Documentation Verification Report

Bezout

📁 Source: Mathlib/RingTheory/Bezout.lean

Statistics

MetricCount
Definitions0
TheoremsisBezout, iff_span_pair_isPrincipal
2
Total2

Function.Surjective

Theorems

NameKindAssumesProvesValidatesDepends On
isBezout 📖mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
IsBezoutIsBezout.iff_span_pair_isPrincipal
IsBezout.span_pair_isPrincipal
IsBezout.span_gcd
Ideal.map_span
RingHom.instRingHomClass
Set.image_insert_eq
Set.image_singleton

IsBezout

Theorems

NameKindAssumesProvesValidatesDepends On
iff_span_pair_isPrincipal 📖mathematicalIsBezout
CommSemiring.toSemiring
CommRing.toCommSemiring
Submodule.IsPrincipal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Ideal.span
Set
Set.instInsert
Set.instSingletonSet
span_pair_isPrincipal
Submodule.fg_induction
Submodule.span_insert

---

← Back to Index