Module
π Source: Mathlib/RingTheory/Artinian/Module.lean
Statistics
DivisionRing
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
instIsArtinianRing π | mathematical | β | IsArtinianRingDivisionSemiring.toSemiringtoDivisionSemiring | β | DivisionSemiring.instIsArtinianRing |
DivisionSemiring
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
instIsArtinianRing π | mathematical | β | IsArtinianRingtoSemiring | β | Finite.wellFounded_of_trans_of_irreflIdeal.instFiniteinstIsTransLtinstIrreflLt |
Function.Surjective
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isArtinianRing π | mathematical | DFunLike.coe | IsArtinianRing | β | isArtinianRing_iffOrderEmbedding.wellFoundedIsWellFounded.wf |
IsArtinian
Theorems
IsArtinianRing
Definitions
| Name | Category | Theorems |
|---|---|---|
equivPi π | CompOp | β |
fieldOfSubtypeIsMaximal π | CompOp | β |
primeSpectrumEquivMaximalSpectrum π | CompOp | |
quotNilradicalEquivPi π | CompOp | β |
Theorems
LinearEquiv
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isArtinian_iff π | mathematical | β | IsArtinian | β | RingHomInvPair.idsisArtinian_of_linearEquiv |
LinearMap
Theorems
Ring
Theorems
RingEquiv
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isArtinianRing π | mathematical | β | IsArtinianRing | β | Function.Surjective.isArtinianRingRingEquivClass.toRingHomClassinstRingEquivClasssurjective |
(root)
Definitions
Theorems
---