero.charZero_one
Cardinal.instCharZero
le_ciSup_of_le
Cardinal.bddAbove_range
small_subtype
small_set
UnivLE.small
UnivLE.self
algebraicIndependent_unique_type_iff
Cardinal.mk_fintype
Fintype.card_unique
Nat.cast_one

---

← Back to Index