| Name | Category | Theorems |
instEquivLike π | CompOp | 35 mathmath: coe_toEquiv_trans, instBialgEquivClass, coe_toBialgHom, toRingEquiv_toRingHom, toCoalgEquiv_eq_coe, symm_comp, coe_toAlgEquiv, trans_apply, toBialgHom_inj, toLinearMap_ofAlgEquiv, toCoalgEquiv_toCoalgHom, Bialgebra.TensorProduct.rid_toAlgEquiv, toAlgEquiv_eq_coe, toAlgEquiv_toRingHom, toBialgHom_eq_coe, coe_toCoalgEquiv, refl_toBialgHom, symm_toCoalgEquiv, coe_ofBialgHom, toBialgHom_toAlgHom, trans_toBialgHom, trans_toCoalgEquiv, trans_symm_apply, Bialgebra.TensorProduct.lid_toAlgEquiv, coe_toEquiv_symm, Bialgebra.TensorProduct.assoc_toCoalgEquiv, Bialgebra.TensorProduct.lid_toCoalgEquiv, CategoryTheory.Iso.toBialgEquiv_toBialgHom, CategoryTheory.Iso.toHopfAlgEquiv_toBialgHom, Bialgebra.TensorProduct.rid_toCoalgEquiv, refl_toCoalgEquiv, comp_symm, coe_mk, Bialgebra.TensorProduct.assoc_toAlgEquiv, coe_coe
|
instFunLike π | CompOp | 43 mathmath: coe_toBialgHom, congr_fun, coe_toEquiv, congr_arg, ext_iff, toRingEquiv_toRingHom, symm_comp, CommBialgCat.bialgEquivOfIso_apply, apply_symm_apply, Bialgebra.TensorProduct.assoc_tmul, invFun_eq_symm, coe_toAlgEquiv, trans_apply, toBialgHom_inj, toCoalgEquiv_toCoalgHom, coe_ofBijective, toAlgEquiv_toRingHom, toBialgHom_eq_coe, coe_toCoalgEquiv, refl_toBialgHom, coe_ofBialgHom, toBialgHom_toAlgHom, trans_toBialgHom, CommBialgCat.isoMk_hom, coe_symm_toEquiv, Bialgebra.TensorProduct.rid_symm_apply, toBialgIso_hom, Bialgebra.TensorProduct.rid_tmul, Bialgebra.TensorProduct.lid_tmul, CategoryTheory.Iso.toBialgEquiv_toBialgHom, CommBialgCat.isoMk_inv, toHopfAlgIso_hom, symm_apply_apply, CategoryTheory.Iso.toHopfAlgEquiv_toBialgHom, Bialgebra.TensorProduct.lid_symm_apply, comp_symm, ofBijective_apply, toHopfAlgIso_inv, Bialgebra.TensorProduct.assoc_symm_tmul, coe_coe, refl_apply, ofAlgEquiv_apply, toBialgIso_inv
|
ofAlgEquiv π | CompOp | 2 mathmath: toLinearMap_ofAlgEquiv, ofAlgEquiv_apply
|
ofBialgHom π | CompOp | 2 mathmath: ofBialgHom_symm, coe_ofBialgHom
|
ofBijective π | CompOp | 2 mathmath: coe_ofBijective, ofBijective_apply
|
refl π | CompOp | 8 mathmath: toHopfAlgIso_refl, toBialgIso_refl, refl_symm_apply, CategoryTheory.Iso.toBialgEquiv_refl, refl_toBialgHom, CategoryTheory.Iso.toHopfAlgEquiv_refl, refl_toCoalgEquiv, refl_apply
|
toAlgEquiv π | CompOp | 1 mathmath: toAlgEquiv_eq_coe
|
toBialgHom π | CompOp | 2 mathmath: toBialgHom_eq_coe, toBialgHom_injective
|
toCoalgEquiv π | CompOp | 6 mathmath: refl_symm_apply, toCoalgEquiv_eq_coe, invFun_eq_symm, map_mul', trans_symm_apply, CommBialgCat.bialgEquivOfIso_symm_apply
|
toEquiv π | CompOp | 6 mathmath: toEquiv_inj, coe_toEquiv, toEquiv_symm, toEquiv_injective, coe_toEquiv_symm, coe_symm_toEquiv
|
toMulEquiv π | CompOp | β |
trans π | CompOp | 9 mathmath: coe_toEquiv_trans, CategoryTheory.Iso.toHopfAlgEquiv_trans, CategoryTheory.Iso.toBialgEquiv_trans, trans_apply, trans_toBialgHom, trans_toCoalgEquiv, trans_symm_apply, toBialgIso_trans, toHopfAlgIso_trans
|