Documentation Verification Report

Module

πŸ“ Source: Mathlib/RingTheory/Artinian/Module.lean

Statistics

MetricCount
DefinitionsIsArtinian, IsArtinianRing, equivPi, fieldOfSubtypeIsMaximal, primeSpectrumEquivMaximalSpectrum, quotNilradicalEquivPi
6
TheoremsinstIsArtinianRing, instIsArtinianRing, isArtinianRing, bijective_of_injective_endomorphism, disjoint_partial_infs_eventually_top, eventuallyConst_of_isArtinian, exists_pow_succ_smul_dvd, finite_of_linearIndependent, induction, isSemisimpleModule_iff_jacobson, monotone_stabilizes, range_smul_pow_stabilizes, set_has_minimal, subsingleton_of_injective, surjective_of_injective_endomorphism, instFiniteMaximalSpectrum, instFinitePrimeSpectrum, instIsSemiprimaryRing, isField_of_isDomain, isMaximal_of_isPrime, isPrime_iff_isMaximal, isSemisimpleRing_iff_jacobson, isSemisimpleRing_of_isReduced, isUnitSubmonoid_eq, isUnitSubmonoid_eq_nonZeroDivisorsRight, isUnitSubmonoid_eq_of_mulOpposite, isUnit_iff_isLeftRegular, isUnit_iff_isRegular, isUnit_iff_isRegular_of_mulOpposite, isUnit_iff_isRightRegular, isUnit_iff_mem_nonZeroDivisors, isUnit_iff_mem_nonZeroDivisors_of_mulOpposite, isUnit_of_mem_nonZeroDivisors, isUnit_of_mem_nonZeroDivisors_of_mulOpposite, isUnit_submonoid_eq, nonZeroDivisorsLeft_eq_isUnitSubmonoid, of_finite, primeSpectrumEquivMaximalSpectrum_apply_asIdeal, primeSpectrumEquivMaximalSpectrum_comp_asIdeal, primeSpectrumEquivMaximalSpectrum_symm_apply_asIdeal, primeSpectrumEquivMaximalSpectrum_symm_comp_asIdeal, primeSpectrum_asIdeal_range_eq, setOf_isMaximal_finite, setOf_isPrime_finite, isArtinian_iff, eventually_codisjoint_ker_pow_range_pow, eventually_iInf_range_pow_eq, eventually_isCompl_ker_pow_range_pow, isArtinian_iff_of_bijective, isCompl_iSup_ker_pow_iInf_range_pow, isArtinian_of_zero_eq_one, isArtinianRing, instIsArtinianRingForallOfFinite, instIsArtinianRingMatrix, instIsArtinianRingProd, instIsArtinianRingQuotientIdeal, instIsDedekindFiniteMonoidOfIsArtinianRing, instIsNoetherianRingMatrix, isArtinianRing_iff, isArtinianRing_range, isArtinianRing_rangeS, isArtinian_finsupp, isArtinian_iSup, isArtinian_iff, isArtinian_iff_submodule_quotient, isArtinian_of_fg_of_artinian, isArtinian_of_fg_of_artinian', isArtinian_of_finite, isArtinian_of_injective, isArtinian_of_le, isArtinian_of_linearEquiv, isArtinian_of_quotient_of_artinian, isArtinian_of_range_eq_ker, isArtinian_of_submodule_of_artinian, isArtinian_of_surjective, isArtinian_of_surjective_algebraMap, isArtinian_of_tower, isArtinian_pi, isArtinian_pi', isArtinian_prod, isArtinian_range, isArtinian_span_of_finite, isArtinian_submodule', isArtinian_sup, monotone_stabilizes_iff_artinian, set_has_minimal_iff_artinian
86
Total92

DivisionRing

Theorems

NameKindAssumesProvesValidatesDepends On
instIsArtinianRing πŸ“–mathematicalβ€”IsArtinianRing
DivisionSemiring.toSemiring
toDivisionSemiring
β€”DivisionSemiring.instIsArtinianRing

DivisionSemiring

Theorems

NameKindAssumesProvesValidatesDepends On
instIsArtinianRing πŸ“–mathematicalβ€”IsArtinianRing
toSemiring
β€”Finite.wellFounded_of_trans_of_irrefl
Ideal.instFinite
instIsTransLt
instIrreflLt

Function.Surjective

Theorems

NameKindAssumesProvesValidatesDepends On
isArtinianRing πŸ“–mathematicalDFunLike.coeIsArtinianRingβ€”isArtinianRing_iff
OrderEmbedding.wellFounded
IsWellFounded.wf

IsArtinian

Theorems

NameKindAssumesProvesValidatesDepends On
bijective_of_injective_endomorphism πŸ“–mathematicalDFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
Function.Bijectiveβ€”surjective_of_injective_endomorphism
disjoint_partial_infs_eventually_top πŸ“–mathematicalDisjoint
OrderDual
Submodule
OrderDual.instPartialOrder
Submodule.instPartialOrder
OrderDual.instOrderBot
Preorder.toLE
PartialOrder.toPreorder
Submodule.instOrderTop
DFunLike.coe
OrderHom
Nat.instPreorder
SemilatticeSup.toPartialOrder
OrderDual.instSemilatticeSup
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
OrderHom.instFunLike
partialSups
LocallyFiniteOrder.toLocallyFiniteOrderBot
Nat.instOrderBot
Nat.instLocallyFiniteOrder
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
Top.top
Submodule.instTop
β€”monotone_stabilizes
Disjoint.eq_bot_of_ge
sup_eq_left
partialSups_add_one
le_add_right
Nat.instCanonicallyOrderedAdd
eventuallyConst_of_isArtinian πŸ“–mathematicalβ€”Filter.EventuallyConst
OrderDual
Submodule
DFunLike.coe
OrderHom
Nat.instPreorder
OrderDual.instPreorder
PartialOrder.toPreorder
Submodule.instPartialOrder
OrderHom.instFunLike
Filter.atTop
β€”monotone_stabilizes
exists_pow_succ_smul_dvd πŸ“–mathematicalβ€”SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
Monoid.toNatPow
β€”RingHomSurjective.ids
smulCommClass_self
range_smul_pow_stabilizes
finite_of_linearIndependent πŸ“–mathematicalLinearIndependent
Set
Set.instMembership
Set.Finiteβ€”WellFoundedLT.finite_of_iSupIndep
LinearIndependent.iSupIndep_span_singleton
LinearIndependent.ne_zero
induction πŸ“–β€”β€”β€”β€”WellFoundedLT.induction
isSemisimpleModule_iff_jacobson πŸ“–mathematicalβ€”IsSemisimpleModule
Module.jacobson
Bot.bot
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instBot
β€”IsSemisimpleModule.jacobson_eq_bot
Finset.exists_inf_le
isSimpleModule_iff_isCoatom
IsSemisimpleModule.of_injective
instIsSemisimpleModuleForallOfFinite
Finite.of_fintype
instIsSemisimpleModuleOfIsSimpleModule
LinearMap.ker_eq_bot
le_bot_iff
Module.jacobson.eq_1
Submodule.mem_sInf
Submodule.mem_finsetInf
Submodule.Quotient.mk_eq_zero
monotone_stabilizes πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
OrderDual
Submodule
Nat.instPreorder
OrderDual.instPreorder
PartialOrder.toPreorder
Submodule.instPartialOrder
OrderHom.instFunLike
β€”monotone_stabilizes_iff_artinian
range_smul_pow_stabilizes πŸ“–mathematicalβ€”LinearMap.range
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearMap
LinearMap.instSMul
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
Monoid.toNatPow
LinearMap.id
β€”monotone_stabilizes
RingHomSurjective.ids
smulCommClass_self
smul_assoc
IsScalarTower.left
smul_eq_mul
pow_add
add_tsub_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
set_has_minimal πŸ“–mathematicalSet.Nonempty
Submodule
Set
Set.instMembership
Preorder.toLT
PartialOrder.toPreorder
Submodule.instPartialOrder
β€”set_has_minimal_iff_artinian
subsingleton_of_injective πŸ“–β€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Prod.instAddCommMonoid
Prod.instModule
LinearMap.instFunLike
β€”β€”RingHomCompTriple.ids
surjective_of_injective_endomorphism
Prod.mk_right_injective
surjective_of_injective_endomorphism πŸ“–β€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
β€”β€”Mathlib.Tactic.Contrapose.contrapose₁
eq_1
WellFoundedLT.eq_1
isWellFounded_iff
RelEmbedding.not_wellFounded
instIsStrictOrderLt
RingHomSurjective.ids
LinearMap.range.congr_simp
pow_succ
RingHomCompTriple.ids
LinearMap.range_comp
Submodule.map_top
Submodule.map_strictMono_of_injective
Module.End.iterate_injective
Ne.lt_top
LinearMap.range_eq_top

IsArtinianRing

Definitions

NameCategoryTheorems
equivPi πŸ“–CompOpβ€”
fieldOfSubtypeIsMaximal πŸ“–CompOpβ€”
primeSpectrumEquivMaximalSpectrum πŸ“–CompOp
4 mathmath: primeSpectrumEquivMaximalSpectrum_apply_asIdeal, primeSpectrumEquivMaximalSpectrum_symm_apply_asIdeal, primeSpectrumEquivMaximalSpectrum_comp_asIdeal, primeSpectrumEquivMaximalSpectrum_symm_comp_asIdeal
quotNilradicalEquivPi πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
instFiniteMaximalSpectrum πŸ“–mathematicalβ€”Finite
MaximalSpectrum
β€”Finite.of_equiv
Set.Finite.to_subtype
setOf_isMaximal_finite
instFinitePrimeSpectrum πŸ“–mathematicalβ€”Finite
PrimeSpectrum
CommRing.toCommSemiring
β€”Finite.of_equiv
Set.Finite.to_subtype
setOf_isPrime_finite
instIsSemiprimaryRing πŸ“–mathematicalβ€”IsSemiprimaryRingβ€”Ring.instIsTwoSidedJacobson
isSemisimpleRing_iff_jacobson
instIsArtinianRingQuotientIdeal
Ring.jacobson_quotient_jacobson
IsScalarTower.left
Ideal.pow_le_pow_right
IsArtinian.monotone_stabilizes
Ideal.IsTwoSided.pow_succ
WellFounded.has_min
wellFounded_lt
Submodule.pow_zero
Submodule.one_mul
Submodule.pow_succ
mul_assoc
RingHomSurjective.ids
Ideal.span.eq_1
LinearMap.span_singleton_eq_range
LinearMap.map_le_range
Mathlib.Tactic.Contrapose.contraposeβ‚‚
Mathlib.Tactic.Push.not_and_eq
le_bot_iff
Ideal.mul_le
LE.le.eq_of_not_lt
LE.le.trans
Ideal.span_singleton_le_iff_mem
smul_eq_mul
Submodule.map_smul''
le_antisymm
Eq.trans_le
Submodule.FG.eq_bot_of_le_jacobson_smul
Submodule.fg_span
Set.finite_singleton
le_refl
isField_of_isDomain πŸ“–mathematicalβ€”IsField
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”Nontrivial.exists_pair_ne
IsDomain.toNontrivial
mul_comm
IsArtinian.exists_pow_succ_smul_dvd
mul_sub
sub_eq_zero
pow_add
pow_one
mul_assoc
mul_eq_zero
IsDomain.to_noZeroDivisors
pow_ne_zero
isReduced_of_noZeroDivisors
isMaximal_of_isPrime πŸ“–mathematicalβ€”Ideal.IsMaximal
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”Ideal.Quotient.maximal_of_isField
isField_of_isDomain
instIsArtinianRingQuotientIdeal
Ideal.instIsTwoSided_1
Ideal.Quotient.isDomain
isPrime_iff_isMaximal πŸ“–mathematicalβ€”Ideal.IsPrime
CommSemiring.toSemiring
CommRing.toCommSemiring
Ideal.IsMaximal
β€”isMaximal_of_isPrime
Ideal.IsMaximal.isPrime
isSemisimpleRing_iff_jacobson πŸ“–mathematicalβ€”IsSemisimpleRing
Ring.jacobson
Bot.bot
Ideal
Ring.toSemiring
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”IsArtinian.isSemisimpleModule_iff_jacobson
isSemisimpleRing_of_isReduced πŸ“–mathematicalβ€”IsSemisimpleRing
CommRing.toRing
β€”RingEquiv.isSemisimpleRing
instIsSemisimpleRingForallOfFinite
instFiniteMaximalSpectrum
instIsSemisimpleModuleOfIsSimpleModule
instIsSimpleModule
isUnitSubmonoid_eq πŸ“–mathematicalβ€”IsUnit.submonoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
nonZeroDivisors
β€”Submonoid.ext
isUnitSubmonoid_eq_nonZeroDivisorsRight πŸ“–mathematicalβ€”IsUnit.submonoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
nonZeroDivisorsRight
β€”Submonoid.ext
isRightRegular_iff_mem_nonZeroDivisorsRight
isUnit_iff_isRightRegular
isUnitSubmonoid_eq_of_mulOpposite πŸ“–mathematicalβ€”IsUnit.submonoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
nonZeroDivisors
β€”Submonoid.ext
isUnit_iff_isLeftRegular πŸ“–mathematicalβ€”IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IsLeftRegular
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”isRightRegular_op
isUnit_op
isUnit_iff_isRightRegular
isUnit_iff_isRegular πŸ“–mathematicalβ€”IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IsRegular
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”isRegular_iff
isUnit_iff_isRightRegular
IsRegular.left
IsUnit.isRegular
isUnit_iff_isRegular_of_mulOpposite πŸ“–mathematicalβ€”IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IsRegular
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”isRegular_iff
isUnit_iff_isLeftRegular
IsRegular.right
IsUnit.isRegular
isUnit_iff_isRightRegular πŸ“–mathematicalβ€”IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IsRightRegular
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”IsRightRegular.eq_1
IsUnit.isUnit_iff_mulRight_bijective
Function.Bijective.eq_1
IsArtinian.surjective_of_injective_endomorphism
isUnit_iff_mem_nonZeroDivisors πŸ“–mathematicalβ€”IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
β€”isUnit_iff_isRegular
isRegular_iff_mem_nonZeroDivisors
isUnit_iff_mem_nonZeroDivisors_of_mulOpposite πŸ“–mathematicalβ€”IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Submonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
β€”isUnit_iff_isRegular_of_mulOpposite
isRegular_iff_mem_nonZeroDivisors
isUnit_of_mem_nonZeroDivisors πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
Ring.toSemiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
IsUnit
MonoidWithZero.toMonoid
β€”isUnit_iff_isRegular
isRegular_iff_mem_nonZeroDivisors
isUnit_of_mem_nonZeroDivisors_of_mulOpposite πŸ“–mathematicalSubmonoid
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
Ring.toSemiring
SetLike.instMembership
Submonoid.instSetLike
nonZeroDivisors
IsUnit
MonoidWithZero.toMonoid
β€”isUnit_iff_isRegular_of_mulOpposite
isRegular_iff_mem_nonZeroDivisors
isUnit_submonoid_eq πŸ“–mathematicalβ€”IsUnit.submonoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
nonZeroDivisors
β€”isUnitSubmonoid_eq
nonZeroDivisorsLeft_eq_isUnitSubmonoid πŸ“–mathematicalβ€”IsUnit.submonoid
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
nonZeroDivisorsLeft
β€”Submonoid.ext
isLeftRegular_iff_mem_nonZeroDivisorsLeft
isUnit_iff_isLeftRegular
of_finite πŸ“–mathematicalβ€”IsArtinianRing
Ring.toSemiring
β€”isArtinian_of_tower
isArtinian_of_fg_of_artinian'
primeSpectrumEquivMaximalSpectrum_apply_asIdeal πŸ“–mathematicalβ€”MaximalSpectrum.asIdeal
CommRing.toCommSemiring
DFunLike.coe
Equiv
PrimeSpectrum
MaximalSpectrum
EquivLike.toFunLike
Equiv.instEquivLike
primeSpectrumEquivMaximalSpectrum
PrimeSpectrum.asIdeal
β€”β€”
primeSpectrumEquivMaximalSpectrum_comp_asIdeal πŸ“–mathematicalβ€”PrimeSpectrum
CommRing.toCommSemiring
MaximalSpectrum
Ideal
CommSemiring.toSemiring
MaximalSpectrum.asIdeal
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
primeSpectrumEquivMaximalSpectrum
PrimeSpectrum.asIdeal
β€”β€”
primeSpectrumEquivMaximalSpectrum_symm_apply_asIdeal πŸ“–mathematicalβ€”PrimeSpectrum.asIdeal
CommRing.toCommSemiring
DFunLike.coe
Equiv
MaximalSpectrum
PrimeSpectrum
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
primeSpectrumEquivMaximalSpectrum
MaximalSpectrum.asIdeal
β€”β€”
primeSpectrumEquivMaximalSpectrum_symm_comp_asIdeal πŸ“–mathematicalβ€”MaximalSpectrum
CommRing.toCommSemiring
PrimeSpectrum
Ideal
CommSemiring.toSemiring
PrimeSpectrum.asIdeal
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
primeSpectrumEquivMaximalSpectrum
MaximalSpectrum.asIdeal
β€”β€”
primeSpectrum_asIdeal_range_eq πŸ“–mathematicalβ€”Set.range
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
PrimeSpectrum
PrimeSpectrum.asIdeal
MaximalSpectrum
MaximalSpectrum.asIdeal
β€”PrimeSpectrum.range_asIdeal
MaximalSpectrum.range_asIdeal
setOf_isMaximal_finite πŸ“–mathematicalβ€”Set.Finite
Ideal
CommSemiring.toSemiring
setOf
Ideal.IsMaximal
β€”Finset.exists_inf_le
Set.finite_def
Ideal.IsPrime.inf_le'
Ideal.IsMaximal.isPrime
Ideal.IsMaximal.eq_of_le
Ideal.IsMaximal.ne_top
setOf_isPrime_finite πŸ“–mathematicalβ€”Set.Finite
Ideal
CommSemiring.toSemiring
CommRing.toCommSemiring
setOf
Ideal.IsPrime
β€”setOf_isMaximal_finite

LinearEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
isArtinian_iff πŸ“–mathematicalβ€”IsArtinianβ€”RingHomInvPair.ids
isArtinian_of_linearEquiv

LinearMap

Theorems

NameKindAssumesProvesValidatesDepends On
eventually_codisjoint_ker_pow_range_pow πŸ“–mathematicalβ€”Filter.Eventually
Codisjoint
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instPartialOrder
Submodule.instOrderTop
ker
RingHom.id
Semiring.toNonAssocSemiring
Module.End
LinearMap
Monoid.toNatPow
Module.End.instMonoid
range
RingHomSurjective.ids
Filter.atTop
Nat.instPreorder
β€”RingHomSurjective.ids
IsArtinian.monotone_stabilizes
Filter.eventually_atTop
SemilatticeSup.instIsDirectedOrder
codisjoint_iff
Module.End.pow_apply
mem_range
mem_range_self
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
semilinearMapClass
sub_self
sub_add_cancel
eventually_iInf_range_pow_eq πŸ“–mathematicalβ€”Filter.Eventually
Submodule
iInf
Submodule.instInfSet
range
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
Module.End
LinearMap
Monoid.toNatPow
Module.End.instMonoid
Filter.atTop
Nat.instPreorder
β€”RingHomSurjective.ids
IsArtinian.monotone_stabilizes
Filter.eventually_atTop
SemilatticeSup.instIsDirectedOrder
le_antisymm
iInf_le
le_iInf
le_or_gt
LE.le.trans
le_refl
OrderHom.monotone
LT.lt.le
eventually_isCompl_ker_pow_range_pow πŸ“–mathematicalβ€”Filter.Eventually
IsCompl
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instPartialOrder
CompleteLattice.toBoundedOrder
Submodule.completeLattice
ker
RingHom.id
Semiring.toNonAssocSemiring
Module.End
LinearMap
Monoid.toNatPow
Module.End.instMonoid
range
RingHomSurjective.ids
Filter.atTop
Nat.instPreorder
β€”Filter.mp_mem
RingHomSurjective.ids
Filter.Eventually.and
Module.End.eventually_disjoint_ker_pow_range_pow
eventually_codisjoint_ker_pow_range_pow
Filter.univ_mem'
isArtinian_iff_of_bijective πŸ“–mathematicalFunction.Bijective
DFunLike.coe
LinearMap
instFunLike
IsArtinianβ€”StrictMono.wellFoundedLT
OrderIso.strictMono
isCompl_iSup_ker_pow_iInf_range_pow πŸ“–mathematicalβ€”IsCompl
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.instPartialOrder
CompleteLattice.toBoundedOrder
Submodule.completeLattice
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
ker
RingHom.id
Semiring.toNonAssocSemiring
LinearMap
Monoid.toNatPow
Module.End.instMonoid
iInf
Submodule.instInfSet
range
RingHomSurjective.ids
β€”RingHomSurjective.ids
Filter.eventually_atTop
SemilatticeSup.instIsDirectedOrder
Filter.Eventually.and
eventually_isCompl_ker_pow_range_pow
eventually_iInf_range_pow_eq
eventually_iSup_ker_pow_eq
le_refl

Ring

Theorems

NameKindAssumesProvesValidatesDepends On
isArtinian_of_zero_eq_one πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
IsArtinianRingβ€”subsingleton_of_zero_eq_one
Finite.to_wellFoundedLT
Finite.of_fintype

RingEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
isArtinianRing πŸ“–mathematicalβ€”IsArtinianRingβ€”Function.Surjective.isArtinianRing
RingEquivClass.toRingHomClass
instRingEquivClass
surjective

(root)

Definitions

NameCategoryTheorems
IsArtinian πŸ“–MathDef
33 mathmath: isArtinian_iff, isArtinian_iff_submodule_quotient, isArtinian_of_le, isArtinian_of_fg_of_artinian', isArtinian_prod, isArtinian_span_of_finite, isArtinian_of_quotient_of_artinian, isArtinian_range, isArtinian_of_surjective_algebraMap, isArtinian_of_fg_of_artinian, isArtinian_of_submodule_of_artinian, LieSubmodule.instIsArtinianSubtypeMem, IsSemisimpleModule.finite_tfae, set_has_minimal_iff_artinian, isArtinianRing_iff, isArtinian_of_tower, isArtinian_submodule', IsArtinianRing.tfae, isArtinian_of_injective, LinearMap.isArtinian_iff_of_bijective, isArtinian_of_range_eq_ker, isArtinian_of_surjective, isArtinian_finsupp, monotone_stabilizes_iff_artinian, isArtinian_sup, IsSemiprimaryRing.isNoetherian_iff_isArtinian, isArtinian_of_finite, isFiniteLength_iff_isNoetherian_isArtinian, isArtinian_of_linearEquiv, LieSubalgebra.instIsArtinianSubtypeMem, isArtinian_pi', instIsArtinianOfIsSemisimpleModuleOfFinite, LinearEquiv.isArtinian_iff
IsArtinianRing πŸ“–MathDef
30 mathmath: AlgebraicGeometry.IsLocallyArtinian.isArtinianRing_presheaf_obj, Function.Surjective.isArtinianRing, IsSimpleRing.tfae, Module.finite_iff_isArtinianRing, AlgebraicGeometry.isLocallyArtinian_iff_of_isOpenCover, DivisionRing.instIsArtinianRing, AlgebraicGeometry.IsLocallyArtinian.isArtinianRing_of_isAffine, isArtinianRing_rangeS, isArtinianRing_iff_isNoetherianRing_krullDimLE_zero, IsSimpleRing.isSemisimpleRing_iff_isArtinianRing, DivisionSemiring.instIsArtinianRing, IsArtinianRing.of_finite, RingEquiv.isArtinianRing, isArtinianRing_iff, IsArtinianRing.instLocalization, instIsArtinianRingQuotientIdeal, IsNoetherianRing.isArtinianRing_of_krullDimLE_zero, isArtinianRing_iff_isNilpotent_maximalIdeal, isArtinianRing_range, isSimpleRing_isArtinianRing_iff, isArtinianRing_iff_isFiniteLength, Ring.isArtinian_of_zero_eq_one, AlgebraicGeometry.Scheme.isLocallyArtinianScheme_Spec, Algebra.QuasiFinite.instIsArtinianRingFiber, AlgebraicGeometry.Scheme.isArtinianScheme_Spec, instIsArtinianRingMatrix, isArtinianRing_iff_krullDimLE_zero, instIsArtinianRingProd, IsArtinianRing.localization_artinian, IsLocalRing.quotient_artinian_of_mem_minimalPrimes_of_isLocalRing

Theorems

NameKindAssumesProvesValidatesDepends On
instIsArtinianRingForallOfFinite πŸ“–mathematicalIsArtinianRingPi.semiringβ€”Finite.induction_empty_option
RingEquiv.isArtinianRing
Finite.to_wellFoundedLT
Finite.of_fintype
Unique.instSubsingleton
PEmpty.instIsEmpty
instIsArtinianRingProd
instIsArtinianRingMatrix πŸ“–mathematicalβ€”IsArtinianRing
Matrix
Matrix.semiring
Ring.toSemiring
β€”IsArtinianRing.of_finite
Matrix.Semiring.isScalarTower
IsScalarTower.left
Module.Finite.matrix
Module.Free.self
Module.Finite.self
Finite.of_fintype
instIsArtinianRingProd πŸ“–mathematicalβ€”IsArtinianRing
Prod.instSemiring
β€”OrderEmbedding.wellFoundedLT
Prod.wellFoundedLT
instIsArtinianRingQuotientIdeal πŸ“–mathematicalβ€”IsArtinianRing
HasQuotient.Quotient
Ideal
Ring.toSemiring
Ideal.instHasQuotient
Ideal.Quotient.ring
β€”isArtinian_of_tower
Ideal.Quotient.isScalarTower_right
isArtinian_of_quotient_of_artinian
instIsDedekindFiniteMonoidOfIsArtinianRing πŸ“–mathematicalβ€”IsDedekindFiniteMonoid
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
β€”IsArtinian.surjective_of_injective_endomorphism
isRightRegular_of_mul_eq_one
left_inv_eq_right_inv
instIsNoetherianRingMatrix πŸ“–mathematicalβ€”IsNoetherianRing
Matrix
Matrix.semiring
Ring.toSemiring
β€”IsNoetherianRing.of_finite
Matrix.Semiring.isScalarTower
IsScalarTower.left
Module.Finite.matrix
Module.Free.self
Module.Finite.self
Finite.of_fintype
isArtinianRing_iff πŸ“–mathematicalβ€”IsArtinianRing
IsArtinian
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”β€”
isArtinianRing_range πŸ“–mathematicalβ€”IsArtinianRing
Subring
SetLike.instMembership
Subring.instSetLike
RingHom.range
Ring.toSemiring
Subring.toRing
β€”isArtinianRing_rangeS
isArtinianRing_rangeS πŸ“–mathematicalβ€”IsArtinianRing
Subsemiring
Semiring.toNonAssocSemiring
SetLike.instMembership
Subsemiring.instSetLike
RingHom.rangeS
Subsemiring.toSemiring
β€”Function.Surjective.isArtinianRing
RingHom.instRingHomClass
RingHom.rangeSRestrict_surjective
isArtinian_finsupp πŸ“–mathematicalβ€”IsArtinian
Finsupp
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toSemiring
Finsupp.instAddCommMonoid
AddCommGroup.toAddCommMonoid
Finsupp.module
β€”isArtinian_of_linearEquiv
RingHomInvPair.ids
isArtinian_pi'
isArtinian_iSup πŸ“–mathematicalIsArtinian
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
β€”Finite.induction_empty_option
Equiv.iSup_comp
iSup_of_empty
PEmpty.instIsEmpty
Finite.to_wellFoundedLT
Finite.of_fintype
Unique.instSubsingleton
iSup_option
isArtinian_sup
isArtinian_iff πŸ“–mathematicalβ€”IsArtinian
Submodule
Preorder.toLT
PartialOrder.toPreorder
Submodule.instPartialOrder
β€”isWellFounded_iff
isArtinian_iff_submodule_quotient πŸ“–mathematicalβ€”IsArtinian
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
HasQuotient.Quotient
Submodule.hasQuotient
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
β€”isArtinian_submodule'
isArtinian_of_quotient_of_artinian
isArtinian_of_range_eq_ker
RingHomSurjective.ids
Submodule.ker_mkQ
Submodule.range_subtype
isArtinian_of_fg_of_artinian πŸ“–mathematicalSubmodule.FG
Ring.toSemiring
AddCommGroup.toAddCommMonoid
IsArtinian
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
β€”isArtinian_of_fg_of_artinian'
Module.Finite.iff_fg
isArtinian_of_fg_of_artinian' πŸ“–mathematicalβ€”IsArtinian
Ring.toSemiring
AddCommGroup.toAddCommMonoid
β€”Module.Finite.exists_fin'
isArtinian_of_surjective
isArtinian_pi'
Finite.of_fintype
isArtinian_of_finite πŸ“–mathematicalβ€”IsArtinianβ€”Finite.wellFounded_of_trans_of_irrefl
SetLike.instFinite
instIsTransLt
instIrreflLt
isArtinian_of_injective πŸ“–mathematicalDFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
IsArtinianβ€”RingHomSurjective.ids
Submodule.map_strictMono_of_injective
IsWellFounded.wf
isArtinian_of_le πŸ“–mathematicalSubmodule
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
IsArtinian
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
β€”isArtinian_of_injective
Submodule.inclusion_injective
isArtinian_of_linearEquiv πŸ“–mathematicalβ€”IsArtinianβ€”RingHomInvPair.ids
isArtinian_of_surjective
Equiv.surjective
isArtinian_of_quotient_of_artinian πŸ“–mathematicalβ€”IsArtinian
HasQuotient.Quotient
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.hasQuotient
Submodule.Quotient.addCommGroup
Submodule.Quotient.module
β€”isArtinian_of_surjective
Submodule.Quotient.mk_surjective
isArtinian_of_range_eq_ker πŸ“–mathematicalLinearMap.range
Ring.toSemiring
AddCommGroup.toAddCommMonoid
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearMap.ker
IsArtinianβ€”RingHomSurjective.ids
wellFounded_lt_exact_sequence
Submodule.instIsModularLattice
isArtinian_of_quotient_of_artinian
isArtinian_submodule'
le_rfl
LinearMap.ker_eq_bot
Submodule.ker_liftQ_eq_bot
LinearMap.surjective_rangeRestrict
Submodule.map_comap_eq
Submodule.range_liftQ
inf_comm
Submodule.comap_map_eq
LinearMap.ker_rangeRestrict
isArtinian_of_submodule_of_artinian πŸ“–mathematicalβ€”IsArtinian
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
β€”isArtinian_submodule'
isArtinian_of_surjective πŸ“–mathematicalDFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
IsArtinianβ€”Submodule.comap_strictMono_of_surjective
RingHomSurjective.ids
IsWellFounded.wf
isArtinian_of_surjective_algebraMap πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
IsArtinianβ€”OrderEmbedding.wellFoundedLT
Submodule.smul_mem
Algebra.algebraMap_eq_smul_one
smul_assoc
one_smul
Submodule.ext_iff
isArtinian_of_tower πŸ“–mathematicalβ€”IsArtinianβ€”OrderEmbedding.wellFounded
IsWellFounded.wf
isArtinian_pi πŸ“–mathematicalIsArtinian
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Pi.addCommMonoid
Pi.module
β€”Finite.induction_empty_option
isArtinian_of_linearEquiv
Finite.to_wellFoundedLT
Finite.of_fintype
Unique.instSubsingleton
PEmpty.instIsEmpty
RingHomInvPair.ids
isArtinian_prod
isArtinian_pi' πŸ“–mathematicalβ€”IsArtinian
Ring.toSemiring
Pi.addCommMonoid
AddCommGroup.toAddCommMonoid
Pi.Function.module
β€”isArtinian_pi
isArtinian_prod πŸ“–mathematicalβ€”IsArtinian
Ring.toSemiring
Prod.instAddCommMonoid
AddCommGroup.toAddCommMonoid
Prod.instModule
β€”isArtinian_of_range_eq_ker
LinearMap.range_inl
isArtinian_range πŸ“–mathematicalβ€”IsArtinian
Submodule
SetLike.instMembership
Submodule.setLike
LinearMap.range
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
Submodule.addCommMonoid
Submodule.module
β€”isArtinian_of_surjective
RingHomSurjective.ids
LinearMap.surjective_rangeRestrict
isArtinian_span_of_finite πŸ“–mathematicalβ€”IsArtinian
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
Submodule.span
Submodule.addCommMonoid
Submodule.module
β€”isArtinian_of_fg_of_artinian
Submodule.fg_def
isArtinian_submodule' πŸ“–mathematicalβ€”IsArtinian
Submodule
SetLike.instMembership
Submodule.setLike
Submodule.addCommMonoid
Submodule.module
β€”isArtinian_of_injective
Subtype.val_injective
isArtinian_sup πŸ“–mathematicalβ€”IsArtinian
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SetLike.instMembership
Submodule.setLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
Submodule.addCommMonoid
Submodule.module
β€”RingHomSurjective.ids
isArtinian_range
isArtinian_prod
Submodule.range_subtype
LinearMap.range_coprod
monotone_stabilizes_iff_artinian πŸ“–mathematicalβ€”DFunLike.coe
OrderHom
OrderDual
Submodule
Nat.instPreorder
OrderDual.instPreorder
PartialOrder.toPreorder
Submodule.instPartialOrder
OrderHom.instFunLike
IsArtinian
β€”wellFoundedGT_iff_monotone_chain_condition
set_has_minimal_iff_artinian πŸ“–mathematicalβ€”Submodule
Set
Set.instMembership
Preorder.toLT
PartialOrder.toPreorder
Submodule.instPartialOrder
IsArtinian
β€”isArtinian_iff
WellFounded.wellFounded_iff_has_min

---

← Back to Index