| Name | Category | Theorems |
comulAlgHom š | CompOp | 6 mathmath: comulAlgHom_apply, TensorProduct.comul_eq_algHom_toLinearMap, TensorProduct.comulAlgHom_def, CommAlgCat.mul_op_of_unop_hom, BialgHomClass.map_comp_comulAlgHom, toLinearMap_comulAlgHom
|
counitAlgHom š | CompOp | 7 mathmath: TensorProduct.counitAlgHom_def, counitAlgHom_apply, TensorProduct.counit_eq_algHom_toLinearMap, toLinearMap_counitAlgHom, counitAlgHom_self, BialgHomClass.counitAlgHom_comp, CommAlgCat.one_op_of_unop_hom
|
mk' š | CompOp | ā |
ofAlgHom š | CompOp | ā |
toAlgebra š | CompOp | 160 mathmath: comulAlgHom_apply, comul_natCast, HopfAlgCat.of_comul, BialgCat.rightUnitor_def, HopfAlgCat.rightUnitor_def, LaurentPolynomial.comul_T, commBialgCatEquivComonCommAlgCat_unitIso_inv_app, BialgEquiv.toHopfAlgIso_refl, BialgEquiv.toBialgIso_refl, TensorProduct.map_toAlgHom, CategoryTheory.Iso.toHopfAlgEquiv_trans, MonoidAlgebra.antipode_single, HopfAlgCat.tensorObj_instRing, TensorProduct.counitAlgHom_def, BialgCat.of_counit, counitBialgHom_apply, counitAlgHom_apply, BialgCat.associator_def, CommBialgCat.id_apply, BialgCat.whiskerLeft_def, HopfAlgCat.whiskerLeft_def, HopfAlgCat.of_counit, HopfAlgCat.tensorObj_instHopfAlgebra, commBialgCatEquivComonCommAlgCat_unitIso_hom_app, CommBialgCat.isoEquivBialgEquiv_apply, HopfAlgCat.Hom.toBialgHom_injective, HopfAlgCat.forget_reflects_isos, TensorProduct.comul_eq_algHom_toLinearMap, CommBialgCat.ofHom_comp, CategoryTheory.Iso.toBialgEquiv_refl, TensorProduct.map_toCoalgHom, HopfAlgebra.sum_mul_antipode_eq_smul, BialgCat.forget_reflects_isos, LaurentPolynomial.antipode_T, HopfAlgebra.sum_mul_antipode_eq_algebraMap_counit, TensorProduct.counit_eq_algHom_toLinearMap, BialgCat.Hom.toBialgHom_injective, algebraMap_injective, toLinearMap_counitAlgHom, CommBialgCat.forgetā_commAlgCat_obj, TensorProduct.comulAlgHom_def, HopfAlgCat.MonoidalCategory.inducingFunctorData_εIso, CommBialgCat.bialgEquivOfIso_apply, CategoryTheory.Iso.toBialgEquiv_trans, BialgCat.of_comul, HopfAlgCat.whiskerRight_def, counit_surjective, HopfAlgCat.MonoidalCategory.inducingFunctorData_μIso, commBialgCatEquivComonCommAlgCat_functor_obj_unop_X, CommAlgCat.mul_op_of_unop_hom, TensorProduct.assoc_tmul, HopfAlgCat.toBialgHom_comp, BialgCat.forgetā_coalgebra_obj, GroupLike.valMonoidHom_apply, HopfAlgCat.associator_def, GroupLike.val_one, comul_algebraMap, HopfAlgebra.sum_antipode_mul_eq_smul, BialgCat.tensorHom_def, CommBialgCat.reflectsIsomorphisms_forget, BialgCat.forgetā_algebra_map, CommBialgCat.inv_hom_apply, BialgEquiv.toBialgIso_symm, HopfAlgCat.forgetā_bialgebra_obj, instIsMonHomOppositeCommAlgCatOpOfHomToAlgHomBialgHom, CommBialgCat.hom_inv_apply, BialgHomClass.counitAlgHom_comp, TensorProduct.rid_toAlgEquiv, CategoryTheory.Iso.toBialgEquiv_symm, counit_natCast, BialgEquiv.toHopfAlgIso_symm, comul_mul, HopfAlgebra.mul_antipode_rTensor_comul, GroupLike.val_mul, CommBialgCat.isoEquivBialgEquiv_symm_apply, CategoryTheory.Iso.toHopfAlgEquiv_symm, BialgCat.whiskerRight_def, HopfAlgebra.counit_comp_antipode, counit_mul, TensorProduct.map_tmul, isGroupLikeElem_unitsInv, HopfAlgebra.mul_antipode_rTensor_comul_apply, TensorProduct.coalgebra_rid_eq_algebra_rid_apply, GroupLike.val_toUnits_apply, counitBialgHom_toCoalgHom, HopfAlgCat.toBialgHom_id, BialgCat.tensorObj_def, CommAlgCat.one_op_of_unop_hom, HopfAlgCat.tensorHom_def, GroupLike.val_inv, HopfAlgebra.counit_antipode, CommBialgCat.comp_apply, CommSemiring.antipode_eq_id, BialgHomClass.map_comp_comulAlgHom, BialgCat.MonoidalCategory.inducingFunctorData_μIso, CommBialgCat.bialgEquivOfIso_symm_apply, TensorProduct.lid_toAlgEquiv, BialgCat.toBialgHom_id, CategoryTheory.Iso.toHopfAlgEquiv_refl, HopfAlgCat.forgetā_bialgebra_map, counit_algebraMap, LaurentPolynomial.antipode_C, CommBialgCat.isoMk_hom, CommBialgCat.forget_obj, GroupLike.val_inv_toUnits_apply, comul_pow, BialgEquiv.toBialgIso_trans, comul_one, CommBialgCat.ofHom_apply, TensorProduct.assoc_toCoalgEquiv, LaurentPolynomial.counit_T, TensorProduct.lid_toCoalgEquiv, HopfAlgebra.mul_antipode_lTensor_comul_apply, BialgCat.forgetā_coalgebra_map, TensorProduct.rid_symm_apply, counit_one, BialgEquiv.toHopfAlgIso_trans, HopfAlgCat.tensorObj_carrier, HopfAlgCat.leftUnitor_def, HopfAlgebra.sum_antipode_mul_eq_algebraMap_counit, subsingleton_to_ring, BialgEquiv.toBialgIso_hom, commBialgCatEquivComonCommAlgCat_inverse_map_unop_hom, BialgCat.toBialgHom_comp, TensorProduct.rid_tmul, TensorProduct.lid_tmul, HopfAlgebra.mul_antipode_lTensor_comul, CategoryTheory.Iso.toBialgEquiv_toBialgHom, GroupLike.val_pow, CommBialgCat.isoMk_inv, CommBialgCat.forget_map, CommBialgCat.ofHom_id, AddMonoidAlgebra.antipode_single, TensorProduct.antipode_def, toLinearMap_comulAlgHom, CommBialgCat.forgetā_commAlgCat_map, BialgEquiv.toHopfAlgIso_hom, IsGroupLikeElem.one, CategoryTheory.Iso.toHopfAlgEquiv_toBialgHom, BialgCat.leftUnitor_def, TensorProduct.lid_symm_apply, TensorProduct.rid_toCoalgEquiv, counit_pow, mul_comprā_comul, BialgCat.forgetā_algebra_obj, CommBialgCat.hom_id, instIsCommMonObjOppositeCommAlgCatOpOfOfIsCocomm, commBialgCatEquivComonCommAlgCat_counitIso_hom_app, BialgEquiv.toHopfAlgIso_inv, CommBialgCat.hom_comp, mul_comprā_counit, commBialgCatEquivComonCommAlgCat_functor_map_unop_hom, BialgCat.MonoidalCategory.inducingFunctorData_εIso, TensorProduct.assoc_symm_tmul, TensorProduct.assoc_toAlgEquiv, isGroupLikeElem_iff_of_mul_eq_one, HopfAlgebra.antipode_one, commBialgCatEquivComonCommAlgCat_counitIso_inv_app, LaurentPolynomial.antipode_C_mul_T, BialgEquiv.toBialgIso_inv
|
toCoalgebra š | CompOp | 142 mathmath: comulAlgHom_apply, comul_natCast, HopfAlgCat.of_comul, LaurentPolynomial.comul_T, commBialgCatEquivComonCommAlgCat_unitIso_inv_app, BialgEquiv.toHopfAlgIso_refl, BialgEquiv.toBialgIso_refl, TensorProduct.map_toAlgHom, CategoryTheory.Iso.toHopfAlgEquiv_trans, BialgCat.of_counit, counitBialgHom_apply, counitAlgHom_apply, CommBialgCat.id_apply, AddMonoidAlgebra.mapDomainBialgHom_id, HopfAlgCat.of_counit, commBialgCatEquivComonCommAlgCat_unitIso_hom_app, CommBialgCat.isoEquivBialgEquiv_apply, HopfAlgCat.Hom.toBialgHom_injective, HopfAlgCat.forget_reflects_isos, TensorProduct.comul_eq_algHom_toLinearMap, CommBialgCat.ofHom_comp, MonoidAlgebra.mapDomainBialgHom_comp, CategoryTheory.Iso.toBialgEquiv_refl, TensorProduct.map_toCoalgHom, HopfAlgebra.sum_mul_antipode_eq_smul, BialgCat.forget_reflects_isos, HopfAlgebra.sum_mul_antipode_eq_algebraMap_counit, MonoidAlgebra.mapDomainBialgHom_mapDomainBialgHom, AddMonoidAlgebra.mapDomainBialgHom_mapDomainBialgHom, TensorProduct.counit_eq_algHom_toLinearMap, BialgCat.Hom.toBialgHom_injective, toLinearMap_counitAlgHom, CommBialgCat.forgetā_commAlgCat_obj, HopfAlgCat.MonoidalCategory.inducingFunctorData_εIso, counitBialgHom_self, CommBialgCat.bialgEquivOfIso_apply, CategoryTheory.Iso.toBialgEquiv_trans, BialgCat.of_comul, counit_surjective, HopfAlgCat.MonoidalCategory.inducingFunctorData_μIso, TensorProduct.assoc_tmul, HopfAlgCat.toBialgHom_comp, BialgCat.forgetā_coalgebra_obj, GroupLike.valMonoidHom_apply, AddMonoidAlgebra.mapDomainBialgHom_apply, GroupLike.val_one, comul_algebraMap, HopfAlgebra.sum_antipode_mul_eq_smul, MonoidAlgebra.mapDomainBialgHom_apply, CommBialgCat.reflectsIsomorphisms_forget, BialgCat.forgetā_algebra_map, CommBialgCat.inv_hom_apply, BialgEquiv.toBialgIso_symm, HopfAlgCat.forgetā_bialgebra_obj, BialgEquiv.toLinearMap_ofAlgEquiv, instIsMonHomOppositeCommAlgCatOpOfHomToAlgHomBialgHom, CommBialgCat.hom_inv_apply, BialgHomClass.counitAlgHom_comp, TensorProduct.rid_toAlgEquiv, BialgHom.ofAlgHom_apply, CategoryTheory.Iso.toBialgEquiv_symm, counit_natCast, BialgEquiv.toHopfAlgIso_symm, comul_mul, HopfAlgebra.mul_antipode_rTensor_comul, GroupLike.val_mul, CommBialgCat.isoEquivBialgEquiv_symm_apply, CategoryTheory.Iso.toHopfAlgEquiv_symm, HopfAlgebra.counit_comp_antipode, counit_mul, TensorProduct.map_tmul, isGroupLikeElem_unitsInv, HopfAlgebra.mul_antipode_rTensor_comul_apply, TensorProduct.coalgebra_rid_eq_algebra_rid_apply, GroupLike.val_toUnits_apply, counitBialgHom_toCoalgHom, HopfAlgCat.toBialgHom_id, GroupLike.val_inv, HopfAlgebra.counit_antipode, CommBialgCat.comp_apply, BialgHomClass.map_comp_comulAlgHom, BialgCat.MonoidalCategory.inducingFunctorData_μIso, CommBialgCat.bialgEquivOfIso_symm_apply, TensorProduct.lid_toAlgEquiv, BialgCat.toBialgHom_id, CategoryTheory.Iso.toHopfAlgEquiv_refl, HopfAlgCat.forgetā_bialgebra_map, counit_algebraMap, AddMonoidAlgebra.mapDomainBialgHom_comp, CommBialgCat.isoMk_hom, CommBialgCat.forget_obj, GroupLike.val_inv_toUnits_apply, comul_pow, BialgEquiv.toBialgIso_trans, comul_one, CommBialgCat.ofHom_apply, TensorProduct.assoc_toCoalgEquiv, LaurentPolynomial.counit_T, TensorProduct.lid_toCoalgEquiv, HopfAlgebra.mul_antipode_lTensor_comul_apply, BialgCat.forgetā_coalgebra_map, TensorProduct.rid_symm_apply, counit_one, BialgEquiv.toHopfAlgIso_trans, HopfAlgebra.sum_antipode_mul_eq_algebraMap_counit, subsingleton_to_ring, BialgEquiv.toBialgIso_hom, commBialgCatEquivComonCommAlgCat_inverse_map_unop_hom, BialgCat.toBialgHom_comp, TensorProduct.rid_tmul, TensorProduct.lid_tmul, HopfAlgebra.mul_antipode_lTensor_comul, CategoryTheory.Iso.toBialgEquiv_toBialgHom, GroupLike.val_pow, CommBialgCat.isoMk_inv, CommBialgCat.forget_map, CommBialgCat.ofHom_id, toLinearMap_comulAlgHom, CommBialgCat.forgetā_commAlgCat_map, BialgHom.ext_of_ring_iff, BialgEquiv.toHopfAlgIso_hom, IsGroupLikeElem.one, CategoryTheory.Iso.toHopfAlgEquiv_toBialgHom, TensorProduct.lid_symm_apply, TensorProduct.rid_toCoalgEquiv, counit_pow, mul_comprā_comul, BialgCat.forgetā_algebra_obj, CommBialgCat.hom_id, commBialgCatEquivComonCommAlgCat_counitIso_hom_app, BialgEquiv.toHopfAlgIso_inv, CommBialgCat.hom_comp, mul_comprā_counit, commBialgCatEquivComonCommAlgCat_functor_map_unop_hom, BialgCat.MonoidalCategory.inducingFunctorData_εIso, TensorProduct.assoc_symm_tmul, TensorProduct.assoc_toAlgEquiv, isGroupLikeElem_iff_of_mul_eq_one, MonoidAlgebra.mapDomainBialgHom_id, commBialgCatEquivComonCommAlgCat_counitIso_inv_app, BialgEquiv.ofAlgEquiv_apply, BialgEquiv.toBialgIso_inv
|