Documentation Verification Report

Hom

πŸ“ Source: Mathlib/RingTheory/Coalgebra/Hom.lean

Statistics

MetricCount
DefinitionsHom, Hom, CoalgHom, apply, comp, copy, funLike, id, toLinearMap, CoalgHomClass, instCoeToCoalgHom, toCoalgHom, induced, counitCoalgHom, Β«term_β†’β‚—c[_]_Β», Β«term_β†’β‚—c_Β»
16
TheoremsEnd_toOne_one, End_toSemigroup_toMul_mul, coalgHomClass, coe_addMonoidHom_injective, coe_coe, coe_comp, coe_copy, coe_fn_inj, coe_fn_injective, coe_id, coe_linearMap_injective, coe_linearMap_mk, coe_mk, coe_mks, coe_toAddMonoidHom, coe_toLinearMap, comp_apply, comp_assoc, comp_id, comp_toLinearMap, congr_arg, congr_fun, copy_eq, counit_comp, ext, ext_iff, ext_of_ring, ext_of_ring_iff, id_apply, id_comp, id_toLinearMap, map_comp_comul, map_smul_of_tower, mk_coe, mul_apply, one_apply, toLinearMap_eq_coe, counit_comp, counit_comp_apply, map_comp_comul, map_comp_comul_apply, toSemilinearMapClass, induced_index, induced_left, induced_right, induced_ΞΉ, counitCoalgHom_apply, counitCoalgHom_toLinearMap, ext_to_ring, ext_to_ring_iff, subsingleton_to_ring
51
Total67

CategoryTheory.Comonad.Coalgebra

Definitions

NameCategoryTheorems
Hom πŸ“–CompData
1 mathmath: CategoryTheory.Comonad.adj_unit

CategoryTheory.Endofunctor.Coalgebra

Definitions

NameCategoryTheorems
Hom πŸ“–CompDataβ€”

CoalgHom

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
10 mathmath: id_comp, comp_toLinearMap, comp_assoc, comp_id, CoalgCat.toCoalgHom_comp, coe_comp, comp_apply, CoalgEquiv.trans_toCoalgHom, BialgHom.comp_toCoalgHom, End_toSemigroup_toMul_mul
copy πŸ“–CompOp
4 mathmath: BialgHom.coe_copy, copy_eq, coe_copy, BialgHom.copy_eq
funLike πŸ“–CompOp
44 mathmath: CoalgEquiv.coe_toCoalgHom, ext_of_ring_iff, coe_addMonoidHom_injective, map_smul_of_tower, comp_toLinearMap, BialgCat.forgetβ‚‚_coalgebra_obj, id_toLinearMap, mul_apply, CoalgCat.MonoidalCategory.inducingFunctorData_ΞΌIso, CoalgCat.MonoidalCategory.inducingFunctorData_Ξ΅Iso, coe_mk, coe_id, CoalgEquiv.coe_coe, coe_fn_inj, id_apply, CoalgCat.forget_reflects_isos, Coalgebra.TensorProduct.map_tmul, coe_coe, Coalgebra.counitCoalgHom_toLinearMap, BialgHom.coe_toCoalgHom, coe_linearMap_injective, congr_fun, CoalgEquiv.toLinearEquiv_toLinearMap, CoalgCat.forgetβ‚‚_obj, coe_toLinearMap, BialgHom.toCoalgHom_apply, CoalgEquiv.symm_toCoalgHom, CoalgCat.forgetβ‚‚_map, coe_fn_injective, coe_linearMap_mk, Coalgebra.counitCoalgHom_apply, CoalgCat.toComon_map_hom, BialgCat.forgetβ‚‚_coalgebra_map, toLinearMap_eq_coe, Coalgebra.TensorProduct.map_toLinearMap, coe_mks, coalgHomClass, BialgHom.coe_mk, ext_iff, congr_arg, coe_comp, coe_toAddMonoidHom, comp_apply, one_apply
id πŸ“–CompOp
9 mathmath: id_comp, id_toLinearMap, coe_id, id_apply, BialgHom.id_toCoalgHom, CoalgEquiv.refl_toCoalgHom, comp_id, End_toOne_one, CoalgCat.toCoalgHom_id
toLinearMap πŸ“–CompOp
13 mathmath: CoalgCat.MonoidalCategoryAux.tensorHom_toLinearMap, CoalgCat.MonoidalCategoryAux.associator_hom_toLinearMap, CoalgEquiv.left_inv, map_comp_comul, counit_comp, CoalgCat.MonoidalCategoryAux.leftUnitor_hom_toLinearMap, BialgEquiv.map_mul', BialgHom.map_mul', LinearMap.convMul_comp_coalgHom_distrib, toLinearMap_eq_coe, CoalgCat.MonoidalCategoryAux.rightUnitor_hom_toLinearMap, CoalgEquiv.right_inv, BialgHom.map_one'

Theorems

NameKindAssumesProvesValidatesDepends On
End_toOne_one πŸ“–mathematicalβ€”CoalgHom
Monoid.toOne
End
id
β€”β€”
End_toSemigroup_toMul_mul πŸ“–mathematicalβ€”CoalgHom
Semigroup.toMul
Monoid.toSemigroup
End
comp
β€”β€”
coalgHomClass πŸ“–mathematicalβ€”CoalgHomClass
CoalgHom
funLike
β€”AddHom.map_add'
LinearMap.map_smul'
counit_comp
map_comp_comul
coe_addMonoidHom_injective πŸ“–mathematicalβ€”CoalgHom
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidHomClass.toAddMonoidHom
funLike
DistribMulActionSemiHomClass.toAddMonoidHomClass
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
RingHom.id
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
SemilinearMapClass.distribMulActionSemiHomClass
CoalgHomClass.toSemilinearMapClass
coalgHomClass
β€”LinearMap.toAddMonoidHom_injective
coe_linearMap_injective
coe_coe πŸ“–mathematicalβ€”DFunLike.coe
CoalgHom
funLike
CoalgHomClass.toCoalgHom
β€”β€”
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
CoalgHom
funLike
comp
β€”β€”
coe_copy πŸ“–mathematicalDFunLike.coe
CoalgHom
funLike
copyβ€”β€”
coe_fn_inj πŸ“–mathematicalβ€”DFunLike.coe
CoalgHom
funLike
β€”DFunLike.coe_fn_eq
coe_fn_injective πŸ“–mathematicalβ€”CoalgHom
DFunLike.coe
funLike
β€”DFunLike.coe_injective
coe_id πŸ“–mathematicalβ€”DFunLike.coe
CoalgHom
funLike
id
β€”β€”
coe_linearMap_injective πŸ“–mathematicalβ€”CoalgHom
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
SemilinearMapClass.semilinearMap
funLike
CoalgHomClass.toSemilinearMapClass
coalgHomClass
β€”CoalgHomClass.toSemilinearMapClass
coalgHomClass
coe_fn_injective
coe_linearMap_mk πŸ“–mathematicalLinearMap.comp
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.id
RingHomCompTriple.ids
CoalgebraStruct.counit
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
TensorProduct.map
CoalgebraStruct.comul
SemilinearMapClass.semilinearMap
CoalgHom
funLike
CoalgHomClass.toSemilinearMapClass
coalgHomClass
β€”RingHomCompTriple.ids
CoalgHomClass.toSemilinearMapClass
coalgHomClass
coe_mk πŸ“–mathematicalLinearMap.comp
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.id
RingHomCompTriple.ids
CoalgebraStruct.counit
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
TensorProduct.map
CoalgebraStruct.comul
DFunLike.coe
CoalgHom
funLike
LinearMap
LinearMap.instFunLike
β€”RingHomCompTriple.ids
coe_mks πŸ“–mathematicalAddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddHom.toFun
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHom.id
LinearMap.comp
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
RingHomCompTriple.ids
CoalgebraStruct.counit
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
TensorProduct.map
CoalgebraStruct.comul
CoalgHom
funLike
β€”RingHomCompTriple.ids
coe_toAddMonoidHom πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidHom.instFunLike
AddMonoidHomClass.toAddMonoidHom
CoalgHom
funLike
DistribMulActionSemiHomClass.toAddMonoidHomClass
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
RingHom.id
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
SemilinearMapClass.distribMulActionSemiHomClass
CoalgHomClass.toSemilinearMapClass
coalgHomClass
β€”DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
CoalgHomClass.toSemilinearMapClass
coalgHomClass
coe_toLinearMap πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
SemilinearMapClass.semilinearMap
CoalgHom
funLike
CoalgHomClass.toSemilinearMapClass
coalgHomClass
β€”CoalgHomClass.toSemilinearMapClass
coalgHomClass
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
CoalgHom
funLike
comp
β€”β€”
comp_assoc πŸ“–mathematicalβ€”compβ€”ext
comp_id πŸ“–mathematicalβ€”comp
id
β€”ext
comp_toLinearMap πŸ“–mathematicalβ€”SemilinearMapClass.semilinearMap
CoalgHom
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
comp
funLike
CoalgHomClass.toSemilinearMapClass
coalgHomClass
LinearMap.comp
RingHomCompTriple.ids
β€”CoalgHomClass.toSemilinearMapClass
coalgHomClass
congr_arg πŸ“–mathematicalβ€”DFunLike.coe
CoalgHom
funLike
β€”DFunLike.congr_arg
congr_fun πŸ“–mathematicalβ€”DFunLike.coe
CoalgHom
funLike
β€”DFunLike.congr_fun
copy_eq πŸ“–mathematicalDFunLike.coe
CoalgHom
funLike
copyβ€”DFunLike.ext'
counit_comp πŸ“–mathematicalβ€”LinearMap.comp
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.id
RingHomCompTriple.ids
CoalgebraStruct.counit
toLinearMap
β€”β€”
ext πŸ“–β€”DFunLike.coe
CoalgHom
funLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
CoalgHom
funLike
β€”ext
ext_of_ring πŸ“–β€”DFunLike.coe
CoalgHom
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semiring.toModule
Coalgebra.toCoalgebraStruct
CommSemiring.toCoalgebra
funLike
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”β€”coe_linearMap_injective
LinearMap.ext_ring
CoalgHomClass.toSemilinearMapClass
coalgHomClass
ext_of_ring_iff πŸ“–mathematicalβ€”DFunLike.coe
CoalgHom
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semiring.toModule
Coalgebra.toCoalgebraStruct
CommSemiring.toCoalgebra
funLike
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”ext_of_ring
id_apply πŸ“–mathematicalβ€”DFunLike.coe
CoalgHom
funLike
id
β€”β€”
id_comp πŸ“–mathematicalβ€”comp
id
β€”ext
id_toLinearMap πŸ“–mathematicalβ€”SemilinearMapClass.semilinearMap
CoalgHom
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
id
funLike
CoalgHomClass.toSemilinearMapClass
coalgHomClass
LinearMap.id
β€”CoalgHomClass.toSemilinearMapClass
coalgHomClass
map_comp_comul πŸ“–mathematicalβ€”LinearMap.comp
TensorProduct
CommSemiring.toSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
TensorProduct.map
toLinearMap
CoalgebraStruct.comul
β€”β€”
map_smul_of_tower πŸ“–mathematicalβ€”DFunLike.coe
CoalgHom
funLike
β€”LinearMap.map_smul_of_tower
mk_coe πŸ“–β€”DFunLike.coe
CoalgHom
funLike
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddHom.toFun
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
Module.toDistribMulAction
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHom.id
LinearMap.comp
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
RingHomCompTriple.ids
CoalgebraStruct.counit
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
TensorProduct.map
CoalgebraStruct.comul
β€”β€”RingHomCompTriple.ids
ext
mul_apply πŸ“–mathematicalβ€”DFunLike.coe
CoalgHom
funLike
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
End
β€”β€”
one_apply πŸ“–mathematicalβ€”DFunLike.coe
CoalgHom
funLike
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
End
β€”β€”
toLinearMap_eq_coe πŸ“–mathematicalβ€”toLinearMap
SemilinearMapClass.semilinearMap
CoalgHom
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
funLike
CoalgHomClass.toSemilinearMapClass
coalgHomClass
β€”β€”

CoalgHom.Simps

Definitions

NameCategoryTheorems
apply πŸ“–CompOpβ€”

CoalgHomClass

Definitions

NameCategoryTheorems
instCoeToCoalgHom πŸ“–CompOpβ€”
toCoalgHom πŸ“–CompOp
22 mathmath: CoalgEquiv.coe_toCoalgHom, CoalgEquiv.coe_ofCoalgHom, BialgHom.coe_coalgHom_injective, CoalgEquiv.toCoalgHom_inj, CoalgEquiv.toCoalgHom_eq_coe, CategoryTheory.Iso.toCoalgEquiv_toCoalgHom, Bialgebra.TensorProduct.map_toCoalgHom, BialgHom.coe_coalgHom_mk, CoalgEquiv.coe_coe, CoalgEquiv.toCoalgIso_inv, BialgEquiv.toCoalgEquiv_toCoalgHom, CoalgHom.coe_coe, BialgHom.coe_toCoalgHom, BialgHom.id_toCoalgHom, Bialgebra.counitBialgHom_toCoalgHom, CoalgEquiv.toLinearEquiv_toLinearMap, CoalgEquiv.symm_toCoalgHom, CoalgEquiv.refl_toCoalgHom, BialgCat.forgetβ‚‚_coalgebra_map, CoalgEquiv.trans_toCoalgHom, CoalgEquiv.toCoalgIso_hom, BialgHom.comp_toCoalgHom

Theorems

NameKindAssumesProvesValidatesDepends On
counit_comp πŸ“–mathematicalβ€”LinearMap.comp
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
RingHom.id
RingHomCompTriple.ids
CoalgebraStruct.counit
SemilinearMapClass.semilinearMap
toSemilinearMapClass
β€”β€”
counit_comp_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
LinearMap.instFunLike
CoalgebraStruct.counit
β€”LinearMap.congr_fun
RingHomCompTriple.ids
toSemilinearMapClass
counit_comp
map_comp_comul πŸ“–mathematicalβ€”LinearMap.comp
TensorProduct
CommSemiring.toSemiring
TensorProduct.addCommMonoid
TensorProduct.instModule
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
TensorProduct.map
SemilinearMapClass.semilinearMap
toSemilinearMapClass
CoalgebraStruct.comul
β€”β€”
map_comp_comul_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
TensorProduct.map
SemilinearMapClass.semilinearMap
toSemilinearMapClass
CoalgebraStruct.comul
β€”LinearMap.congr_fun
RingHomCompTriple.ids
toSemilinearMapClass
map_comp_comul
toSemilinearMapClass πŸ“–mathematicalβ€”SemilinearMapClass
CommSemiring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
β€”β€”

Coalgebra

Definitions

NameCategoryTheorems
counitCoalgHom πŸ“–CompOp
3 mathmath: counitCoalgHom_toLinearMap, Bialgebra.counitBialgHom_toCoalgHom, counitCoalgHom_apply

Theorems

NameKindAssumesProvesValidatesDepends On
counitCoalgHom_apply πŸ“–mathematicalβ€”DFunLike.coe
CoalgHom
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semiring.toModule
toCoalgebraStruct
CommSemiring.toCoalgebra
CoalgHom.funLike
counitCoalgHom
LinearMap
RingHom.id
LinearMap.instFunLike
CoalgebraStruct.counit
β€”β€”
counitCoalgHom_toLinearMap πŸ“–mathematicalβ€”SemilinearMapClass.semilinearMap
CoalgHom
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semiring.toModule
toCoalgebraStruct
CommSemiring.toCoalgebra
RingHom.id
counitCoalgHom
CoalgHom.funLike
CoalgHomClass.toSemilinearMapClass
CoalgHom.coalgHomClass
CoalgebraStruct.counit
β€”CoalgHomClass.toSemilinearMapClass
CoalgHom.coalgHomClass
ext_to_ring πŸ“–β€”β€”β€”β€”subsingleton_to_ring
ext_to_ring_iff πŸ“–β€”β€”β€”β€”ext_to_ring
subsingleton_to_ring πŸ“–mathematicalβ€”CoalgHom
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semiring.toModule
toCoalgebraStruct
CommSemiring.toCoalgebra
β€”CoalgHom.ext
CoalgHomClass.counit_comp_apply
CoalgHom.coalgHomClass

Coalgebra.Repr

Definitions

NameCategoryTheorems
induced πŸ“–CompOp
4 mathmath: induced_ΞΉ, induced_index, induced_right, induced_left

Theorems

NameKindAssumesProvesValidatesDepends On
induced_index πŸ“–mathematicalβ€”index
Coalgebra.toCoalgebraStruct
DFunLike.coe
induced
β€”β€”
induced_left πŸ“–mathematicalβ€”left
Coalgebra.toCoalgebraStruct
DFunLike.coe
induced
ΞΉ
β€”β€”
induced_right πŸ“–mathematicalβ€”right
Coalgebra.toCoalgebraStruct
DFunLike.coe
induced
ΞΉ
β€”β€”
induced_ΞΉ πŸ“–mathematicalβ€”ΞΉ
Coalgebra.toCoalgebraStruct
DFunLike.coe
induced
β€”β€”

(root)

Definitions

NameCategoryTheorems
CoalgHom πŸ“–CompData
50 mathmath: CoalgEquiv.coe_toCoalgHom, CoalgHom.ext_of_ring_iff, CoalgHom.coe_addMonoidHom_injective, BialgHom.coe_coalgHom_injective, CoalgHom.map_smul_of_tower, Coalgebra.subsingleton_to_ring, CoalgHom.comp_toLinearMap, CoalgEquiv.toCoalgHom_injective, BialgCat.forgetβ‚‚_coalgebra_obj, CoalgHom.id_toLinearMap, CoalgHom.mul_apply, CoalgCat.MonoidalCategory.inducingFunctorData_ΞΌIso, CoalgCat.MonoidalCategory.inducingFunctorData_Ξ΅Iso, CoalgHom.coe_mk, CoalgHom.coe_id, CoalgEquiv.coe_coe, CoalgHom.coe_fn_inj, CoalgHom.id_apply, CoalgCat.forget_reflects_isos, Coalgebra.TensorProduct.map_tmul, CoalgHom.coe_coe, Coalgebra.counitCoalgHom_toLinearMap, CoalgCat.Hom.toCoalgHom_injective, BialgHom.coe_toCoalgHom, CoalgHom.coe_linearMap_injective, CoalgHom.congr_fun, CoalgEquiv.toLinearEquiv_toLinearMap, CoalgCat.forgetβ‚‚_obj, CoalgHom.coe_toLinearMap, BialgHom.toCoalgHom_apply, CoalgEquiv.symm_toCoalgHom, CoalgCat.forgetβ‚‚_map, CoalgHom.coe_fn_injective, CoalgHom.End_toOne_one, CoalgHom.coe_linearMap_mk, Coalgebra.counitCoalgHom_apply, CoalgCat.toComon_map_hom, BialgCat.forgetβ‚‚_coalgebra_map, CoalgHom.toLinearMap_eq_coe, Coalgebra.TensorProduct.map_toLinearMap, CoalgHom.coe_mks, CoalgHom.coalgHomClass, BialgHom.coe_mk, CoalgHom.ext_iff, CoalgHom.congr_arg, CoalgHom.coe_comp, CoalgHom.coe_toAddMonoidHom, CoalgHom.comp_apply, CoalgHom.one_apply, CoalgHom.End_toSemigroup_toMul_mul
CoalgHomClass πŸ“–CompData
3 mathmath: CoalgHom.coalgHomClass, CoalgEquivClass.toCoalgHomClass, BialgHomClass.toCoalgHomClass
Β«term_β†’β‚—c[_]_Β» πŸ“–CompOpβ€”
Β«term_β†’β‚—c_Β» πŸ“–CompOpβ€”

---

← Back to Index