toCoalgebraStruct 📖 | CompOp | 234 mathmath: Pi.comul_eq_adjoint, CoalgHom.ext_of_ring_iff, Bialgebra.comulAlgHom_apply, Bialgebra.comul_natCast, Repr.induced_ι, lTensor_counit_comul, HopfAlgCat.of_comul, CategoryTheory.Iso.toCoalgEquiv_symm, IsGroupLikeElem.comul_eq_tmul_self, LaurentPolynomial.comul_T, commBialgCatEquivComonCommAlgCat_unitIso_inv_app, BialgEquiv.toHopfAlgIso_refl, CoalgCat.MonoidalCategoryAux.tensorHom_toLinearMap, BialgEquiv.toBialgIso_refl, Bialgebra.TensorProduct.map_toAlgHom, AddMonoidAlgebra.comul_single, CoalgCat.of_comul, CategoryTheory.Iso.toHopfAlgEquiv_trans, sum_map_tmul_counit_eq, sum_tmul_counit_eq, Prod.counit_comp_inr, CoalgCat.MonoidalCategoryAux.associator_hom_toLinearMap, coassoc_symm_apply, BialgCat.of_counit, Bialgebra.counitBialgHom_apply, Bialgebra.counitAlgHom_apply, CoalgEquiv.toCoalgIso_refl, CommBialgCat.id_apply, Repr.induced_index, sum_counit_tmul_eq, AddMonoidAlgebra.mapDomainBialgHom_id, HopfAlgCat.of_counit, CoalgCat.MonoidalCategoryAux.counit_tensorObj_tensorObj_right, commBialgCatEquivComonCommAlgCat_unitIso_hom_app, CategoryTheory.Iso.toCoalgEquiv_toCoalgHom, CommBialgCat.isoEquivBialgEquiv_apply, Pi.counit_eq_adjoint, HopfAlgCat.Hom.toBialgHom_injective, HopfAlgCat.forget_reflects_isos, Bialgebra.TensorProduct.comul_eq_algHom_toLinearMap, CommBialgCat.ofHom_comp, MonoidAlgebra.mapDomainBialgHom_comp, CategoryTheory.Iso.toBialgEquiv_refl, Bialgebra.TensorProduct.map_toCoalgHom, HopfAlgebra.sum_mul_antipode_eq_smul, sum_map_tmul_tmul_eq, LinearMap.convOne_apply, AddMonoidAlgebra.counit_single, Pi.intrinsicStar_comul_commSemiring, BialgCat.forget_reflects_isos, comm_comul, HopfAlgebra.sum_mul_antipode_eq_algebraMap_counit, isGroupLikeElem_iff, MonoidAlgebra.mapDomainBialgHom_mapDomainBialgHom, AddMonoidAlgebra.mapDomainBialgHom_mapDomainBialgHom, Bialgebra.TensorProduct.counit_eq_algHom_toLinearMap, TensorProduct.lid_tmul, BialgCat.Hom.toBialgHom_injective, subsingleton_to_ring, Bialgebra.toLinearMap_counitAlgHom, CommBialgCat.forget₂_commAlgCat_obj, HopfAlgCat.MonoidalCategory.inducingFunctorData_εIso, Bialgebra.counitBialgHom_self, CommBialgCat.bialgEquivOfIso_apply, CategoryTheory.Iso.toBialgEquiv_trans, BialgCat.of_comul, CoalgCat.MonoidalCategoryAux.comul_tensorObj_tensorObj_left, Bialgebra.counit_surjective, HopfAlgCat.MonoidalCategory.inducingFunctorData_μIso, sum_counit_smul, Bialgebra.TensorProduct.assoc_tmul, InnerProductSpace.AlgebraOfCoalgebra.mul_def, HopfAlgCat.toBialgHom_comp, BialgCat.forget₂_coalgebra_obj, CoalgCat.MonoidalCategoryAux.tensorObj_comul, AddMonoidAlgebra.mapDomainBialgHom_apply, CoalgCat.comul_def, CoalgCat.MonoidalCategory.inducingFunctorData_μIso, CoalgCat.MonoidalCategory.inducingFunctorData_εIso, Bialgebra.comul_algebraMap, HopfAlgebra.sum_antipode_mul_eq_smul, MonoidAlgebra.mapDomainBialgHom_apply, sum_counit_tmul_map_eq, CommBialgCat.reflectsIsomorphisms_forget, BialgCat.forget₂_algebra_map, CommBialgCat.inv_hom_apply, BialgEquiv.toBialgIso_symm, CategoryTheory.Iso.toCoalgEquiv_refl, IsCocomm.comm_comp_comul, HopfAlgCat.forget₂_bialgebra_obj, Prod.comul_apply, BialgEquiv.toLinearMap_ofAlgEquiv, instIsMonHomOppositeCommAlgCatOpOfHomToAlgHomBialgHom, rTensor_counit_comp_comul, CoalgCat.forget_reflects_isos, CoalgCat.MonoidalCategoryAux.leftUnitor_hom_toLinearMap, TensorProduct.map_tmul, CommBialgCat.hom_inv_apply, CoalgEquiv.toCoalgIso_inv, BialgHomClass.counitAlgHom_comp, Bialgebra.TensorProduct.rid_toAlgEquiv, BialgHom.ofAlgHom_apply, CategoryTheory.Iso.toBialgEquiv_symm, Bialgebra.counit_natCast, counitCoalgHom_toLinearMap, BialgEquiv.toHopfAlgIso_symm, Bialgebra.comul_mul, HopfAlgebra.mul_antipode_rTensor_comul, CoalgCat.Hom.toCoalgHom_injective, CommBialgCat.isoEquivBialgEquiv_symm_apply, CategoryTheory.Iso.toHopfAlgEquiv_symm, CategoryTheory.Iso.toCoalgEquiv_trans, coassoc, HopfAlgebra.counit_comp_antipode, lift_lsmul_comp_counit_comp_comul, LinearMap.convOne_def, Bialgebra.counit_mul, Bialgebra.TensorProduct.map_tmul, CoalgCat.MonoidalCategoryAux.counit_tensorObj, CoalgCat.counit_def, LaurentPolynomial.comul_C, HopfAlgebra.mul_antipode_rTensor_comul_apply, Bialgebra.TensorProduct.coalgebra_rid_eq_algebra_rid_apply, Bialgebra.counitBialgHom_toCoalgHom, HopfAlgCat.toBialgHom_id, CoalgCat.MonoidalCategoryAux.counit_tensorObj_tensorObj_left, CoalgCat.forget₂_obj, sum_tmul_tmul_eq, HopfAlgebra.counit_antipode, LinearMap.nonUnitalAlgHom_comp_convMul_distrib, MonoidAlgebra.comul_single, CommBialgCat.comp_apply, BialgHomClass.map_comp_comulAlgHom, BialgCat.MonoidalCategory.inducingFunctorData_μIso, CommBialgCat.bialgEquivOfIso_symm_apply, CoalgCat.MonoidalCategoryAux.comul_tensorObj_tensorObj_right, CoalgCat.forget₂_map, Bialgebra.TensorProduct.lid_toAlgEquiv, BialgCat.toBialgHom_id, TensorProduct.assoc_tmul, Prod.comul_comp_fst, LaurentPolynomial.counit_C_mul_T, CategoryTheory.Iso.toHopfAlgEquiv_refl, TensorProduct.lid_toLinearEquiv, HopfAlgCat.forget₂_bialgebra_map, Prod.comul_comp_snd, IsGroupLikeElem.counit_eq_one, Bialgebra.counit_algebraMap, rTensor_counit_comul, TensorProduct.assoc_symm_tmul, AddMonoidAlgebra.mapDomainBialgHom_comp, LinearMap.toSpanSingleton_convMul_toSpanSingleton, CommBialgCat.isoMk_hom, CoalgCat.MonoidalCategoryAux.comul_tensorObj, CommBialgCat.forget_obj, Bialgebra.comul_pow, counitCoalgHom_apply, BialgEquiv.toBialgIso_trans, Bialgebra.comul_one, CommBialgCat.ofHom_apply, Bialgebra.TensorProduct.assoc_toCoalgEquiv, LaurentPolynomial.counit_T, CoalgCat.toComon_map_hom, TensorProduct.rid_symm_apply, LaurentPolynomial.counit_C, LinearMap.convMul_comp_coalgHom_distrib, Bialgebra.TensorProduct.lid_toCoalgEquiv, coassoc_apply, TensorProduct.rid_toLinearEquiv, HopfAlgebra.mul_antipode_lTensor_comul_apply, BialgCat.forget₂_coalgebra_map, Bialgebra.TensorProduct.rid_symm_apply, Bialgebra.counit_one, BialgEquiv.toHopfAlgIso_trans, coassoc_symm, LaurentPolynomial.comul_C_mul_T, Prod.comul_comp_inl, lTensor_counit_comp_comul, TensorProduct.rid_tmul, HopfAlgebra.sum_antipode_mul_eq_algebraMap_counit, Bialgebra.subsingleton_to_ring, BialgEquiv.toBialgIso_hom, commBialgCatEquivComonCommAlgCat_inverse_map_unop_hom, BialgCat.toBialgHom_comp, Bialgebra.TensorProduct.rid_tmul, Bialgebra.TensorProduct.lid_tmul, HopfAlgebra.mul_antipode_lTensor_comul, CategoryTheory.Iso.toBialgEquiv_toBialgHom, CommBialgCat.isoMk_inv, TensorProduct.map_toLinearMap, CommBialgCat.forget_map, CommBialgCat.ofHom_id, Bialgebra.toLinearMap_comulAlgHom, CommBialgCat.forget₂_commAlgCat_map, Prod.counit_apply, Prod.comul_comp_inr, BialgHom.ext_of_ring_iff, CoalgEquiv.toCoalgIso_symm, BialgEquiv.toHopfAlgIso_hom, CommSemiring.counit_apply, CoalgCat.toCoalgHom_id, CategoryTheory.Iso.toHopfAlgEquiv_toBialgHom, Bialgebra.TensorProduct.lid_symm_apply, Bialgebra.TensorProduct.rid_toCoalgEquiv, TensorProduct.assoc_toLinearEquiv, Bialgebra.counit_pow, Bialgebra.mul_compr₂_comul, BialgCat.forget₂_algebra_obj, CoalgCat.toCoalgHom_comp, CoalgCat.MonoidalCategoryAux.rightUnitor_hom_toLinearMap, CoalgCat.of_counit, CommBialgCat.hom_id, Repr.induced_right, commBialgCatEquivComonCommAlgCat_counitIso_hom_app, Prod.counit_comp_inl, BialgEquiv.toHopfAlgIso_inv, MonoidAlgebra.counit_single, CommBialgCat.hom_comp, Bialgebra.mul_compr₂_counit, commBialgCatEquivComonCommAlgCat_functor_map_unop_hom, LaurentPolynomial.comul_C_mul_T_self, BialgCat.MonoidalCategory.inducingFunctorData_εIso, comm_comp_comul, Bialgebra.TensorProduct.assoc_symm_tmul, Bialgebra.TensorProduct.assoc_toAlgEquiv, TensorProduct.lid_symm_apply, MonoidAlgebra.mapDomainBialgHom_id, CoalgEquiv.toCoalgIso_trans, commBialgCatEquivComonCommAlgCat_counitIso_inv_app, CoalgEquiv.toCoalgIso_hom, CommSemiring.comul_apply, Repr.induced_left, BialgEquiv.ofAlgEquiv_apply, BialgEquiv.toBialgIso_inv
|