Documentation Verification Report

Equiv

πŸ“ Source: Mathlib/RingTheory/Coalgebra/Equiv.lean

Statistics

MetricCount
DefinitionsCoalgEquiv, apply, symm_apply, instEquivLike, instFunLike, invFun, ofBijective, ofCoalgHom, refl, toCoalgHom, toCoalgebra, toEquiv, toLinearEquiv, trans, CoalgEquivClass, instCoeToCoalgEquiv, toCoalgEquiv, Β«term_≃ₗc[_]_Β»
18
Theoremsapply_symm_apply, coe_coe, coe_mk, coe_ofBijective, coe_ofCoalgHom, coe_symm_toEquiv, coe_symm_toLinearEquiv, coe_toCoalgHom, coe_toEquiv, coe_toEquiv_symm, coe_toEquiv_trans, coe_toLinearEquiv, congr_arg, congr_fun, ext, ext_iff, instCoalgEquivClass, invFun_eq_symm, left_inv, ofBijective_apply, ofCoalgHom_symm, refl_apply, refl_symm_apply, refl_toCoalgHom, refl_toLinearEquiv, right_inv, symm_apply_apply, symm_toCoalgHom, symm_toLinearEquiv, toCoalgHom_eq_coe, toCoalgHom_inj, toCoalgHom_injective, toEquiv_inj, toEquiv_injective, toEquiv_symm, toLinearEquiv_eq_coe, toLinearEquiv_toLinearMap, trans_apply, trans_symm_apply, trans_toCoalgHom, trans_toLinearEquiv, toCoalgHomClass, toSemilinearEquivClass
43
Total61

CoalgEquiv

Definitions

NameCategoryTheorems
instEquivLike πŸ“–CompOp
26 mathmath: coe_toCoalgHom, coe_ofCoalgHom, toCoalgHom_inj, toCoalgHom_eq_coe, CategoryTheory.Iso.toCoalgEquiv_toCoalgHom, coe_toLinearEquiv, trans_apply, BialgEquiv.trans_apply, coe_coe, coe_toEquiv_trans, instCoalgEquivClass, coe_toEquiv_symm, toLinearEquiv_toLinearMap, symm_toLinearEquiv, symm_toCoalgHom, refl_toLinearEquiv, coe_symm_toLinearEquiv, BialgEquiv.trans_symm_apply, refl_toCoalgHom, Coalgebra.TensorProduct.lid_toLinearEquiv, trans_toLinearEquiv, trans_symm_apply, Coalgebra.TensorProduct.rid_toLinearEquiv, toLinearEquiv_eq_coe, Coalgebra.TensorProduct.assoc_toLinearEquiv, trans_toCoalgHom
instFunLike πŸ“–CompOp
34 mathmath: coe_toCoalgHom, BialgEquiv.refl_symm_apply, CategoryTheory.Iso.toCoalgEquiv_toCoalgHom, Coalgebra.TensorProduct.lid_tmul, refl_apply, coe_toLinearEquiv, trans_apply, coe_coe, toCoalgIso_inv, ext_iff, invFun_eq_symm, refl_symm_apply, coe_symm_toEquiv, Bialgebra.TensorProduct.coalgebra_rid_eq_algebra_rid_apply, coe_toEquiv, symm_toCoalgHom, coe_mk, coe_symm_toLinearEquiv, BialgEquiv.trans_symm_apply, CommBialgCat.bialgEquivOfIso_symm_apply, refl_toCoalgHom, Coalgebra.TensorProduct.assoc_tmul, Coalgebra.TensorProduct.assoc_symm_tmul, trans_symm_apply, Coalgebra.TensorProduct.rid_symm_apply, symm_apply_apply, coe_ofBijective, Coalgebra.TensorProduct.rid_tmul, apply_symm_apply, congr_fun, congr_arg, Coalgebra.TensorProduct.lid_symm_apply, ofBijective_apply, toCoalgIso_hom
invFun πŸ“–CompOp
4 mathmath: left_inv, BialgEquiv.invFun_eq_symm, invFun_eq_symm, right_inv
ofBijective πŸ“–CompOp
2 mathmath: coe_ofBijective, ofBijective_apply
ofCoalgHom πŸ“–CompOp
2 mathmath: coe_ofCoalgHom, ofCoalgHom_symm
refl πŸ“–CompOp
7 mathmath: toCoalgIso_refl, refl_apply, CategoryTheory.Iso.toCoalgEquiv_refl, refl_symm_apply, refl_toLinearEquiv, refl_toCoalgHom, BialgEquiv.refl_toCoalgEquiv
toCoalgHom πŸ“–CompOp
6 mathmath: left_inv, toCoalgHom_eq_coe, toCoalgHom_injective, BialgEquiv.map_mul', trans_toCoalgHom, right_inv
toCoalgebra πŸ“–CompOpβ€”
toEquiv πŸ“–CompOp
6 mathmath: toEquiv_injective, toEquiv_inj, coe_symm_toEquiv, coe_toEquiv_symm, coe_toEquiv, toEquiv_symm
toLinearEquiv πŸ“–CompOp
1 mathmath: toLinearEquiv_eq_coe
trans πŸ“–CompOp
8 mathmath: trans_apply, coe_toEquiv_trans, CategoryTheory.Iso.toCoalgEquiv_trans, BialgEquiv.trans_toCoalgEquiv, trans_toLinearEquiv, trans_symm_apply, trans_toCoalgHom, toCoalgIso_trans

Theorems

NameKindAssumesProvesValidatesDepends On
apply_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
CoalgEquiv
instFunLike
symm
β€”LinearEquiv.apply_symm_apply
RingHomInvPair.ids
CoalgEquivClass.toSemilinearEquivClass
instCoalgEquivClass
coe_coe πŸ“–mathematicalβ€”DFunLike.coe
CoalgHom
CoalgHom.funLike
CoalgHomClass.toCoalgHom
CoalgEquiv
EquivLike.toFunLike
instEquivLike
CoalgEquivClass.toCoalgHomClass
instCoalgEquivClass
instFunLike
β€”CoalgEquivClass.toCoalgHomClass
instCoalgEquivClass
coe_mk πŸ“–mathematicalAddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddHom.toFun
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHom.id
LinearMap.comp
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
RingHomCompTriple.ids
CoalgebraStruct.counit
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
TensorProduct.map
CoalgebraStruct.comul
LinearMap.toAddHom
CoalgHom.toLinearMap
CoalgEquiv
instFunLike
β€”RingHomCompTriple.ids
coe_ofBijective πŸ“–mathematicalFunction.Bijective
DFunLike.coe
CoalgHom
CoalgHom.funLike
CoalgEquiv
instFunLike
ofBijective
β€”β€”
coe_ofCoalgHom πŸ“–mathematicalCoalgHom.comp
CoalgHom.id
CoalgHomClass.toCoalgHom
CoalgEquiv
EquivLike.toFunLike
instEquivLike
CoalgEquivClass.toCoalgHomClass
instCoalgEquivClass
ofCoalgHom
β€”CoalgEquivClass.toCoalgHomClass
instCoalgEquivClass
coe_symm_toEquiv πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
toEquiv
CoalgEquiv
instFunLike
symm
β€”β€”
coe_symm_toLinearEquiv πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
LinearEquiv.symm
SemilinearEquivClass.semilinearEquiv
CoalgEquiv
instEquivLike
CoalgEquivClass.toSemilinearEquivClass
instCoalgEquivClass
instFunLike
symm
β€”RingHomInvPair.ids
CoalgEquivClass.toSemilinearEquivClass
instCoalgEquivClass
coe_toCoalgHom πŸ“–mathematicalβ€”DFunLike.coe
CoalgHom
CoalgHom.funLike
CoalgHomClass.toCoalgHom
CoalgEquiv
EquivLike.toFunLike
instEquivLike
CoalgEquivClass.toCoalgHomClass
instCoalgEquivClass
instFunLike
β€”CoalgEquivClass.toCoalgHomClass
instCoalgEquivClass
coe_toEquiv πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toEquiv
CoalgEquiv
instFunLike
β€”β€”
coe_toEquiv_symm πŸ“–mathematicalβ€”Equiv.symm
toEquiv
EquivLike.toEquiv
CoalgEquiv
instEquivLike
symm
β€”β€”
coe_toEquiv_trans πŸ“–mathematicalβ€”Equiv.trans
EquivLike.toEquiv
CoalgEquiv
instEquivLike
trans
β€”β€”
coe_toLinearEquiv πŸ“–mathematicalβ€”DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
SemilinearEquivClass.semilinearEquiv
CoalgEquiv
instEquivLike
CoalgEquivClass.toSemilinearEquivClass
instCoalgEquivClass
instFunLike
β€”RingHomInvPair.ids
CoalgEquivClass.toSemilinearEquivClass
instCoalgEquivClass
congr_arg πŸ“–mathematicalβ€”DFunLike.coe
CoalgEquiv
instFunLike
β€”DFunLike.congr_arg
congr_fun πŸ“–mathematicalβ€”DFunLike.coe
CoalgEquiv
instFunLike
β€”DFunLike.congr_fun
ext πŸ“–β€”DFunLike.coe
CoalgEquiv
instFunLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
CoalgEquiv
instFunLike
β€”ext
instCoalgEquivClass πŸ“–mathematicalβ€”CoalgEquivClass
CoalgEquiv
instEquivLike
β€”AddHom.map_add'
LinearMap.map_smul'
CoalgHom.counit_comp
CoalgHom.map_comp_comul
invFun_eq_symm πŸ“–mathematicalβ€”invFun
DFunLike.coe
CoalgEquiv
instFunLike
symm
β€”β€”
left_inv πŸ“–mathematicalβ€”invFun
AddHom.toFun
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
LinearMap.toAddHom
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
CoalgHom.toLinearMap
toCoalgHom
β€”β€”
ofBijective_apply πŸ“–mathematicalFunction.Bijective
DFunLike.coe
CoalgHom
CoalgHom.funLike
CoalgEquiv
instFunLike
ofBijective
β€”β€”
ofCoalgHom_symm πŸ“–mathematicalCoalgHom.comp
CoalgHom.id
symm
ofCoalgHom
β€”β€”
refl_apply πŸ“–mathematicalβ€”DFunLike.coe
CoalgEquiv
instFunLike
refl
β€”β€”
refl_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
CoalgEquiv
instFunLike
symm
refl
β€”β€”
refl_toCoalgHom πŸ“–mathematicalβ€”CoalgHomClass.toCoalgHom
CoalgEquiv
instFunLike
CoalgEquivClass.toCoalgHomClass
instEquivLike
instCoalgEquivClass
refl
CoalgHom.id
β€”CoalgEquivClass.toCoalgHomClass
instCoalgEquivClass
refl_toLinearEquiv πŸ“–mathematicalβ€”SemilinearEquivClass.semilinearEquiv
CoalgEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
instEquivLike
CoalgEquivClass.toSemilinearEquivClass
instCoalgEquivClass
refl
LinearEquiv.refl
β€”RingHomInvPair.ids
CoalgEquivClass.toSemilinearEquivClass
instCoalgEquivClass
right_inv πŸ“–mathematicalβ€”invFun
AddHom.toFun
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
LinearMap.toAddHom
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
CoalgHom.toLinearMap
toCoalgHom
β€”β€”
symm_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
CoalgEquiv
instFunLike
symm
β€”LinearEquiv.symm_apply_apply
RingHomInvPair.ids
CoalgEquivClass.toSemilinearEquivClass
instCoalgEquivClass
symm_toCoalgHom πŸ“–mathematicalβ€”SemilinearMapClass.semilinearMap
CoalgHom
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
CoalgHomClass.toCoalgHom
CoalgEquiv
instFunLike
CoalgEquivClass.toCoalgHomClass
instEquivLike
instCoalgEquivClass
symm
CoalgHom.funLike
CoalgHomClass.toSemilinearMapClass
CoalgHom.coalgHomClass
LinearEquiv.toLinearMap
RingHomInvPair.ids
LinearEquiv.symm
SemilinearEquivClass.semilinearEquiv
CoalgEquivClass.toSemilinearEquivClass
β€”CoalgEquivClass.toCoalgHomClass
instCoalgEquivClass
CoalgHomClass.toSemilinearMapClass
CoalgHom.coalgHomClass
symm_toLinearEquiv πŸ“–mathematicalβ€”SemilinearEquivClass.semilinearEquiv
CoalgEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
instEquivLike
CoalgEquivClass.toSemilinearEquivClass
instCoalgEquivClass
symm
LinearEquiv.symm
β€”RingHomInvPair.ids
CoalgEquivClass.toSemilinearEquivClass
instCoalgEquivClass
toCoalgHom_eq_coe πŸ“–mathematicalβ€”toCoalgHom
CoalgHomClass.toCoalgHom
CoalgEquiv
EquivLike.toFunLike
instEquivLike
CoalgEquivClass.toCoalgHomClass
instCoalgEquivClass
β€”β€”
toCoalgHom_inj πŸ“–mathematicalβ€”CoalgHomClass.toCoalgHom
CoalgEquiv
EquivLike.toFunLike
instEquivLike
CoalgEquivClass.toCoalgHomClass
instCoalgEquivClass
β€”toCoalgHom_injective
toCoalgHom_injective πŸ“–mathematicalβ€”CoalgEquiv
CoalgHom
toCoalgHom
β€”toEquiv_injective
Equiv.ext
CoalgHom.congr_fun
toEquiv_inj πŸ“–mathematicalβ€”toEquivβ€”toEquiv_injective
toEquiv_injective πŸ“–mathematicalβ€”CoalgEquiv
Equiv
toEquiv
β€”CoalgHom.ext
LinearEquiv.left_inv
LinearEquiv.right_inv
toEquiv_symm πŸ“–mathematicalβ€”toEquiv
symm
Equiv.symm
β€”β€”
toLinearEquiv_eq_coe πŸ“–mathematicalβ€”toLinearEquiv
SemilinearEquivClass.semilinearEquiv
CoalgEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
instEquivLike
CoalgEquivClass.toSemilinearEquivClass
instCoalgEquivClass
β€”RingHomInvPair.ids
toLinearEquiv_toLinearMap πŸ“–mathematicalβ€”LinearEquiv.toLinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
SemilinearEquivClass.semilinearEquiv
CoalgEquiv
instEquivLike
CoalgEquivClass.toSemilinearEquivClass
instCoalgEquivClass
SemilinearMapClass.semilinearMap
CoalgHom
CoalgHomClass.toCoalgHom
EquivLike.toFunLike
CoalgEquivClass.toCoalgHomClass
CoalgHom.funLike
CoalgHomClass.toSemilinearMapClass
CoalgHom.coalgHomClass
β€”RingHomInvPair.ids
CoalgEquivClass.toSemilinearEquivClass
instCoalgEquivClass
trans_apply πŸ“–mathematicalβ€”DFunLike.coe
CoalgEquiv
instFunLike
trans
EquivLike.toFunLike
instEquivLike
β€”β€”
trans_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
CoalgEquiv
instFunLike
symm
trans
LinearEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
EquivLike.toFunLike
LinearEquiv.instEquivLike
LinearEquiv.symm
SemilinearEquivClass.semilinearEquiv
RingHomInvPair.ids
instEquivLike
CoalgEquivClass.toSemilinearEquivClass
instCoalgEquivClass
β€”β€”
trans_toCoalgHom πŸ“–mathematicalβ€”CoalgHomClass.toCoalgHom
CoalgEquiv
EquivLike.toFunLike
instEquivLike
CoalgEquivClass.toCoalgHomClass
instCoalgEquivClass
trans
CoalgHom.comp
toCoalgHom
β€”CoalgEquivClass.toCoalgHomClass
instCoalgEquivClass
trans_toLinearEquiv πŸ“–mathematicalβ€”SemilinearEquivClass.semilinearEquiv
CoalgEquiv
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
instEquivLike
CoalgEquivClass.toSemilinearEquivClass
instCoalgEquivClass
trans
LinearEquiv.trans
RingHomCompTriple.ids
β€”RingHomInvPair.ids
CoalgEquivClass.toSemilinearEquivClass
instCoalgEquivClass

CoalgEquiv.Simps

Definitions

NameCategoryTheorems
apply πŸ“–CompOpβ€”
symm_apply πŸ“–CompOpβ€”

CoalgEquivClass

Definitions

NameCategoryTheorems
instCoeToCoalgEquiv πŸ“–CompOpβ€”
toCoalgEquiv πŸ“–CompOp
10 mathmath: BialgEquiv.toCoalgEquiv_eq_coe, BialgEquiv.trans_apply, BialgEquiv.symm_toCoalgEquiv, BialgEquiv.trans_toCoalgEquiv, BialgEquiv.trans_symm_apply, Bialgebra.TensorProduct.assoc_toCoalgEquiv, Bialgebra.TensorProduct.lid_toCoalgEquiv, Bialgebra.TensorProduct.rid_toCoalgEquiv, BialgEquiv.refl_toCoalgEquiv, BialgEquiv.coe_mk

Theorems

NameKindAssumesProvesValidatesDepends On
toCoalgHomClass πŸ“–mathematicalβ€”CoalgHomClass
EquivLike.toFunLike
β€”β€”
toSemilinearEquivClass πŸ“–mathematicalβ€”SemilinearEquivClass
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
β€”RingHomInvPair.ids
AddHomClass.map_add
SemilinearMapClass.toAddHomClass
CoalgHomClass.toSemilinearMapClass
toCoalgHomClass
MulActionSemiHomClass.map_smulβ‚›β‚—
SemilinearMapClass.toMulActionSemiHomClass

(root)

Definitions

NameCategoryTheorems
CoalgEquiv πŸ“–CompData
52 mathmath: CoalgEquiv.coe_toCoalgHom, CoalgEquiv.coe_ofCoalgHom, CoalgEquiv.toCoalgHom_inj, CoalgEquiv.toCoalgHom_eq_coe, BialgEquiv.refl_symm_apply, CategoryTheory.Iso.toCoalgEquiv_toCoalgHom, Coalgebra.TensorProduct.lid_tmul, CoalgEquiv.refl_apply, CoalgEquiv.coe_toLinearEquiv, CoalgEquiv.toCoalgHom_injective, CoalgEquiv.toEquiv_injective, CoalgEquiv.trans_apply, BialgEquiv.trans_apply, CoalgEquiv.coe_coe, CoalgEquiv.coe_toEquiv_trans, CoalgEquiv.toCoalgIso_inv, CoalgEquiv.ext_iff, CoalgEquiv.instCoalgEquivClass, CoalgEquiv.invFun_eq_symm, CoalgEquiv.refl_symm_apply, CoalgEquiv.coe_symm_toEquiv, CoalgEquiv.coe_toEquiv_symm, Bialgebra.TensorProduct.coalgebra_rid_eq_algebra_rid_apply, CoalgEquiv.toLinearEquiv_toLinearMap, CoalgEquiv.coe_toEquiv, CoalgEquiv.symm_toLinearEquiv, CoalgEquiv.symm_toCoalgHom, CoalgEquiv.coe_mk, CoalgEquiv.refl_toLinearEquiv, CoalgEquiv.coe_symm_toLinearEquiv, BialgEquiv.trans_symm_apply, CommBialgCat.bialgEquivOfIso_symm_apply, CoalgEquiv.refl_toCoalgHom, Coalgebra.TensorProduct.assoc_tmul, Coalgebra.TensorProduct.lid_toLinearEquiv, Coalgebra.TensorProduct.assoc_symm_tmul, CoalgEquiv.trans_toLinearEquiv, CoalgEquiv.trans_symm_apply, Coalgebra.TensorProduct.rid_symm_apply, CoalgEquiv.symm_apply_apply, Coalgebra.TensorProduct.rid_toLinearEquiv, CoalgEquiv.coe_ofBijective, Coalgebra.TensorProduct.rid_tmul, CoalgEquiv.toLinearEquiv_eq_coe, CoalgEquiv.apply_symm_apply, CoalgEquiv.congr_fun, Coalgebra.TensorProduct.assoc_toLinearEquiv, CoalgEquiv.congr_arg, CoalgEquiv.trans_toCoalgHom, Coalgebra.TensorProduct.lid_symm_apply, CoalgEquiv.ofBijective_apply, CoalgEquiv.toCoalgIso_hom
CoalgEquivClass πŸ“–CompData
2 mathmath: BialgEquivClass.toCoalgEquivClass, CoalgEquiv.instCoalgEquivClass
Β«term_≃ₗc[_]_Β» πŸ“–CompOpβ€”

---

← Back to Index