Documentation Verification Report

Basic

šŸ“ Source: Mathlib/RingTheory/Bialgebra/Basic.lean

Statistics

MetricCount
DefinitionsBialgebra, comulAlgHom, counitAlgHom, mk', ofAlgHom, toAlgebra, toCoalgebra, toBialgebra
8
TheoremsalgebraMap_injective, comulAlgHom_apply, comul_algebraMap, comul_mul, comul_natCast, comul_one, comul_pow, counitAlgHom_apply, counitAlgHom_self, counit_algebraMap, counit_mul, counit_natCast, counit_one, counit_pow, counit_surjective, mul_comprā‚‚_comul, mul_comprā‚‚_counit, nontrivial, toLinearMap_comulAlgHom, toLinearMap_counitAlgHom
20
Total28

Bialgebra

Definitions

NameCategoryTheorems
comulAlgHom šŸ“–CompOp
6 mathmath: comulAlgHom_apply, TensorProduct.comul_eq_algHom_toLinearMap, TensorProduct.comulAlgHom_def, CommAlgCat.mul_op_of_unop_hom, BialgHomClass.map_comp_comulAlgHom, toLinearMap_comulAlgHom
counitAlgHom šŸ“–CompOp
7 mathmath: TensorProduct.counitAlgHom_def, counitAlgHom_apply, TensorProduct.counit_eq_algHom_toLinearMap, toLinearMap_counitAlgHom, counitAlgHom_self, BialgHomClass.counitAlgHom_comp, CommAlgCat.one_op_of_unop_hom
mk' šŸ“–CompOp—
ofAlgHom šŸ“–CompOp—
toAlgebra šŸ“–CompOp
160 mathmath: comulAlgHom_apply, comul_natCast, HopfAlgCat.of_comul, BialgCat.rightUnitor_def, HopfAlgCat.rightUnitor_def, LaurentPolynomial.comul_T, commBialgCatEquivComonCommAlgCat_unitIso_inv_app, BialgEquiv.toHopfAlgIso_refl, BialgEquiv.toBialgIso_refl, TensorProduct.map_toAlgHom, CategoryTheory.Iso.toHopfAlgEquiv_trans, MonoidAlgebra.antipode_single, HopfAlgCat.tensorObj_instRing, TensorProduct.counitAlgHom_def, BialgCat.of_counit, counitBialgHom_apply, counitAlgHom_apply, BialgCat.associator_def, CommBialgCat.id_apply, BialgCat.whiskerLeft_def, HopfAlgCat.whiskerLeft_def, HopfAlgCat.of_counit, HopfAlgCat.tensorObj_instHopfAlgebra, commBialgCatEquivComonCommAlgCat_unitIso_hom_app, CommBialgCat.isoEquivBialgEquiv_apply, HopfAlgCat.Hom.toBialgHom_injective, HopfAlgCat.forget_reflects_isos, TensorProduct.comul_eq_algHom_toLinearMap, CommBialgCat.ofHom_comp, CategoryTheory.Iso.toBialgEquiv_refl, TensorProduct.map_toCoalgHom, HopfAlgebra.sum_mul_antipode_eq_smul, BialgCat.forget_reflects_isos, LaurentPolynomial.antipode_T, HopfAlgebra.sum_mul_antipode_eq_algebraMap_counit, TensorProduct.counit_eq_algHom_toLinearMap, BialgCat.Hom.toBialgHom_injective, algebraMap_injective, toLinearMap_counitAlgHom, CommBialgCat.forgetā‚‚_commAlgCat_obj, TensorProduct.comulAlgHom_def, HopfAlgCat.MonoidalCategory.inducingFunctorData_εIso, CommBialgCat.bialgEquivOfIso_apply, CategoryTheory.Iso.toBialgEquiv_trans, BialgCat.of_comul, HopfAlgCat.whiskerRight_def, counit_surjective, HopfAlgCat.MonoidalCategory.inducingFunctorData_μIso, commBialgCatEquivComonCommAlgCat_functor_obj_unop_X, CommAlgCat.mul_op_of_unop_hom, TensorProduct.assoc_tmul, HopfAlgCat.toBialgHom_comp, BialgCat.forgetā‚‚_coalgebra_obj, GroupLike.valMonoidHom_apply, HopfAlgCat.associator_def, GroupLike.val_one, comul_algebraMap, HopfAlgebra.sum_antipode_mul_eq_smul, BialgCat.tensorHom_def, CommBialgCat.reflectsIsomorphisms_forget, BialgCat.forgetā‚‚_algebra_map, CommBialgCat.inv_hom_apply, BialgEquiv.toBialgIso_symm, HopfAlgCat.forgetā‚‚_bialgebra_obj, instIsMonHomOppositeCommAlgCatOpOfHomToAlgHomBialgHom, CommBialgCat.hom_inv_apply, BialgHomClass.counitAlgHom_comp, TensorProduct.rid_toAlgEquiv, CategoryTheory.Iso.toBialgEquiv_symm, counit_natCast, BialgEquiv.toHopfAlgIso_symm, comul_mul, HopfAlgebra.mul_antipode_rTensor_comul, GroupLike.val_mul, CommBialgCat.isoEquivBialgEquiv_symm_apply, CategoryTheory.Iso.toHopfAlgEquiv_symm, BialgCat.whiskerRight_def, HopfAlgebra.counit_comp_antipode, counit_mul, TensorProduct.map_tmul, isGroupLikeElem_unitsInv, HopfAlgebra.mul_antipode_rTensor_comul_apply, TensorProduct.coalgebra_rid_eq_algebra_rid_apply, GroupLike.val_toUnits_apply, counitBialgHom_toCoalgHom, HopfAlgCat.toBialgHom_id, BialgCat.tensorObj_def, CommAlgCat.one_op_of_unop_hom, HopfAlgCat.tensorHom_def, GroupLike.val_inv, HopfAlgebra.counit_antipode, CommBialgCat.comp_apply, CommSemiring.antipode_eq_id, BialgHomClass.map_comp_comulAlgHom, BialgCat.MonoidalCategory.inducingFunctorData_μIso, CommBialgCat.bialgEquivOfIso_symm_apply, TensorProduct.lid_toAlgEquiv, BialgCat.toBialgHom_id, CategoryTheory.Iso.toHopfAlgEquiv_refl, HopfAlgCat.forgetā‚‚_bialgebra_map, counit_algebraMap, LaurentPolynomial.antipode_C, CommBialgCat.isoMk_hom, CommBialgCat.forget_obj, GroupLike.val_inv_toUnits_apply, comul_pow, BialgEquiv.toBialgIso_trans, comul_one, CommBialgCat.ofHom_apply, TensorProduct.assoc_toCoalgEquiv, LaurentPolynomial.counit_T, TensorProduct.lid_toCoalgEquiv, HopfAlgebra.mul_antipode_lTensor_comul_apply, BialgCat.forgetā‚‚_coalgebra_map, TensorProduct.rid_symm_apply, counit_one, BialgEquiv.toHopfAlgIso_trans, HopfAlgCat.tensorObj_carrier, HopfAlgCat.leftUnitor_def, HopfAlgebra.sum_antipode_mul_eq_algebraMap_counit, subsingleton_to_ring, BialgEquiv.toBialgIso_hom, commBialgCatEquivComonCommAlgCat_inverse_map_unop_hom, BialgCat.toBialgHom_comp, TensorProduct.rid_tmul, TensorProduct.lid_tmul, HopfAlgebra.mul_antipode_lTensor_comul, CategoryTheory.Iso.toBialgEquiv_toBialgHom, GroupLike.val_pow, CommBialgCat.isoMk_inv, CommBialgCat.forget_map, CommBialgCat.ofHom_id, AddMonoidAlgebra.antipode_single, TensorProduct.antipode_def, toLinearMap_comulAlgHom, CommBialgCat.forgetā‚‚_commAlgCat_map, BialgEquiv.toHopfAlgIso_hom, IsGroupLikeElem.one, CategoryTheory.Iso.toHopfAlgEquiv_toBialgHom, BialgCat.leftUnitor_def, TensorProduct.lid_symm_apply, TensorProduct.rid_toCoalgEquiv, counit_pow, mul_comprā‚‚_comul, BialgCat.forgetā‚‚_algebra_obj, CommBialgCat.hom_id, instIsCommMonObjOppositeCommAlgCatOpOfOfIsCocomm, commBialgCatEquivComonCommAlgCat_counitIso_hom_app, BialgEquiv.toHopfAlgIso_inv, CommBialgCat.hom_comp, mul_comprā‚‚_counit, commBialgCatEquivComonCommAlgCat_functor_map_unop_hom, BialgCat.MonoidalCategory.inducingFunctorData_εIso, TensorProduct.assoc_symm_tmul, TensorProduct.assoc_toAlgEquiv, isGroupLikeElem_iff_of_mul_eq_one, HopfAlgebra.antipode_one, commBialgCatEquivComonCommAlgCat_counitIso_inv_app, LaurentPolynomial.antipode_C_mul_T, BialgEquiv.toBialgIso_inv
toCoalgebra šŸ“–CompOp
142 mathmath: comulAlgHom_apply, comul_natCast, HopfAlgCat.of_comul, LaurentPolynomial.comul_T, commBialgCatEquivComonCommAlgCat_unitIso_inv_app, BialgEquiv.toHopfAlgIso_refl, BialgEquiv.toBialgIso_refl, TensorProduct.map_toAlgHom, CategoryTheory.Iso.toHopfAlgEquiv_trans, BialgCat.of_counit, counitBialgHom_apply, counitAlgHom_apply, CommBialgCat.id_apply, AddMonoidAlgebra.mapDomainBialgHom_id, HopfAlgCat.of_counit, commBialgCatEquivComonCommAlgCat_unitIso_hom_app, CommBialgCat.isoEquivBialgEquiv_apply, HopfAlgCat.Hom.toBialgHom_injective, HopfAlgCat.forget_reflects_isos, TensorProduct.comul_eq_algHom_toLinearMap, CommBialgCat.ofHom_comp, MonoidAlgebra.mapDomainBialgHom_comp, CategoryTheory.Iso.toBialgEquiv_refl, TensorProduct.map_toCoalgHom, HopfAlgebra.sum_mul_antipode_eq_smul, BialgCat.forget_reflects_isos, HopfAlgebra.sum_mul_antipode_eq_algebraMap_counit, MonoidAlgebra.mapDomainBialgHom_mapDomainBialgHom, AddMonoidAlgebra.mapDomainBialgHom_mapDomainBialgHom, TensorProduct.counit_eq_algHom_toLinearMap, BialgCat.Hom.toBialgHom_injective, toLinearMap_counitAlgHom, CommBialgCat.forgetā‚‚_commAlgCat_obj, HopfAlgCat.MonoidalCategory.inducingFunctorData_εIso, counitBialgHom_self, CommBialgCat.bialgEquivOfIso_apply, CategoryTheory.Iso.toBialgEquiv_trans, BialgCat.of_comul, counit_surjective, HopfAlgCat.MonoidalCategory.inducingFunctorData_μIso, TensorProduct.assoc_tmul, HopfAlgCat.toBialgHom_comp, BialgCat.forgetā‚‚_coalgebra_obj, GroupLike.valMonoidHom_apply, AddMonoidAlgebra.mapDomainBialgHom_apply, GroupLike.val_one, comul_algebraMap, HopfAlgebra.sum_antipode_mul_eq_smul, MonoidAlgebra.mapDomainBialgHom_apply, CommBialgCat.reflectsIsomorphisms_forget, BialgCat.forgetā‚‚_algebra_map, CommBialgCat.inv_hom_apply, BialgEquiv.toBialgIso_symm, HopfAlgCat.forgetā‚‚_bialgebra_obj, BialgEquiv.toLinearMap_ofAlgEquiv, instIsMonHomOppositeCommAlgCatOpOfHomToAlgHomBialgHom, CommBialgCat.hom_inv_apply, BialgHomClass.counitAlgHom_comp, TensorProduct.rid_toAlgEquiv, BialgHom.ofAlgHom_apply, CategoryTheory.Iso.toBialgEquiv_symm, counit_natCast, BialgEquiv.toHopfAlgIso_symm, comul_mul, HopfAlgebra.mul_antipode_rTensor_comul, GroupLike.val_mul, CommBialgCat.isoEquivBialgEquiv_symm_apply, CategoryTheory.Iso.toHopfAlgEquiv_symm, HopfAlgebra.counit_comp_antipode, counit_mul, TensorProduct.map_tmul, isGroupLikeElem_unitsInv, HopfAlgebra.mul_antipode_rTensor_comul_apply, TensorProduct.coalgebra_rid_eq_algebra_rid_apply, GroupLike.val_toUnits_apply, counitBialgHom_toCoalgHom, HopfAlgCat.toBialgHom_id, GroupLike.val_inv, HopfAlgebra.counit_antipode, CommBialgCat.comp_apply, BialgHomClass.map_comp_comulAlgHom, BialgCat.MonoidalCategory.inducingFunctorData_μIso, CommBialgCat.bialgEquivOfIso_symm_apply, TensorProduct.lid_toAlgEquiv, BialgCat.toBialgHom_id, CategoryTheory.Iso.toHopfAlgEquiv_refl, HopfAlgCat.forgetā‚‚_bialgebra_map, counit_algebraMap, AddMonoidAlgebra.mapDomainBialgHom_comp, CommBialgCat.isoMk_hom, CommBialgCat.forget_obj, GroupLike.val_inv_toUnits_apply, comul_pow, BialgEquiv.toBialgIso_trans, comul_one, CommBialgCat.ofHom_apply, TensorProduct.assoc_toCoalgEquiv, LaurentPolynomial.counit_T, TensorProduct.lid_toCoalgEquiv, HopfAlgebra.mul_antipode_lTensor_comul_apply, BialgCat.forgetā‚‚_coalgebra_map, TensorProduct.rid_symm_apply, counit_one, BialgEquiv.toHopfAlgIso_trans, HopfAlgebra.sum_antipode_mul_eq_algebraMap_counit, subsingleton_to_ring, BialgEquiv.toBialgIso_hom, commBialgCatEquivComonCommAlgCat_inverse_map_unop_hom, BialgCat.toBialgHom_comp, TensorProduct.rid_tmul, TensorProduct.lid_tmul, HopfAlgebra.mul_antipode_lTensor_comul, CategoryTheory.Iso.toBialgEquiv_toBialgHom, GroupLike.val_pow, CommBialgCat.isoMk_inv, CommBialgCat.forget_map, CommBialgCat.ofHom_id, toLinearMap_comulAlgHom, CommBialgCat.forgetā‚‚_commAlgCat_map, BialgHom.ext_of_ring_iff, BialgEquiv.toHopfAlgIso_hom, IsGroupLikeElem.one, CategoryTheory.Iso.toHopfAlgEquiv_toBialgHom, TensorProduct.lid_symm_apply, TensorProduct.rid_toCoalgEquiv, counit_pow, mul_comprā‚‚_comul, BialgCat.forgetā‚‚_algebra_obj, CommBialgCat.hom_id, commBialgCatEquivComonCommAlgCat_counitIso_hom_app, BialgEquiv.toHopfAlgIso_inv, CommBialgCat.hom_comp, mul_comprā‚‚_counit, commBialgCatEquivComonCommAlgCat_functor_map_unop_hom, BialgCat.MonoidalCategory.inducingFunctorData_εIso, TensorProduct.assoc_symm_tmul, TensorProduct.assoc_toAlgEquiv, isGroupLikeElem_iff_of_mul_eq_one, MonoidAlgebra.mapDomainBialgHom_id, commBialgCatEquivComonCommAlgCat_counitIso_inv_app, BialgEquiv.ofAlgEquiv_apply, BialgEquiv.toBialgIso_inv

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_injective šŸ“–mathematical—DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
toAlgebra
—Function.RightInverse.injective
counit_algebraMap
comulAlgHom_apply šŸ“–mathematical—DFunLike.coe
AlgHom
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
toAlgebra
Algebra.TensorProduct.instSemiring
Algebra.TensorProduct.instAlgebra
AlgHom.funLike
comulAlgHom
LinearMap
CommSemiring.toSemiring
RingHom.id
LinearMap.instFunLike
CoalgebraStruct.comul
Coalgebra.toCoalgebraStruct
toCoalgebra
——
comul_algebraMap šŸ“–mathematical—DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
toAlgebra
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
CoalgebraStruct.comul
Coalgebra.toCoalgebraStruct
toCoalgebra
RingHom
RingHom.instFunLike
algebraMap
Algebra.TensorProduct.instSemiring
Algebra.TensorProduct.instAlgebra
—AlgHom.commutes
comul_mul šŸ“–mathematical—DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
toAlgebra
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
CoalgebraStruct.comul
Coalgebra.toCoalgebraStruct
toCoalgebra
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Algebra.TensorProduct.instMul
Algebra.to_smulCommClass
IsScalarTower.right
—DFunLike.congr_fun
TensorProduct.smulCommClass_left
smulCommClass_self
TensorProduct.isScalarTower
IsScalarTower.left
Algebra.to_smulCommClass
IsScalarTower.right
mul_comprā‚‚_comul
comul_natCast šŸ“–mathematical—DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
toAlgebra
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
CoalgebraStruct.comul
Coalgebra.toCoalgebraStruct
toCoalgebra
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Algebra.TensorProduct.instAddCommMonoidWithOne
—map_natCast
AlgHomClass.toRingHomClass
AlgHom.algHomClass
comul_one šŸ“–mathematical—DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
toAlgebra
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
CoalgebraStruct.comul
Coalgebra.toCoalgebraStruct
toCoalgebra
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Algebra.TensorProduct.instOneTensorProduct
——
comul_pow šŸ“–mathematical—DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
toAlgebra
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
CoalgebraStruct.comul
Coalgebra.toCoalgebraStruct
toCoalgebra
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Algebra.TensorProduct.instSemiring
—map_pow
MonoidWithZeroHomClass.toMonoidHomClass
Algebra.to_smulCommClass
IsScalarTower.right
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
counitAlgHom_apply šŸ“–mathematical—DFunLike.coe
AlgHom
CommSemiring.toSemiring
toAlgebra
Algebra.id
AlgHom.funLike
counitAlgHom
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
LinearMap.instFunLike
CoalgebraStruct.counit
Coalgebra.toCoalgebraStruct
toCoalgebra
——
counitAlgHom_self šŸ“–mathematical—counitAlgHom
CommSemiring.toSemiring
CommSemiring.toBialgebra
AlgHom.id
Algebra.id
——
counit_algebraMap šŸ“–mathematical—DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
toAlgebra
Semiring.toModule
LinearMap.instFunLike
CoalgebraStruct.counit
Coalgebra.toCoalgebraStruct
toCoalgebra
RingHom
RingHom.instFunLike
algebraMap
—AlgHom.commutes
counit_mul šŸ“–mathematical—DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
toAlgebra
Semiring.toModule
LinearMap.instFunLike
CoalgebraStruct.counit
Coalgebra.toCoalgebraStruct
toCoalgebra
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
—DFunLike.congr_fun
Algebra.to_smulCommClass
smulCommClass_self
IsScalarTower.right
IsScalarTower.left
mul_comprā‚‚_counit
counit_natCast šŸ“–mathematical—DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
toAlgebra
Semiring.toModule
LinearMap.instFunLike
CoalgebraStruct.counit
Coalgebra.toCoalgebraStruct
toCoalgebra
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
—map_natCast
AlgHomClass.toRingHomClass
AlgHom.algHomClass
counit_one šŸ“–mathematical—DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
toAlgebra
Semiring.toModule
LinearMap.instFunLike
CoalgebraStruct.counit
Coalgebra.toCoalgebraStruct
toCoalgebra
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
——
counit_pow šŸ“–mathematical—DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
toAlgebra
Semiring.toModule
LinearMap.instFunLike
CoalgebraStruct.counit
Coalgebra.toCoalgebraStruct
toCoalgebra
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
—map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
counit_surjective šŸ“–mathematical—DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
toAlgebra
Semiring.toModule
LinearMap.instFunLike
CoalgebraStruct.counit
Coalgebra.toCoalgebraStruct
toCoalgebra
—counit_algebraMap
mul_comprā‚‚_comul šŸ“–mathematical—LinearMap.comprā‚‚
CommSemiring.toSemiring
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
toAlgebra
TensorProduct.addCommMonoid
TensorProduct.instModule
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Semiring.toModule
TensorProduct.smulCommClass_left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
TensorProduct.isScalarTower
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
IsScalarTower.left
LinearMap.mul
Algebra.to_smulCommClass
IsScalarTower.right
CoalgebraStruct.comul
Coalgebra.toCoalgebraStruct
toCoalgebra
LinearMap.compl₁₂
Algebra.TensorProduct.instNonUnitalNonAssocSemiring
Algebra.TensorProduct.instSemiring
Algebra.TensorProduct.instAlgebra
——
mul_comprā‚‚_counit šŸ“–mathematical—LinearMap.comprā‚‚
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
toAlgebra
Semiring.toModule
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Algebra.to_smulCommClass
Algebra.id
IsScalarTower.right
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
LinearMap.mul
CoalgebraStruct.counit
Coalgebra.toCoalgebraStruct
toCoalgebra
LinearMap.compl₁₂
——
nontrivial šŸ“–mathematical—Nontrivial—Function.Injective.nontrivial
algebraMap_injective
toLinearMap_comulAlgHom šŸ“–mathematical—AlgHom.toLinearMap
TensorProduct
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
toAlgebra
Algebra.TensorProduct.instSemiring
Algebra.TensorProduct.instAlgebra
comulAlgHom
CoalgebraStruct.comul
Coalgebra.toCoalgebraStruct
toCoalgebra
——
toLinearMap_counitAlgHom šŸ“–mathematical—AlgHom.toLinearMap
CommSemiring.toSemiring
toAlgebra
Algebra.id
counitAlgHom
CoalgebraStruct.counit
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Algebra.toModule
Coalgebra.toCoalgebraStruct
toCoalgebra
——

CommSemiring

Definitions

NameCategoryTheorems
toBialgebra šŸ“–CompOp
25 mathmath: BialgCat.rightUnitor_def, Bialgebra.counitBialgHom_apply, BialgCat.tensorUnit_def, AddMonoidAlgebra.mapDomainBialgHom_id, MonoidAlgebra.mapDomainBialgHom_comp, MonoidAlgebra.mapDomainBialgHom_mapDomainBialgHom, AddMonoidAlgebra.mapDomainBialgHom_mapDomainBialgHom, Bialgebra.counitBialgHom_self, AddMonoidAlgebra.mapDomainBialgHom_apply, Bialgebra.counitAlgHom_self, MonoidAlgebra.mapDomainBialgHom_apply, Bialgebra.TensorProduct.rid_toAlgEquiv, Bialgebra.counitBialgHom_toCoalgHom, Bialgebra.TensorProduct.lid_toAlgEquiv, AddMonoidAlgebra.mapDomainBialgHom_comp, Bialgebra.TensorProduct.lid_toCoalgEquiv, Bialgebra.TensorProduct.rid_symm_apply, Bialgebra.subsingleton_to_ring, Bialgebra.TensorProduct.rid_tmul, Bialgebra.TensorProduct.lid_tmul, BialgHom.ext_of_ring_iff, BialgCat.leftUnitor_def, Bialgebra.TensorProduct.lid_symm_apply, Bialgebra.TensorProduct.rid_toCoalgEquiv, MonoidAlgebra.mapDomainBialgHom_id

(root)

Definitions

NameCategoryTheorems
Bialgebra šŸ“–CompData—

---

← Back to Index