IsAlgebraic 📖 | CompData | 78 mathmath: AlgebraicIndependent.isTranscendenceBasis_iff_isAlgebraic, IsAlgebraic.of_ringHom_of_comp_eq, IntermediateField.isAlgebraic_tower_bot, instIsAlgebraicResidueFieldOfIsIntegral, IsAlgebraic.isAlgebraic_iff_bot, AlgEquiv.isAlgebraic, IsIntegral.isAlgebraic, IntermediateField.algebraAdjoinAdjoin.instIsAlgebraicSubtypeMemSubalgebraAdjoinAdjoin, Subalgebra.algebra_isAlgebraic_bot_right, IsAlgebraic.tensorProduct, Subalgebra.algebra_isAlgebraic_bot_left_iff, IntermediateField.isAlgebraic_adjoin_iff_top, IsAlgebraic.tower_top, algebraicClosure.isAlgebraic, instIsAlgebraicPolynomialOfNoZeroDivisors_1, AlgebraicIndependent.matroid_spanning_iff, Field.isAlgebraic_of_finite_intermediateField, Subalgebra.algebra_isAlgebraic_of_algebra_isAlgebraic_bot_left, IsAlgebraic.of_finite, IsAlgebraic.trans, IntermediateField.isAlgebraic_adjoin, IsTranscendenceBasis.isAlgebraic_field, isAlgebraic_iff_isIntegral, IsPushout.isAlgebraic, IntermediateField.isAlgebraic_tower_top, instIsAlgebraicQuotientIdealResidueField, transcendental_iff_not_isAlgebraic, IsTranscendenceBasis.isAlgebraic_iff, IsAlgebraic.of_isIntegralClosure, IsAlgebraic.ringHom_of_comp_eq, IsAlgebraic.extendScalars, IntermediateField.isAlgebraic_adjoin_iff_isAlgebraic, PadicAlgCl.isAlgebraic, instIsAlgebraicMvPolynomialOfNoZeroDivisors, IntermediateField.isAlgebraic_adjoin_pair, isAlgebraic_ringHom_iff_of_comp_eq, instIsAlgebraicPolynomialOfNoZeroDivisors, Field.exists_primitive_element_iff_finite_intermediateField, Polynomial.IsSplittingField.IsScalarTower.isAlgebraic, isAlgebraic_iff, AlgEquiv.isAlgebraic_iff, isAlgebraic_iff_exists_isTranscendenceBasis_subset, isAlgebraic_def, IsSeparable.isAlgebraic, separableClosure.isAlgebraic, IsIntegral.isAlgebraic_iff_top, algebraicClosure.eq_top_iff, IsAlgClosure.isAlgebraic, TensorProduct.isAlgebraic_of_isField, IntermediateField.isAlgebraic_adjoin_simple, IsTranscendenceBasis.isEmpty_iff_isAlgebraic, Normal.toIsAlgebraic, perfectClosure.isAlgebraic, IsIntegral.trans_isAlgebraic, AlgebraicClosure.isAlgebraic, instIsAlgebraicMvPolynomialOfNoZeroDivisors_1, IsAlgebraic.isAlgebraic_iff_top, le_algebraicClosure_iff, IsFractionRing.isAlgebraic_iff', IsPurelyInseparable.isAlgebraic, isAlgebraic_of_isFractionRing, NumberField.isAlgebraic, IsAlgebraic.trans_isIntegral, isAlgClosure_iff, IsFractionRing.comap_isAlgebraic_iff, IsPushout.isAlgebraic', IsAlgebraic.tower_bot_of_injective, IsAlgebraic.of_injective, Subalgebra.isAlgebraic_iff, IntermediateField.isAlgebraic_adjoin_iff_bot, IsTranscendenceBasis.isAlgebraic, IsAlgebraic.tower_bot, isAlgebraic_of_not_injective, instIsAlgebraicSubtypeMemSubalgebraAlgebraicClosure, trdeg_eq_zero_iff, NumberField.instIsAlgebraicSubtypeMemSubfield, isTranscendenceBasis_iff_algebraicIndependent_isAlgebraic, IsLocalization.isAlgebraic
|