Documentation Verification Report

Binomial

πŸ“ Source: Mathlib/RingTheory/Binomial.lean

Statistics

MetricCount
DefinitionsBinomialRing, multichoose, instBinomialRing, multichoose, instBinomialRing, multichoose, instBinomialRingOfModuleNNRat
7
Theoremsfactorial_nsmul_multichoose, toIsAddTorsionFree, ascPochhammer_smeval_cast, ascPochhammer_smeval_eq_eval, ascPochhammer_smeval_neg_eq_descPochhammer, descPochhammer_smeval_eq_ascPochhammer, descPochhammer_smeval_eq_descFactorial, add_choose_eq, ascPochhammer_succ_succ, choose_add_smul_choose, choose_eq_nat_choose, choose_eq_smul, choose_natCast, choose_neg, choose_neg', choose_one_right, choose_one_right', choose_smul_choose, choose_succ_succ, choose_zero_ite, choose_zero_pos, choose_zero_right, choose_zero_right', choose_zero_succ, descPochhammer_eq_factorial_smul_choose, descPochhammer_smeval_add, descPochhammer_succ_succ_smeval, factorial_nsmul_multichoose_eq_ascPochhammer, map_choose, map_multichoose, multichoose_eq, multichoose_eq_multichoose, multichoose_neg_add, multichoose_neg_of_lt, multichoose_neg_self, multichoose_neg_succ, multichoose_one, multichoose_one_right, multichoose_one_right', multichoose_succ_neg_natCast, multichoose_succ_succ, multichoose_two, multichoose_zero_right, multichoose_zero_right', multichoose_zero_succ, smeval_ascPochhammer_int_ofNat, smeval_ascPochhammer_nat_cast, smeval_ascPochhammer_neg_add, smeval_ascPochhammer_neg_of_lt, smeval_ascPochhammer_self_neg, smeval_ascPochhammer_succ_neg
51
Total58

BinomialRing

Definitions

NameCategoryTheorems
multichoose πŸ“–CompOp
2 mathmath: Ring.multichoose_eq_multichoose, factorial_nsmul_multichoose

Theorems

NameKindAssumesProvesValidatesDepends On
factorial_nsmul_multichoose πŸ“–mathematicalβ€”AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
Nat.factorial
multichoose
Polynomial.smeval
Nat.instSemiring
ascPochhammer
Module.toMulActionWithZero
AddCommMonoid.toNatModule
β€”β€”
toIsAddTorsionFree πŸ“–mathematicalβ€”IsAddTorsionFree
AddCommMonoid.toAddMonoid
β€”β€”

Int

Definitions

NameCategoryTheorems
instBinomialRing πŸ“–CompOp
8 mathmath: Ring.multichoose_neg_self, Ring.multichoose_neg_succ, LaurentSeries.hasseDeriv_coeff, LaurentSeries.hasseDeriv_single_add, Ring.multichoose_neg_of_lt, Ring.multichoose_neg_add, PowerSeries.rescale_neg_one_invOneSubPow, LaurentSeries.hasseDeriv_single
multichoose πŸ“–CompOpβ€”

Nat

Definitions

NameCategoryTheorems
instBinomialRing πŸ“–CompOpβ€”

Polynomial

Theorems

NameKindAssumesProvesValidatesDepends On
ascPochhammer_smeval_cast πŸ“–mathematicalβ€”smeval
ascPochhammer
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Module.toMulActionWithZero
Nat.instSemiring
AddCommMonoid.toNatModule
β€”smeval_one
one_smul
ascPochhammer_succ_right
mul_add
Distrib.leftDistribClass
smeval_add
smeval_mul_X
NonUnitalNonAssocSemiring.nat_isScalarTower
smeval_C_mul
Nat.cast_smul_eq_nsmul
nsmul_eq_mul
ascPochhammer_smeval_eq_eval πŸ“–mathematicalβ€”smeval
Nat.instSemiring
ascPochhammer
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toMulActionWithZero
AddCommMonoid.toNatModule
eval
β€”eval_eq_smeval
ascPochhammer_smeval_cast
IsScalarTower.left
Monoid.PowAssoc
ascPochhammer_smeval_neg_eq_descPochhammer πŸ“–mathematicalβ€”smeval
Nat.instSemiring
ascPochhammer
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Module.toMulActionWithZero
AddCommMonoid.toNatModule
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NonUnitalNonAssocRing.toAddCommGroup
Units
Int.instMonoid
Units.instSMul
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
Int.negOnePow
Ring.toSemiring
Int.instRing
descPochhammer
AddCommGroup.toIntModule
β€”smeval_one
npow_zero
one_smul
CharP.cast_eq_zero
CharP.ofCharZero
Int.instCharZero
ascPochhammer_succ_right
smeval_mul
NonUnitalNonAssocSemiring.nat_isScalarTower
AddMonoid.nat_smulCommClass
descPochhammer_succ_right
sub_eq_add_neg
NonUnitalNonAssocRing.int_isScalarTower
AddGroup.int_smulCommClass
add_comm
smeval_add
smeval_natCast
nsmul_eq_mul
mul_one
smeval_X
npow_one
smeval_neg
neg_add_rev
neg_neg
neg_mul_comm
Int.negOnePow_succ
Units.neg_smul
Units.smul_def
smul_mul_assoc
neg_mul
descPochhammer_smeval_eq_ascPochhammer πŸ“–mathematicalβ€”smeval
Ring.toSemiring
Int.instRing
descPochhammer
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Module.toMulActionWithZero
AddCommGroup.toIntModule
NonUnitalNonAssocRing.toAddCommGroup
Nat.instSemiring
ascPochhammer
AddCommMonoid.toNatModule
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
AddMonoidWithOne.toOne
β€”smeval_one
npow_zero
Nat.cast_succ
sub_add
add_sub_cancel_right
descPochhammer_succ_right
smeval_mul
NonUnitalNonAssocRing.int_isScalarTower
AddGroup.int_smulCommClass
ascPochhammer_succ_left
X_mul
smeval_mul_X
NonUnitalNonAssocSemiring.nat_isScalarTower
smeval_comp
AddMonoid.nat_smulCommClass
smeval_sub
C_eq_natCast
smeval_add
smeval_C
smeval_X
npow_one
zsmul_one
Int.cast_natCast
one_smul
descPochhammer_smeval_eq_descFactorial πŸ“–mathematicalβ€”smeval
Ring.toSemiring
Int.instRing
descPochhammer
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Module.toMulActionWithZero
AddCommGroup.toIntModule
NonUnitalNonAssocRing.toAddCommGroup
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
Nat.descFactorial
β€”descPochhammer_zero
Nat.descFactorial_zero
Nat.cast_one
smeval_one
npow_zero
one_smul
descPochhammer_succ_right
Nat.descFactorial_succ
smeval_mul
NonUnitalNonAssocRing.int_isScalarTower
AddGroup.int_smulCommClass
mul_comm
Nat.cast_mul
smeval_sub
smeval_X
smeval_natCast
npow_one
nsmul_one
Nat.descFactorial_eq_zero_iff_lt
Nat.cast_zero
MulZeroClass.zero_mul
Nat.cast_sub

Ring

Definitions

NameCategoryTheorems
multichoose πŸ“–CompOp
20 mathmath: multichoose_two, map_multichoose, multichoose_neg_self, multichoose_neg_succ, multichoose_zero_succ, multichoose_zero_right, factorial_nsmul_multichoose_eq_ascPochhammer, multichoose_zero_right', multichoose_eq_multichoose, ascPochhammer_succ_succ, choose_neg', multichoose_succ_neg_natCast, multichoose_eq, multichoose_neg_of_lt, PadicInt.continuous_multichoose, multichoose_one_right', multichoose_one, multichoose_succ_succ, multichoose_neg_add, multichoose_one_right

Theorems

NameKindAssumesProvesValidatesDepends On
add_choose_eq πŸ“–mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
toNonAssocRing
choose
NonAssocRing.toAddCommGroupWithOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
toSemiring
Distrib.toAdd
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.HasAntidiagonal.antidiagonal
Nat.instAddMonoid
Finset.Nat.instHasAntidiagonal
β€”BinomialRing.toIsAddTorsionFree
Nat.factorial_ne_zero
descPochhammer_eq_factorial_smul_choose
Monoid.PowAssoc
Finset.smul_sum
descPochhammer_smeval_add
Finset.sum_congr
Nat.choose_mul_factorial_mul_factorial
Finset.antidiagonal.fst_le
Nat.instCanonicallyOrderedAdd
tsub_eq_of_eq_add_rev
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
List.Nat.mem_antidiagonal
mul_assoc
nsmul_eq_mul
Nat.cast_mul
Nat.cast_commute
ascPochhammer_succ_succ πŸ“–mathematicalβ€”Polynomial.smeval
Nat.instSemiring
ascPochhammer
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Module.toMulActionWithZero
AddCommMonoid.toNatModule
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
AddMonoid.toNatSMul
AddMonoidWithOne.toAddMonoid
Nat.factorial
multichoose
β€”ascPochhammer_succ_right
ascPochhammer_succ_left
mul_comm
Polynomial.smeval_mul
NonUnitalNonAssocSemiring.nat_isScalarTower
AddMonoid.nat_smulCommClass
Polynomial.smeval_add
Polynomial.smeval_X
Polynomial.smeval_comp
Nat.factorial.eq_2
SemigroupAction.mul_smul
factorial_nsmul_multichoose_eq_ascPochhammer
npow_one
Polynomial.smeval_one
npow_zero
one_smul
Polynomial.C_eq_natCast
Polynomial.smeval_C
add_assoc
add_mul
Distrib.rightDistribClass
add_comm
nsmul_one
nsmul_eq_mul
add_rotate'
succ_nsmul
one_mul
choose_add_smul_choose πŸ“–mathematicalβ€”AddMonoid.toNatSMul
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
Nat.choose
choose
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
AddMonoidWithOne.toNatCast
Distrib.toMul
β€”choose_smul_choose
add_sub_cancel_right
choose_eq_nat_choose πŸ“–mathematicalβ€”choose
NonAssocRing.toAddCommGroupWithOne
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
Nat.choose
β€”choose_natCast
choose_eq_smul πŸ“–mathematicalβ€”choose
NonAssocRing.toAddCommGroupWithOne
NonAssocCommRing.toNonAssocRing
CommRing.toNonAssocCommRing
Field.toCommRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instBinomialRingOfModuleNNRat
AddCommMonoidWithOne.toAddCommMonoid
AddCommGroupWithOne.toAddCommMonoidWithOne
Algebra.toModule
NNRat
instCommSemiringNNRat
DivisionSemiring.toNNRatAlgebra
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Nat.factorial
Polynomial.smeval
toSemiring
Int.instRing
descPochhammer
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toMulActionWithZero
AddCommGroup.toIntModule
toAddCommGroup
β€”descPochhammer_eq_factorial_smul_choose
Monoid.PowAssoc
Nat.cast_smul_eq_nsmul
inv_smul_smulβ‚€
Nat.factorial_ne_zero
choose_natCast πŸ“–mathematicalβ€”choose
NonAssocRing.toAddCommGroupWithOne
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
Nat.choose
β€”BinomialRing.toIsAddTorsionFree
Nat.factorial_ne_zero
descPochhammer_eq_factorial_smul_choose
nsmul_eq_mul
Nat.cast_mul
Nat.descFactorial_eq_factorial_mul_choose
Polynomial.descPochhammer_smeval_eq_descFactorial
choose_neg πŸ“–mathematicalβ€”choose
NonAssocRing.toAddCommGroupWithOne
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NonUnitalNonAssocRing.toAddCommGroup
NonAssocRing.toNonUnitalNonAssocRing
Units
Int.instMonoid
Units.instSMul
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
AddCommGroupWithOne.toAddGroupWithOne
Int.negOnePow
SubNegMonoid.toSub
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
AddMonoidWithOne.toOne
β€”BinomialRing.toIsAddTorsionFree
Nat.factorial_ne_zero
descPochhammer_eq_factorial_smul_choose
SMulCommClass.smul_comm
AddMonoid.nat_smulCommClass
Polynomial.descPochhammer_smeval_eq_ascPochhammer
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Polynomial.ascPochhammer_smeval_neg_eq_descPochhammer
choose_neg' πŸ“–mathematicalβ€”choose
NonAssocRing.toAddCommGroupWithOne
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NonUnitalNonAssocRing.toAddCommGroup
NonAssocRing.toNonUnitalNonAssocRing
Units
Int.instMonoid
Units.instSMul
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
AddCommGroupWithOne.toAddGroupWithOne
Int.negOnePow
multichoose
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
β€”choose_neg
multichoose_eq
choose_one_right πŸ“–mathematicalβ€”choose
NonAssocRing.toAddCommGroupWithOne
β€”choose_one_right'
npow_one
choose_one_right' πŸ“–mathematicalβ€”choose
NonAssocRing.toAddCommGroupWithOne
β€”choose.eq_1
Nat.cast_one
sub_add_cancel
multichoose_one_right'
choose_smul_choose πŸ“–mathematicalβ€”AddMonoid.toNatSMul
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
Nat.choose
choose
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
AddMonoidWithOne.toNatCast
β€”BinomialRing.toIsAddTorsionFree
Nat.factorial_ne_zero
nsmul_left_comm
descPochhammer_eq_factorial_smul_choose
Nat.choose_mul_factorial_mul_factorial
smul_mul_smul_comm
NonUnitalNonAssocSemiring.nat_isScalarTower
AddCommMonoid.nat_isScalarTower
AddMonoid.nat_smulCommClass
mul_nsmul'
smul_mul_assoc
add_comm
descPochhammer_mul
Polynomial.smeval_mul
NonUnitalNonAssocRing.int_isScalarTower
AddGroup.int_smulCommClass
Polynomial.smeval_comp
Polynomial.smeval_sub
Polynomial.smeval_X
Polynomial.C_eq_natCast
Polynomial.smeval_C
npow_one
npow_zero
zsmul_one
Int.cast_natCast
nsmul_eq_mul
choose_succ_succ πŸ“–mathematicalβ€”choose
NonAssocRing.toAddCommGroupWithOne
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
β€”BinomialRing.toIsAddTorsionFree
Nat.factorial_ne_zero
smul_add
Nat.factorial_succ
SemigroupAction.mul_smul
descPochhammer_eq_factorial_smul_choose
descPochhammer_succ_succ_smeval
choose_zero_ite πŸ“–mathematicalβ€”choose
NonAssocRing.toAddCommGroupWithOne
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
β€”choose_zero_right
choose_zero_pos
choose_zero_pos πŸ“–mathematicalβ€”choose
NonAssocRing.toAddCommGroupWithOne
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
β€”choose_zero_succ
choose_zero_right πŸ“–mathematicalβ€”choose
NonAssocRing.toAddCommGroupWithOne
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
β€”choose_zero_right'
npow_zero
choose_zero_right' πŸ“–mathematicalβ€”choose
NonAssocRing.toAddCommGroupWithOne
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
β€”BinomialRing.toIsAddTorsionFree
Nat.factorial_ne_zero
Nat.cast_zero
sub_zero
multichoose_zero_right'
one_smul
choose_zero_succ πŸ“–mathematicalβ€”choose
NonAssocRing.toAddCommGroupWithOne
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
β€”choose.eq_1
Nat.cast_succ
zero_sub
neg_add
neg_add_cancel_right
multichoose_succ_neg_natCast
descPochhammer_eq_factorial_smul_choose πŸ“–mathematicalβ€”Polynomial.smeval
toSemiring
Int.instRing
descPochhammer
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Module.toMulActionWithZero
AddCommGroup.toIntModule
NonUnitalNonAssocRing.toAddCommGroup
AddMonoid.toNatSMul
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
Nat.factorial
choose
β€”choose.eq_1
factorial_nsmul_multichoose_eq_ascPochhammer
descPochhammer_eq_ascPochhammer
Polynomial.smeval_comp
NonUnitalNonAssocRing.int_isScalarTower
AddGroup.int_smulCommClass
add_comm_sub
Polynomial.smeval_add
Polynomial.smeval_X
npow_one
Polynomial.C_eq_natCast
Polynomial.C_1
Polynomial.C_sub
Polynomial.smeval_C
npow_zero
zsmul_one
Int.cast_sub
Int.cast_one
Int.cast_natCast
Polynomial.ascPochhammer_smeval_cast
descPochhammer_smeval_add πŸ“–mathematicalCommute
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
toNonAssocRing
Polynomial.smeval
toSemiring
Int.instRing
descPochhammer
NonUnitalNonAssocSemiring.toAddCommMonoid
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toMulActionWithZero
AddCommGroup.toIntModule
toAddCommGroup
Distrib.toAdd
Finset.sum
Finset.HasAntidiagonal.antidiagonal
Nat.instAddMonoid
Finset.Nat.instHasAntidiagonal
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
toAddGroupWithOne
Nat.choose
β€”Polynomial.smeval_one
pow_zero
one_smul
Finset.sum_congr
Finset.antidiagonal_zero
Nat.instCanonicallyOrderedAdd
Finset.sum_singleton
Nat.choose_self
Nat.cast_one
mul_one
descPochhammer_succ_right
mul_comm
Polynomial.smeval_mul
Monoid.PowAssoc
IsScalarTower.right
Algebra.to_smulCommClass
Finset.sum_antidiagonal_choose_succ_mul
Finset.sum_add_distrib
Polynomial.smeval_sub
Polynomial.smeval_X
Polynomial.smeval_natCast
pow_one
Finset.mul_sum
commute_iff_eq
Polynomial.smeval_commute
mul_assoc
Nat.choose_symm_of_eq_add
List.Nat.mem_antidiagonal
mul_add
Distrib.leftDistribClass
Nat.cast_comm
add_smul
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.termg_eq
add_zero
one_zsmul
Mathlib.Tactic.Abel.const_add_termg
add_mul
Distrib.rightDistribClass
descPochhammer_succ_succ_smeval πŸ“–mathematicalβ€”Polynomial.smeval
toSemiring
Int.instRing
descPochhammer
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Module.toMulActionWithZero
AddCommGroup.toIntModule
NonUnitalNonAssocRing.toAddCommGroup
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
AddMonoid.toNatSMul
AddMonoidWithOne.toAddMonoid
β€”descPochhammer_succ_left
descPochhammer_succ_right
mul_comm
Polynomial.smeval_mul
NonUnitalNonAssocRing.int_isScalarTower
AddGroup.int_smulCommClass
Polynomial.smeval_X
npow_one
Polynomial.smeval_comp
Polynomial.smeval_sub
Polynomial.smeval_one
npow_zero
one_smul
add_sub_cancel_right
add_mul
Distrib.rightDistribClass
one_mul
add_smul
sub_mul
Polynomial.C_eq_natCast
Polynomial.smeval_C
add_comm
add_assoc
add_sub_assoc
nsmul_eq_mul
zsmul_one
Int.cast_natCast
sub_add_cancel
factorial_nsmul_multichoose_eq_ascPochhammer πŸ“–mathematicalβ€”AddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
Nat.factorial
multichoose
Polynomial.smeval
Nat.instSemiring
ascPochhammer
Module.toMulActionWithZero
AddCommMonoid.toNatModule
β€”BinomialRing.factorial_nsmul_multichoose
map_choose πŸ“–mathematicalβ€”DFunLike.coe
choose
NonAssocRing.toAddCommGroupWithOne
toNonAssocRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
toSemiring
β€”map_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
map_sub
map_natCast
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
map_multichoose
map_multichoose πŸ“–mathematicalβ€”DFunLike.coe
multichoose
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
toNonAssocRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
toSemiring
β€”nsmul_right_injective
BinomialRing.toIsAddTorsionFree
Nat.factorial_ne_zero
IsScalarTower.right
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
factorial_nsmul_multichoose_eq_ascPochhammer
Polynomial.hom_evalβ‚‚
Unique.instSubsingleton
multichoose_eq πŸ“–mathematicalβ€”multichoose
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
choose
NonAssocRing.toAddCommGroupWithOne
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
AddCommGroupWithOne.toAddGroupWithOne
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
AddMonoidWithOne.toOne
β€”choose.eq_1
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.isInt_neg
add_zero
Mathlib.Tactic.Abel.zero_termg
multichoose_eq_multichoose πŸ“–mathematicalβ€”BinomialRing.multichoose
multichoose
β€”β€”
multichoose_neg_add πŸ“–mathematicalβ€”multichoose
Int.instAddCommMonoid
Monoid.toNatPow
Int.instMonoid
Int.instBinomialRing
β€”Int.instIsAddTorsionFree
Nat.factorial_ne_zero
factorial_nsmul_multichoose_eq_ascPochhammer
smeval_ascPochhammer_neg_add
smul_zero
multichoose_neg_of_lt πŸ“–mathematicalβ€”multichoose
Int.instAddCommMonoid
Monoid.toNatPow
Int.instMonoid
Int.instBinomialRing
β€”Int.instIsAddTorsionFree
Nat.factorial_ne_zero
factorial_nsmul_multichoose_eq_ascPochhammer
smeval_ascPochhammer_neg_of_lt
smul_zero
multichoose_neg_self πŸ“–mathematicalβ€”multichoose
Int.instAddCommMonoid
Monoid.toNatPow
Int.instMonoid
Int.instBinomialRing
β€”Int.instIsAddTorsionFree
Nat.factorial_ne_zero
factorial_nsmul_multichoose_eq_ascPochhammer
smeval_ascPochhammer_self_neg
nsmul_eq_mul
Nat.cast_comm
multichoose_neg_succ πŸ“–mathematicalβ€”multichoose
Int.instAddCommMonoid
Monoid.toNatPow
Int.instMonoid
Int.instBinomialRing
β€”Int.instIsAddTorsionFree
Nat.factorial_ne_zero
factorial_nsmul_multichoose_eq_ascPochhammer
smeval_ascPochhammer_succ_neg
smul_zero
multichoose_one πŸ“–mathematicalβ€”multichoose
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”multichoose_zero_right
zero_add
multichoose_succ_succ
multichoose_zero_succ
multichoose_one_right πŸ“–mathematicalβ€”multichooseβ€”multichoose_one_right'
npow_one
multichoose_one_right' πŸ“–mathematicalβ€”multichooseβ€”BinomialRing.toIsAddTorsionFree
Nat.factorial_ne_zero
factorial_nsmul_multichoose_eq_ascPochhammer
ascPochhammer_one
Polynomial.smeval_X
Nat.factorial_one
one_smul
multichoose_succ_neg_natCast πŸ“–mathematicalβ€”multichoose
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NonUnitalNonAssocRing.toAddCommGroup
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
AddCommGroupWithOne.toAddGroupWithOne
NonAssocRing.toAddCommGroupWithOne
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”BinomialRing.toIsAddTorsionFree
Nat.factorial_ne_zero
smul_zero
factorial_nsmul_multichoose_eq_ascPochhammer
Polynomial.smeval_neg_nat
smeval_ascPochhammer_succ_neg
Int.cast_zero
multichoose_succ_succ πŸ“–mathematicalβ€”multichoose
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”BinomialRing.toIsAddTorsionFree
Nat.factorial_ne_zero
factorial_nsmul_multichoose_eq_ascPochhammer
smul_add
add_comm
ascPochhammer_succ_succ
multichoose_two πŸ“–mathematicalβ€”multichoose
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toOne
β€”Nat.instAtLeastTwoHAddOfNat
multichoose_zero_right
Nat.cast_zero
zero_add
one_add_one_eq_two
multichoose_succ_succ
multichoose_one
Nat.cast_succ
add_comm
multichoose_zero_right πŸ“–mathematicalβ€”multichoose
MulOne.toOne
MulOneClass.toMulOne
β€”multichoose_zero_right'
npow_zero
multichoose_zero_right' πŸ“–mathematicalβ€”multichooseβ€”BinomialRing.toIsAddTorsionFree
Nat.factorial_ne_zero
factorial_nsmul_multichoose_eq_ascPochhammer
ascPochhammer_zero
Polynomial.smeval_one
Nat.factorial.eq_1
multichoose_zero_succ πŸ“–mathematicalβ€”multichoose
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”BinomialRing.toIsAddTorsionFree
Nat.factorial_ne_zero
factorial_nsmul_multichoose_eq_ascPochhammer
smul_zero
ascPochhammer_succ_left
Polynomial.smeval_X_mul
AddMonoid.nat_smulCommClass
MulZeroClass.zero_mul
smeval_ascPochhammer_int_ofNat πŸ“–mathematicalβ€”Polynomial.smeval
Int.instSemiring
ascPochhammer
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Module.toMulActionWithZero
AddCommGroup.toIntModule
NonUnitalNonAssocRing.toAddCommGroup
Nat.instSemiring
AddCommMonoid.toNatModule
β€”Polynomial.smeval_one
ascPochhammer_succ_right
Polynomial.smeval_mul
NonUnitalNonAssocRing.int_isScalarTower
AddGroup.int_smulCommClass
NonUnitalNonAssocSemiring.nat_isScalarTower
AddMonoid.nat_smulCommClass
Polynomial.smeval_add
Polynomial.smeval_X
Polynomial.smeval_C
natCast_zsmul
nsmul_eq_mul
smeval_ascPochhammer_nat_cast πŸ“–mathematicalβ€”Polynomial.smeval
Nat.instSemiring
ascPochhammer
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Module.toMulActionWithZero
AddCommMonoid.toNatModule
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Nat.instAddCommMonoid
Monoid.toNatPow
Nat.instMonoid
MonoidWithZero.toMulActionWithZero
Semiring.toMonoidWithZero
β€”Polynomial.smeval_at_natCast
smeval_ascPochhammer_neg_add πŸ“–mathematicalβ€”Polynomial.smeval
Nat.instSemiring
ascPochhammer
Int.instAddCommMonoid
Monoid.toNatPow
Int.instMonoid
Module.toMulActionWithZero
AddCommMonoid.toNatModule
β€”add_zero
smeval_ascPochhammer_succ_neg
ascPochhammer_succ_right
Polynomial.smeval_mul
Monoid.PowAssoc
IsScalarTower.right
Algebra.to_smulCommClass
add_assoc
MulZeroClass.zero_mul
smeval_ascPochhammer_neg_of_lt πŸ“–mathematicalβ€”Polynomial.smeval
Nat.instSemiring
ascPochhammer
Int.instAddCommMonoid
Monoid.toNatPow
Int.instMonoid
Module.toMulActionWithZero
AddCommMonoid.toNatModule
β€”smeval_ascPochhammer_neg_add
smeval_ascPochhammer_self_neg πŸ“–mathematicalβ€”Polynomial.smeval
Nat.instSemiring
ascPochhammer
Int.instAddCommMonoid
Monoid.toNatPow
Int.instMonoid
Module.toMulActionWithZero
AddCommMonoid.toNatModule
Nat.factorial
β€”Nat.cast_zero
neg_zero
ascPochhammer_zero
Nat.factorial_zero
Polynomial.smeval_one
pow_zero
one_smul
Nat.cast_one
one_mul
ascPochhammer_succ_left
Polynomial.smeval_X_mul
Monoid.PowAssoc
Algebra.to_smulCommClass
Polynomial.smeval_comp
IsScalarTower.right
Polynomial.smeval_add
Polynomial.smeval_X
pow_one
Nat.cast_add
neg_add_rev
neg_add_cancel_comm
mul_assoc
mul_comm
pow_add
Nat.factorial.eq_2
Nat.cast_mul
Nat.cast_succ
smeval_ascPochhammer_succ_neg πŸ“–mathematicalβ€”Polynomial.smeval
Nat.instSemiring
ascPochhammer
Int.instAddCommMonoid
Monoid.toNatPow
Int.instMonoid
Module.toMulActionWithZero
AddCommMonoid.toNatModule
β€”ascPochhammer_succ_right
Polynomial.smeval_mul
Monoid.PowAssoc
IsScalarTower.right
Algebra.to_smulCommClass
Polynomial.smeval_add
Polynomial.smeval_X
Polynomial.C_eq_natCast
Polynomial.smeval_C
pow_zero
pow_one
Nat.cast_id
nsmul_eq_mul
mul_one
neg_add_cancel
MulZeroClass.mul_zero

(root)

Definitions

NameCategoryTheorems
BinomialRing πŸ“–CompDataβ€”
instBinomialRingOfModuleNNRat πŸ“–CompOp
5 mathmath: Ring.choose_eq_smul, binomialSeries_apply, Real.one_div_one_sub_rpow_hasFPowerSeriesOnBall_zero, Complex.one_div_one_sub_cpow_hasFPowerSeriesOnBall_zero, Complex.ofReal_choose

---

← Back to Index