Documentation Verification Report

Integral

πŸ“ Source: Mathlib/RingTheory/Algebraic/Integral.lean

Statistics

MetricCount
DefinitionsalgebraicClosure, algEquivEquivAlgHom
2
Theoremsbijective, exists_integral_multiples, finrank_of_isFractionRing, instIsLocalizationAlgebraMapSubmonoidNonZeroDivisors, instIsLocalizedModuleNonZeroDivisorsToLinearMapToAlgHom, instIsPushout, instIsPushout_1, isAlgebraic_iff, isAlgebraic_iff_bot, isAlgebraic_iff_top, isBaseChange_of_isFractionRing, isIntegral, lift_rank_of_isFractionRing, of_finite, of_isIntegralClosure, rank_fractionRing, rank_fractionRing_mvPolynomial, rank_fractionRing_polynomial, rank_of_isFractionRing, tensorProduct, trans, trans_isIntegral, transcendental_iff, isAlgebraic, isAlgebraic_iff, isAlgebraic_iff_top, trans_isAlgebraic, transcendental_iff, isAlgebraic, isAlgebraic', isAlgebraic_adjoin_iff, isAlgebraic_adjoin_of_nonempty, isAlgebraic_adjoin_singleton_iff, isAlgebraic_iff_isIntegral, add, adjoin_of_forall_isAlgebraic, exists_integral_multiple, iff_exists_smul_integral, isIntegral, mul, neg, nsmul, of_finite, of_mul, of_smul, of_smul_isIntegral, pow, restrictScalars, restrictScalars_of_isIntegral, smul, sub, tmul, zsmul, isAlgebraic, trans_isAlgebraic, exists_dvd_map_of_isAlgebraic, exists_dvd_map_of_isAlgebraic, algebraicClosure_eq_integralClosure, mem_algebraicClosure, extendScalars, extendScalars_of_isIntegral, integralClosure, subalgebraAlgebraicClosure, instFiniteDimensionalFractionRingOfFinite, instIsAlgebraicMvPolynomialOfNoZeroDivisors, instIsAlgebraicMvPolynomialOfNoZeroDivisors_1, instIsAlgebraicPolynomialOfNoZeroDivisors, instIsAlgebraicPolynomialOfNoZeroDivisors_1, instIsAlgebraicSubtypeMemSubalgebraAlgebraicClosure, instIsPushoutFractionRingMvPolynomial, instIsPushoutFractionRingMvPolynomial_1, instIsPushoutFractionRingPolynomial, instIsPushoutFractionRingPolynomial_1, integralClosure_le_algebraicClosure, isAlgebraic_iff_isIntegral, rank_mvPolynomial_mvPolynomial, rank_polynomial_polynomial, transcendental_aeval_iff
78
Total80

AlgHom

Theorems

NameKindAssumesProvesValidatesDepends On
bijective πŸ“–mathematicalβ€”Function.Bijective
DFunLike.coe
AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
funLike
β€”Algebra.IsAlgebraic.algHom_bijective
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Algebra.IsAlgebraic.of_finite
EuclideanDomain.toNontrivial

Algebra

Theorems

NameKindAssumesProvesValidatesDepends On
isAlgebraic_adjoin_iff πŸ“–mathematicalβ€”Subalgebra.IsAlgebraic
CommRing.toRing
adjoin
CommRing.toCommSemiring
CommSemiring.toSemiring
IsAlgebraic
β€”adjoin_le_iff
isAlgebraic_adjoin_of_nonempty πŸ“–mathematicalSet.NonemptySubalgebra.IsAlgebraic
CommRing.toRing
adjoin
CommRing.toCommSemiring
CommSemiring.toSemiring
IsAlgebraic
β€”subset_adjoin
isDomain_iff_noZeroDivisors_and_nontrivial
IsAlgebraic.nontrivial
isAlgebraic_adjoin_iff
isAlgebraic_adjoin_singleton_iff πŸ“–mathematicalβ€”Subalgebra.IsAlgebraic
CommRing.toRing
adjoin
CommRing.toCommSemiring
CommSemiring.toSemiring
Set
Set.instSingletonSet
IsAlgebraic
β€”isAlgebraic_adjoin_of_nonempty
Set.singleton_nonempty
isAlgebraic_iff_isIntegral πŸ“–mathematicalβ€”IsAlgebraic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsIntegral
β€”isAlgebraic_def
isIntegral_def
isAlgebraic_iff_isIntegral

Algebra.IsAlgebraic

Theorems

NameKindAssumesProvesValidatesDepends On
exists_integral_multiples πŸ“–mathematicalβ€”IsIntegral
Algebra.toSMul
CommRing.toCommSemiring
Ring.toSemiring
β€”nontrivial
Finset.prod_ne_zero_iff
Finset.prod_erase_mul
SemigroupAction.mul_smul
IsIntegral.smul
IsScalarTower.left
IsAlgebraic.exists_integral_multiple
isAlgebraic
finrank_of_isFractionRing πŸ“–mathematicalβ€”Module.finrank
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
β€”Cardinal.toNat_lift
lift_rank_of_isFractionRing
instIsLocalizationAlgebraMapSubmonoidNonZeroDivisors πŸ“–mathematicalβ€”IsLocalization
CommRing.toCommSemiring
Algebra.algebraMapSubmonoid
CommSemiring.toSemiring
nonZeroDivisors
Semiring.toMonoidWithZero
β€”Function.Injective.noZeroDivisors
FaithfulSMul.algebraMap_injective
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
MonoidWithZeroHomClass.toMonoidHomClass
IsLocalization.iff_of_le_of_exists_dvd
map_le_nonZeroDivisors_of_injective
le_rfl
IsAlgebraic.exists_nonzero_dvd
isAlgebraic
mem_nonZeroDivisors_of_ne_zero
instIsLocalizedModuleNonZeroDivisorsToLinearMapToAlgHom πŸ“–mathematicalβ€”IsLocalizedModule
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Algebra.toModule
nonZeroDivisors
Semiring.toMonoidWithZero
AlgHom.toLinearMap
IsScalarTower.toAlgHom
β€”isLocalizedModule_iff_isLocalization
instIsLocalizationAlgebraMapSubmonoidNonZeroDivisors
instIsPushout πŸ“–mathematicalβ€”Algebra.IsPushout
CommRing.toCommSemiring
β€”Algebra.isPushout_iff
isBaseChange_of_isFractionRing
instIsPushout_1 πŸ“–mathematicalβ€”Algebra.IsPushout
CommRing.toCommSemiring
β€”Algebra.IsPushout.symm
instIsPushout
isAlgebraic_iff πŸ“–mathematicalβ€”IsAlgebraicβ€”IsAlgebraic.extendScalars
FaithfulSMul.algebraMap_injective
IsAlgebraic.restrictScalars
isAlgebraic_iff_bot πŸ“–mathematicalβ€”Algebra.IsAlgebraic
CommRing.toRing
β€”tower_bot_of_injective
FaithfulSMul.algebraMap_injective
trans
isAlgebraic_iff_top πŸ“–mathematicalβ€”Algebra.IsAlgebraicβ€”isAlgebraic_iff
isBaseChange_of_isFractionRing πŸ“–mathematicalβ€”IsBaseChange
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Algebra.toModule
AlgHom.toLinearMap
IsScalarTower.toAlgHom
β€”isLocalizedModule_iff_isBaseChange
instIsLocalizedModuleNonZeroDivisorsToLinearMapToAlgHom
isIntegral πŸ“–mathematicalβ€”Algebra.IsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”Algebra.isAlgebraic_iff_isIntegral
lift_rank_of_isFractionRing πŸ“–mathematicalβ€”Cardinal.lift
Module.rank
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
β€”IsLocalization.rank_eq
le_rfl
IsLocalizedModule.lift_rank_eq
instIsLocalizedModuleNonZeroDivisorsToLinearMapToAlgHom
of_finite πŸ“–mathematicalβ€”Algebra.IsAlgebraicβ€”Algebra.IsIntegral.isAlgebraic
Algebra.IsIntegral.of_finite
of_isIntegralClosure πŸ“–mathematicalβ€”Algebra.IsAlgebraic
CommRing.toRing
β€”IsIntegralClosure.isIntegral_algebra
Algebra.IsIntegral.isAlgebraic
rank_fractionRing πŸ“–mathematicalβ€”Module.rank
FractionRing
OreLocalization.instSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
nonZeroDivisors
Semiring.toMonoidWithZero
OreLocalization.oreSetComm
CommRing.toCommMonoid
OreLocalization.instAddCommMonoidOreLocalization
CommMonoid.toMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Semiring.toModule
Algebra.toModule
OreLocalization.instCommSemiring
FractionRing.liftAlgebra
FractionRing.field
OreLocalization.instAlgebra
FractionRing.instFaithfulSMul
β€”rank_of_isFractionRing
Localization.isLocalization
IsDomain.to_noZeroDivisors
FractionRing.instFaithfulSMul
FractionRing.instIsScalarTower
IsScalarTower.right
OreLocalization.instIsScalarTower
IsScalarTower.left
rank_fractionRing_mvPolynomial πŸ“–mathematicalβ€”Module.rank
FractionRing
MvPolynomial
CommRing.toCommSemiring
MvPolynomial.instCommRingMvPolynomial
OreLocalization.instSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
nonZeroDivisors
Semiring.toMonoidWithZero
OreLocalization.oreSetComm
CommRing.toCommMonoid
OreLocalization.instAddCommMonoidOreLocalization
CommMonoid.toMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Semiring.toModule
Algebra.toModule
OreLocalization.instCommSemiring
FractionRing.liftAlgebra
FractionRing.field
MvPolynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
AddGroup.toAddCancelMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
OreLocalization.instAlgebra
MvPolynomial.algebraMvPolynomial
FractionRing.instFaithfulSMul
MvPolynomial.instFaithfulSMul
Cardinal.lift
β€”IsDomain.of_faithfulSMul
MvPolynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
FractionRing.instFaithfulSMul
MvPolynomial.instFaithfulSMul
rank_fractionRing
instIsAlgebraicMvPolynomialOfNoZeroDivisors_1
IsDomain.to_noZeroDivisors
rank_mvPolynomial_mvPolynomial
rank_fractionRing_polynomial πŸ“–mathematicalβ€”Module.rank
FractionRing
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.commRing
OreLocalization.instSemiring
nonZeroDivisors
Semiring.toMonoidWithZero
OreLocalization.oreSetComm
CommRing.toCommMonoid
OreLocalization.instAddCommMonoidOreLocalization
CommMonoid.toMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Semiring.toModule
Algebra.toModule
OreLocalization.instCommSemiring
Polynomial.commSemiring
FractionRing.liftAlgebra
FractionRing.field
Polynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
AddGroup.toAddCancelMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
OreLocalization.instAlgebra
Polynomial.algebra
FractionRing.instFaithfulSMul
instFaithfulSMulPolynomial
β€”IsDomain.of_faithfulSMul
Polynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
FractionRing.instFaithfulSMul
instFaithfulSMulPolynomial
rank_fractionRing
instIsAlgebraicPolynomialOfNoZeroDivisors_1
IsDomain.to_noZeroDivisors
rank_polynomial_polynomial
rank_of_isFractionRing πŸ“–mathematicalβ€”Module.rank
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
β€”Cardinal.lift_id
lift_rank_of_isFractionRing
tensorProduct πŸ“–mathematicalβ€”Algebra.IsAlgebraic
TensorProduct
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
CommSemiring.toSemiring
Algebra.TensorProduct.instRing
CommRing.toRing
Algebra.TensorProduct.leftAlgebra
Algebra.id
Algebra.to_smulCommClass
β€”Algebra.to_smulCommClass
nontrivial
Function.Injective.nontrivial
FaithfulSMul.algebraMap_injective
TensorProduct.induction_on
isAlgebraic_zero
IsAlgebraic.tmul
isAlgebraic
IsAlgebraic.add
trans πŸ“–mathematicalβ€”Algebra.IsAlgebraicβ€”IsAlgebraic.restrictScalars
isAlgebraic
trans_isIntegral πŸ“–mathematicalβ€”Algebra.IsAlgebraicβ€”IsIntegral.trans_isAlgebraic
Algebra.IsIntegral.isIntegral
transcendental_iff πŸ“–mathematicalβ€”Transcendentalβ€”Transcendental.extendScalars
Transcendental.restrictScalars
FaithfulSMul.algebraMap_injective

Algebra.IsIntegral

Theorems

NameKindAssumesProvesValidatesDepends On
isAlgebraic πŸ“–mathematicalβ€”Algebra.IsAlgebraicβ€”IsIntegral.isAlgebraic
isIntegral
isAlgebraic_iff πŸ“–mathematicalβ€”IsAlgebraicβ€”IsAlgebraic.extendScalars
FaithfulSMul.algebraMap_injective
IsAlgebraic.restrictScalars_of_isIntegral
isAlgebraic_iff_top πŸ“–mathematicalβ€”Algebra.IsAlgebraicβ€”isAlgebraic_iff
trans_isAlgebraic πŸ“–mathematicalβ€”Algebra.IsAlgebraicβ€”IsAlgebraic.restrictScalars_of_isIntegral
Algebra.IsAlgebraic.isAlgebraic
transcendental_iff πŸ“–mathematicalβ€”Transcendentalβ€”Transcendental.extendScalars_of_isIntegral
Transcendental.restrictScalars
FaithfulSMul.algebraMap_injective

Algebra.IsPushout

Theorems

NameKindAssumesProvesValidatesDepends On
isAlgebraic πŸ“–mathematicalβ€”Algebra.IsAlgebraic
CommRing.toRing
β€”symm
AlgEquiv.isAlgebraic
Algebra.to_smulCommClass
Algebra.IsAlgebraic.tensorProduct
isAlgebraic' πŸ“–mathematicalβ€”Algebra.IsAlgebraic
CommRing.toRing
β€”AlgEquiv.isAlgebraic
Algebra.to_smulCommClass
Algebra.IsAlgebraic.tensorProduct

IsAlgebraic

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalIsAlgebraic
CommRing.toRing
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”exists_integral_multiple
iff_exists_smul_integral
isReduced_of_noZeroDivisors
mul_ne_zero
smul_add
SemigroupAction.mul_smul
mul_comm
IsIntegral.add
IsIntegral.smul
IsScalarTower.left
adjoin_of_forall_isAlgebraic πŸ“–β€”IsAlgebraic
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Subalgebra.toCommRing
CommRing.toRing
Subalgebra.toAlgebra
Ring.toSemiring
Algebra.id
β€”β€”IsScalarTower.subalgebra'
IsScalarTower.right
Algebra.adjoin_le
Algebra.subset_adjoin
IsScalarTower.of_algebraMap_eq
nontrivial
Function.Injective.nontrivial
Subtype.val_injective
isDomain_iff_noZeroDivisors_and_nontrivial
Subalgebra.noZeroDivisors
SubsemiringClass.nontrivial
Subalgebra.instSubsemiringClass
Subalgebra.isAlgebraic_iff
Algebra.isAlgebraic_adjoin_iff
isAlgebraic_algebraMap
extendScalars
Subalgebra.inclusion_injective
restrictScalars
IsScalarTower.subalgebra
exists_integral_multiple πŸ“–mathematicalIsAlgebraicIsIntegral
Algebra.toSMul
CommRing.toCommSemiring
Ring.toSemiring
β€”Polynomial.leadingCoeff_eq_zero
Polynomial.monic_integralNormalization
Polynomial.integralNormalization_aeval_eq_zero
map_eq_zero_iff
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Algebra.smul_def
Mathlib.Tactic.Push.not_forall_eq
injective_iff_map_eq_zero
RingHomClass.toAddMonoidHomClass
algebraMap_smul
IsScalarTower.right
MulZeroClass.zero_mul
isIntegral_zero
iff_exists_smul_integral πŸ“–mathematicalβ€”IsAlgebraic
IsIntegral
Algebra.toSMul
CommRing.toCommSemiring
Ring.toSemiring
β€”exists_integral_multiple
of_smul_isIntegral
isNilpotent_iff_eq_zero
isIntegral πŸ“–mathematicalIsAlgebraic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsIntegralβ€”isAlgebraic_iff_isIntegral
mul πŸ“–mathematicalIsAlgebraic
CommRing.toRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”exists_integral_multiple
iff_exists_smul_integral
isReduced_of_noZeroDivisors
mul_ne_zero
Algebra.smul_def
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
mul_mul_mul_comm
IsIntegral.mul
neg πŸ“–mathematicalIsAlgebraicNegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
β€”EmbeddingLike.map_ne_zero_iff
EquivLike.toEmbeddingLike
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
Polynomial.aeval_comp
Polynomial.aeval_neg
Polynomial.aeval_X
neg_neg
nsmul πŸ“–mathematicalIsAlgebraicAddMonoid.toNatSMul
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”smul
Nat.cast_smul_eq_nsmul
of_finite πŸ“–mathematicalβ€”IsAlgebraicβ€”IsIntegral.isAlgebraic
IsIntegral.of_finite
of_mul πŸ“–β€”Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
IsAlgebraic
CommRing.toRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”β€”exists_nonzero_eq_adjoin_mul
mul
Algebra.isAlgebraic_adjoin_singleton_iff
of_smul
mem_nonZeroDivisors_of_ne_zero
Algebra.smul_def
mul_right_comm
of_smul πŸ“–β€”Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
IsAlgebraic
Algebra.toSMul
Ring.toSemiring
β€”β€”Polynomial.comp_C_mul_X_eq_zero_iff
Polynomial.aeval_comp
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
Polynomial.aeval_C
Polynomial.aeval_X
Algebra.smul_def
of_smul_isIntegral πŸ“–mathematicalIsNilpotent
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
IsIntegral
Algebra.toSMul
Ring.toSemiring
IsAlgebraicβ€”IsNilpotent.zero
Polynomial.leadingCoeff_C_mul_X
one_mul
Polynomial.coeff_comp_degree_mul_degree
Polynomial.natDegree_C_mul_X
mul_one
Polynomial.coeff_zero
Polynomial.aeval_comp
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
Polynomial.aeval_C
Polynomial.aeval_X
Algebra.smul_def
pow πŸ“–mathematicalIsAlgebraic
CommRing.toRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”nontrivial
isAlgebraic_one
pow_zero
mul
pow_succ
restrictScalars πŸ“–β€”IsAlgebraicβ€”β€”NoZeroDivisors.of_faithfulSMul
faithfulSMul_iff_algebraMap_injective
Algebra.nontrivial_of_isAlgebraic
NoZeroDivisors.to_isDomain
Algebra.IsAlgebraic.exists_integral_multiples
Polynomial.mem_coeffs_iff
Finset.mem_image_of_mem
Polynomial.support_smul
Polynomial.map_ne_zero_iff
Subtype.val_injective
Polynomial.map_toSubring
Polynomial.instIsTorsionFree
FaithfulSMul.to_isTorsionFree
NoZeroDivisors.to_isCancelMulZero
IsDomain.toIsCancelMulZero
Polynomial.eval_map_algebraMap
AlgHomClass.toRingHomClass
AlgHom.algHomClass
Subalgebra.algebraMap_eq
Polynomial.map_map
Subalgebra.toSubring_subtype
Polynomial.isScalarTower
IsScalarTower.right
AlgHom.restrictScalars_apply
map_smul
SemilinearMapClass.toMulActionSemiHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
smul_zero
restrictScalars_of_isIntegral
IsScalarTower.subalgebra'
Subalgebra.noZeroDivisors
integralClosure.AlgebraIsIntegral
Algebra.IsAlgebraic.isAlgebraic
Algebra.isAlgebraic_of_not_injective
Function.Injective.of_comp
IsScalarTower.algebraMap_eq
restrictScalars_of_isIntegral πŸ“–β€”IsAlgebraicβ€”β€”Function.Injective.noZeroDivisors
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
exists_integral_multiple
subsingleton_or_nontrivial
Module.subsingleton
is_transcendental_of_subsingleton
exists_nonzero_dvd
IsIntegral.isAlgebraic
Algebra.IsIntegral.isIntegral
mem_nonZeroDivisors_of_ne_zero
of_smul_isIntegral
isNilpotent_iff_eq_zero
isReduced_of_noZeroDivisors
Algebra.smul_def
IsScalarTower.algebraMap_apply
mul_comm
SemigroupAction.mul_smul
isIntegral_trans
IsIntegral.smul
IsScalarTower.left
Algebra.IsAlgebraic.isAlgebraic
Algebra.isAlgebraic_of_not_injective
Function.Injective.of_comp
IsScalarTower.algebraMap_eq
smul πŸ“–mathematicalIsAlgebraicAlgebra.toSMul
CommRing.toCommSemiring
Ring.toSemiring
β€”Polynomial.scaleRoots_ne_zero
Polynomial.scaleRoots_aeval_eq_zero
Algebra.smul_def
sub πŸ“–mathematicalIsAlgebraic
CommRing.toRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
β€”add
neg
sub_eq_add_neg
tmul πŸ“–mathematicalIsAlgebraicTensorProduct
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Algebra.toModule
CommSemiring.toSemiring
Ring.toSemiring
Algebra.TensorProduct.instRing
CommRing.toRing
Algebra.TensorProduct.leftAlgebra
Algebra.id
Algebra.to_smulCommClass
TensorProduct.tmul
β€”Algebra.to_smulCommClass
mul_one
smul_eq_mul
TensorProduct.smul_tmul'
smul
Polynomial.map_ne_zero_iff
FaithfulSMul.algebraMap_injective
Algebra.TensorProduct.includeRight_apply
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.coe_toRingHom
Polynomial.map_aeval_eq_aeval_map
RingHom.ext
RingHomCompTriple.comp_apply
RingHomCompTriple.right_ids
AlgHom.comp_algebraMap_of_tower
IsScalarTower.left
TensorProduct.isScalarTower
map_zero
MonoidWithZeroHomClass.toZeroHomClass
IsScalarTower.right
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
zsmul πŸ“–mathematicalIsAlgebraicSubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
β€”smul
Int.cast_smul_eq_zsmul

IsIntegral

Theorems

NameKindAssumesProvesValidatesDepends On
isAlgebraic πŸ“–mathematicalIsIntegralIsAlgebraicβ€”Polynomial.Monic.ne_zero
trans_isAlgebraic πŸ“–mathematicalIsIntegralIsAlgebraicβ€”subsingleton_or_nontrivial
Algebra.IsAlgebraic.nontrivial
isAlgebraic_zero
Module.nontrivial
IsAlgebraic.restrictScalars
isAlgebraic

MvPolynomial

Theorems

NameKindAssumesProvesValidatesDepends On
exists_dvd_map_of_isAlgebraic πŸ“–mathematicalβ€”MvPolynomial
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
instCommRingMvPolynomial
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
commSemiring
RingHom.instFunLike
map
algebraMap
β€”IsAlgebraic.exists_nonzero_dvd
Algebra.IsAlgebraic.isAlgebraic
instIsAlgebraicMvPolynomialOfNoZeroDivisors_1
mem_nonZeroDivisors_of_ne_zero
instNoZeroDivisors

Polynomial

Theorems

NameKindAssumesProvesValidatesDepends On
exists_dvd_map_of_isAlgebraic πŸ“–mathematicalβ€”Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
map
algebraMap
β€”IsAlgebraic.exists_nonzero_dvd
Algebra.IsAlgebraic.isAlgebraic
instIsAlgebraicPolynomialOfNoZeroDivisors_1
mem_nonZeroDivisors_of_ne_zero
instNoZeroDivisors

Subalgebra

Definitions

NameCategoryTheorems
algebraicClosure πŸ“–CompOp
7 mathmath: mem_algebraicClosure, integralClosure_le_algebraicClosure, AlgebraicIndependent.subalgebraAlgebraicClosure, algebraicClosure_eq_integralClosure, Transcendental.subalgebraAlgebraicClosure, AlgebraicIndependent.matroid_closure_eq, instIsAlgebraicSubtypeMemSubalgebraAlgebraicClosure

Theorems

NameKindAssumesProvesValidatesDepends On
algebraicClosure_eq_integralClosure πŸ“–mathematicalβ€”algebraicClosure
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Field.toSemifield
integralClosure
β€”SetLike.ext
instIsDomain
isAlgebraic_iff_isIntegral
mem_algebraicClosure πŸ“–mathematicalβ€”Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
instSetLike
algebraicClosure
IsAlgebraic
CommRing.toRing
β€”β€”

Transcendental

Theorems

NameKindAssumesProvesValidatesDepends On
extendScalars πŸ“–β€”Transcendentalβ€”β€”Mathlib.Tactic.Contrapose.contrapose₁
eq_1
IsAlgebraic.restrictScalars
extendScalars_of_isIntegral πŸ“–β€”Transcendentalβ€”β€”Mathlib.Tactic.Contrapose.contrapose₁
eq_1
IsAlgebraic.restrictScalars_of_isIntegral
integralClosure πŸ“–mathematicalTranscendental
CommRing.toRing
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
integralClosure
Subalgebra.toCommRing
Subalgebra.toAlgebra
Ring.toSemiring
Algebra.id
β€”extendScalars_of_isIntegral
IsScalarTower.subalgebra'
IsScalarTower.right
Subalgebra.noZeroDivisors
integralClosure.AlgebraIsIntegral
subalgebraAlgebraicClosure πŸ“–mathematicalTranscendental
CommRing.toRing
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Subalgebra.algebraicClosure
Subalgebra.toCommRing
Subalgebra.toAlgebra
Ring.toSemiring
Algebra.id
β€”extendScalars
IsScalarTower.subalgebra'
IsScalarTower.right
Subalgebra.noZeroDivisors
instIsAlgebraicSubtypeMemSubalgebraAlgebraicClosure

(root)

Definitions

NameCategoryTheorems
algEquivEquivAlgHom πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
instFiniteDimensionalFractionRingOfFinite πŸ“–mathematicalβ€”FiniteDimensional
FractionRing
OreLocalization.instDivisionRingNonZeroDivisors
CommRing.toRing
IsDomain.toNontrivial
CommSemiring.toSemiring
CommRing.toCommSemiring
IsDomain.to_noZeroDivisors
OreLocalization.oreSetComm
CommRing.toCommMonoid
nonZeroDivisors
Semiring.toMonoidWithZero
OreLocalization.instAddCommGroup
CommMonoid.toMonoid
Ring.toAddCommGroup
Module.toDistribMulAction
Ring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Semiring.toModule
Algebra.toModule
OreLocalization.instCommSemiring
OreLocalization.instSemiring
FractionRing.liftAlgebra
FractionRing.field
OreLocalization.instAlgebra
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
β€”IsDomain.toNontrivial
IsDomain.to_noZeroDivisors
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
Module.Finite.exists_fin
Module.finite_def
Submodule.fg_span
Set.toFinite
Finite.Set.finite_image
Finite.Set.finite_range
Finite.of_fintype
span_eq_top_localization_localization
Localization.isLocalization
FractionRing.instIsScalarTower
IsScalarTower.right
OreLocalization.instIsScalarTower
IsScalarTower.left
Algebra.IsAlgebraic.instIsLocalizationAlgebraMapSubmonoidNonZeroDivisors
Algebra.IsAlgebraic.of_finite
instIsAlgebraicMvPolynomialOfNoZeroDivisors πŸ“–mathematicalβ€”Algebra.IsAlgebraic
MvPolynomial
CommRing.toCommSemiring
MvPolynomial.instCommRingMvPolynomial
CommRing.toRing
MvPolynomial.algebraMvPolynomial
β€”Algebra.IsPushout.isAlgebraic
MvPolynomial.instNoZeroDivisors
MvPolynomial.faithfulSMul
instFaithfulSMul
MvPolynomial.instIsScalarTower
MvPolynomial.isScalarTower
IsScalarTower.right
MvPolynomial.instIsPushout
instIsAlgebraicMvPolynomialOfNoZeroDivisors_1 πŸ“–mathematicalβ€”Algebra.IsAlgebraic
MvPolynomial
CommRing.toCommSemiring
MvPolynomial.instCommRingMvPolynomial
CommRing.toRing
MvPolynomial.algebraMvPolynomial
β€”Function.Injective.noZeroDivisors
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
instIsAlgebraicMvPolynomialOfNoZeroDivisors
Algebra.isAlgebraic_of_not_injective
MvPolynomial.map_injective_iff
instIsAlgebraicPolynomialOfNoZeroDivisors πŸ“–mathematicalβ€”Algebra.IsAlgebraic
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.commRing
Polynomial.ring
CommRing.toRing
Polynomial.algebra
β€”Algebra.IsPushout.isAlgebraic
Polynomial.instNoZeroDivisors
Polynomial.faithfulSMul
instFaithfulSMul
instIsScalarTowerPolynomial
IsScalarTower.left
Polynomial.isScalarTower
IsScalarTower.right
instIsPushoutPolynomial
instIsAlgebraicPolynomialOfNoZeroDivisors_1 πŸ“–mathematicalβ€”Algebra.IsAlgebraic
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.commRing
Polynomial.ring
CommRing.toRing
Polynomial.algebra
β€”Function.Injective.noZeroDivisors
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
instIsAlgebraicPolynomialOfNoZeroDivisors
Algebra.isAlgebraic_of_not_injective
Polynomial.map_injective_iff
instIsAlgebraicSubtypeMemSubalgebraAlgebraicClosure πŸ“–mathematicalβ€”Algebra.IsAlgebraic
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Subalgebra.algebraicClosure
Subalgebra.toRing
CommRing.toRing
Subalgebra.algebra
β€”Subalgebra.isAlgebraic_iff
instIsPushoutFractionRingMvPolynomial πŸ“–mathematicalβ€”Algebra.IsPushout
FractionRing
MvPolynomial
CommRing.toCommSemiring
MvPolynomial.instCommRingMvPolynomial
OreLocalization.instCommSemiring
MvPolynomial.commSemiring
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
OreLocalization.oreSetComm
CommRing.toCommMonoid
OreLocalization.instAlgebra
MvPolynomial.algebra
Algebra.id
FractionRing.liftAlgebra
FractionRing.field
MvPolynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
AddGroup.toAddCancelMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
MvPolynomial.algebraMvPolynomial
FractionRing.instFaithfulSMul
MvPolynomial.instFaithfulSMul
OreLocalization.instIsScalarTower
CommMonoid.toMonoid
Monoid.toMulAction
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Module.toDistribMulAction
Algebra.toModule
IsScalarTower.right
Algebra.toSMul
MvPolynomial.isScalarTower
DistribSMul.toSMulZeroClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
DistribMulAction.toDistribSMul
FractionRing.instIsScalarTower
MvPolynomial.instIsScalarTower
β€”MvPolynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
FractionRing.instFaithfulSMul
MvPolynomial.instFaithfulSMul
OreLocalization.instIsScalarTower
IsScalarTower.right
MvPolynomial.isScalarTower
FractionRing.instIsScalarTower
MvPolynomial.instIsScalarTower
IsScalarTower.left
Algebra.IsPushout.comp_iff
MvPolynomial.instIsPushout_1
Algebra.IsAlgebraic.instIsPushout
instIsAlgebraicMvPolynomialOfNoZeroDivisors_1
IsDomain.to_noZeroDivisors
MvPolynomial.instNoZeroDivisors
Localization.isLocalization
instIsPushoutFractionRingMvPolynomial_1 πŸ“–mathematicalβ€”Algebra.IsPushout
CommRing.toCommSemiring
FractionRing
MvPolynomial
MvPolynomial.instCommRingMvPolynomial
OreLocalization.instCommSemiring
MvPolynomial.commSemiring
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
OreLocalization.oreSetComm
CommRing.toCommMonoid
OreLocalization.instAlgebra
MvPolynomial.algebra
Algebra.id
FractionRing.liftAlgebra
FractionRing.field
MvPolynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
AddGroup.toAddCancelMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
MvPolynomial.algebraMvPolynomial
FractionRing.instFaithfulSMul
MvPolynomial.instFaithfulSMul
FractionRing.instIsScalarTower
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Module.toDistribMulAction
Algebra.toModule
IsScalarTower.right
Algebra.toSMul
OreLocalization.instIsScalarTower
CommMonoid.toMonoid
Monoid.toMulAction
MvPolynomial.instIsScalarTower
MvPolynomial.isScalarTower
DistribSMul.toSMulZeroClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
DistribMulAction.toDistribSMul
β€”Algebra.IsPushout.symm
MvPolynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
FractionRing.instFaithfulSMul
MvPolynomial.instFaithfulSMul
OreLocalization.instIsScalarTower
IsScalarTower.right
MvPolynomial.isScalarTower
FractionRing.instIsScalarTower
MvPolynomial.instIsScalarTower
instIsPushoutFractionRingMvPolynomial
instIsPushoutFractionRingPolynomial πŸ“–mathematicalβ€”Algebra.IsPushout
FractionRing
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.commRing
OreLocalization.instCommSemiring
Polynomial.commSemiring
nonZeroDivisors
Semiring.toMonoidWithZero
OreLocalization.oreSetComm
CommRing.toCommMonoid
OreLocalization.instAlgebra
Polynomial.algebraOfAlgebra
Algebra.id
FractionRing.liftAlgebra
FractionRing.field
Polynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
AddGroup.toAddCancelMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Polynomial.algebra
FractionRing.instFaithfulSMul
instFaithfulSMulPolynomial
OreLocalization.instIsScalarTower
CommMonoid.toMonoid
Monoid.toMulAction
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Module.toDistribMulAction
Algebra.toModule
IsScalarTower.right
Algebra.toSMul
Polynomial.isScalarTower
DistribSMul.toSMulZeroClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
DistribMulAction.toDistribSMul
FractionRing.instIsScalarTower
instIsScalarTowerPolynomial
IsScalarTower.left
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Polynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
FractionRing.instFaithfulSMul
instFaithfulSMulPolynomial
OreLocalization.instIsScalarTower
IsScalarTower.right
Polynomial.isScalarTower
FractionRing.instIsScalarTower
instIsScalarTowerPolynomial
IsScalarTower.left
Algebra.IsPushout.comp_iff
instIsPushoutPolynomial_1
Algebra.IsAlgebraic.instIsPushout
instIsAlgebraicPolynomialOfNoZeroDivisors_1
IsDomain.to_noZeroDivisors
Polynomial.instNoZeroDivisors
Localization.isLocalization
instIsPushoutFractionRingPolynomial_1 πŸ“–mathematicalβ€”Algebra.IsPushout
CommRing.toCommSemiring
FractionRing
Polynomial
CommSemiring.toSemiring
Polynomial.commRing
OreLocalization.instCommSemiring
Polynomial.commSemiring
nonZeroDivisors
Semiring.toMonoidWithZero
OreLocalization.oreSetComm
CommRing.toCommMonoid
OreLocalization.instAlgebra
Polynomial.algebraOfAlgebra
Algebra.id
FractionRing.liftAlgebra
FractionRing.field
Polynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
AddGroup.toAddCancelMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
CommRing.toRing
Polynomial.algebra
FractionRing.instFaithfulSMul
instFaithfulSMulPolynomial
FractionRing.instIsScalarTower
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Module.toDistribMulAction
Algebra.toModule
IsScalarTower.right
Algebra.toSMul
OreLocalization.instIsScalarTower
CommMonoid.toMonoid
Monoid.toMulAction
instIsScalarTowerPolynomial
IsScalarTower.left
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Polynomial.isScalarTower
DistribSMul.toSMulZeroClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
DistribMulAction.toDistribSMul
β€”Algebra.IsPushout.symm
Polynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
FractionRing.instFaithfulSMul
instFaithfulSMulPolynomial
OreLocalization.instIsScalarTower
IsScalarTower.right
Polynomial.isScalarTower
FractionRing.instIsScalarTower
instIsScalarTowerPolynomial
IsScalarTower.left
instIsPushoutFractionRingPolynomial
integralClosure_le_algebraicClosure πŸ“–mathematicalβ€”Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
integralClosure
Subalgebra.algebraicClosure
β€”IsIntegral.isAlgebraic
IsDomain.toNontrivial
isAlgebraic_iff_isIntegral πŸ“–mathematicalβ€”IsAlgebraic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsIntegral
β€”Polynomial.monic_mul_leadingCoeff_inv
Polynomial.aeval_def
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
MulZeroClass.zero_mul
IsIntegral.isAlgebraic
EuclideanDomain.toNontrivial
rank_mvPolynomial_mvPolynomial πŸ“–mathematicalβ€”Module.rank
MvPolynomial
CommRing.toCommSemiring
CommSemiring.toSemiring
MvPolynomial.commSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
MvPolynomial.instCommRingMvPolynomial
Algebra.toModule
MvPolynomial.algebraMvPolynomial
Cardinal.lift
β€”IsBaseChange.lift_rank_eq
MvPolynomial.instNoZeroDivisors
MvPolynomial.faithfulSMul
instFaithfulSMul
MvPolynomial.instIsScalarTower
MvPolynomial.isScalarTower
IsScalarTower.right
Algebra.isPushout_iff
MvPolynomial.instIsPushout_1
Cardinal.lift_umax
Cardinal.lift_id'
rank_polynomial_polynomial πŸ“–mathematicalβ€”Module.rank
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Polynomial.commRing
Algebra.toModule
Polynomial.commSemiring
Polynomial.algebra
β€”IsBaseChange.rank_eq
Polynomial.instNoZeroDivisors
Polynomial.faithfulSMul
instFaithfulSMul
instIsScalarTowerPolynomial
IsScalarTower.left
Polynomial.isScalarTower
IsScalarTower.right
Algebra.isPushout_iff
instIsPushoutPolynomial_1
transcendental_aeval_iff πŸ“–mathematicalβ€”Transcendental
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Polynomial.ring
DivisionRing.toRing
Field.toDivisionRing
CommRing.toCommSemiring
β€”Transcendental.eq_1
Mathlib.Tactic.Contrapose.contraposeβ‚„
isAlgebraic_iff_isIntegral
IsIntegral.of_mem_of_fg
IsIntegral.fg_adjoin_singleton
Polynomial.aeval_mem_adjoin_singleton
Transcendental.of_aeval
Transcendental.aeval_of_transcendental

---

← Back to Index